Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Защита металлическими катодами

    Защитные покрытия. Слои, искусственно создаваемые на поверхности металлических изделий и сооружений для предохранения их от коррозии, называются защитными покрытиями. Если наряду с защитой от коррозии покрытие служит также для декоративных целей, его называют защитно-декоративным. Выбор вида покрытия зависит от условий, в которых используется металл. Материалами для металлических защитных покрытий могут быть как чистые металлы (цинк, кадмий, алюминий, никель, медь, хром, серебро и др.), так и их сплавы (бронза, латунь и др.). По характеру поведения металлических покрытий при коррозии их можно разделить на катодные и анодные. К катодным покрытиям относятся покрытия, потенциалы которых в данной среде имеют более положительное значение, чем потенциал основного металла. В качестве примеров катодных покрытий на стали можно привести Си, N1, Ag. При повреждении покрытия (или наличии пор) возникает коррозионный элемент, в котором основной материал в поре служит анодом и растворяется, а материал покрытия — катодом, на котором выделяется водород или поглощается кислород (рис. 74). Следовательно, катодные покрытия могут защищать металл от коррозии лишь при отсутствии пор и повреждений покрытия. Анодные покрытия имеют более отрицательный [c.218]


    Для защиты железных конструкций от коррозии наиболее часто применяют металлическое покрытие из цинка (оцинкованное железо, жесть) или олова (луженое железо, белая жесть). В первом случае цинк является более активным восстановителем, чем железо, так как Ре Ге2+ = = -0,440 В. Поэтому при нарушении покрытия в коррозионных микрогальванических элементах цинк будет анодом и разрушаться, а железо катодом — местом, для осуществления процессов восстановления окислителей среды. Для описания процессов в этой системе на рис. 38.7 следует слева взять более активный металл — цинк (вместо железа), а справа — менее активный — железо (вместо меди) и заменить ионы железа в среде на ионы цинка. Поскольку в данном процессе цинк является анодом, то цинковое покрытие железа называется анодным покрытием. [c.692]

    Применение электролиза. Электролиз находит широкое применение. Для защиты металлических изделий от коррозии на их поверхность наносится тончайший слой другого металла — хрома, серебра, золота, меди, никеля и т. д. Покрываемое металлическое изделие помещают в качестве катода в электролитическую ванну с раствором соли того металла, который должен быть осажден на этом изделии. Например, для никелирования это должна быть соль никеля, для омеднения — соль меди. Анодом служит пластинка из того металла, которым покрывают изделие (в примере-—никель или медь). Чтобы покрытие было красивым и прочно держалось на изделии, необходимо соблюдать ряд условий. [c.222]

    В грунтах, обладающих достаточно высокой электропроводностью, наиболее эффективным методом защиты металлических конструкций является электрохимическая защита как дополнение к изолирующим покрытиям или как самостоятельный способ защиты. Широкое применение в технике для защиты подземных металлических сооружений находит катодная поляризация (катодная защита), в результате которой потенциал сооружения смещается в отрицательную сторону, а скорость коррозии снижается. Катодная защита может быть осуществлена в двух вариантах с использованием внешних источников тока (аккумуляторных батарей, селеновых выпрямителей, генераторов постоянного тока) и путем применения протекторов из металлов с потенциалом, более отрицательным, чем у стали. Такими металлами являются магний, цинк и алюминий. При присоединении протектора к трубопроводу образуется гальванический элемент, катодом которого является стальной трубопровод, а анодом — магниевый или цинковый электрод. Электрохимическая защита подробно рассматривается в гл. XIX. [c.196]


    Защитные поверхностные покрытия металлов. Они бывают металлические (покрытие цинком, оловом, свинцом, никелем, хромом и другими металлами) и неметаллические (покрытие лаком, краской, эмалью и другими веществами). Эти покрытия изолируют металл от внешней среды. Так, кровельное железо покрывают цинком, из оцинкованного железа изготовляют многие изделия бытового и промышленного значения. Слой цинка предохраняет железо от коррозии, так как цинк, хотя и является более активным металлом, чем железо (см. ряд стандартных электродных потенциалов металлов, рис. 5.5), покрыт оксидной пленкой. При повреждениях защитного слоя (царапины, пробои крыш и т. д.) в присутствии влаги возникает гальваническая пара 2п Ре. Катодом (положительным полюсом) является железо, анодом (отрицательным полюсом) — цинк (рис. 5.10). Электроны переходят от цинка к железу, где связываются молекулами кислорода, цинк растворяется, но железо остается защищенным до тех пор, пока не будет разрушен весь слой цинка, на что требуется довольно много времени. Покрытие железных изделий никелем, хромом, помимо защиты от коррозии, придает им красивый внешний вид. [c.164]

    Одним из основных способов электрохимической защиты металлов от коррозии является катодная защита. Для этого поверхность защищаемой металлической конструкции искусственно делается катодом путем наложения отрицательного потенциала от какого либо постоянного источника тока. Объясните, на чем основан этои способ защиты металлов от коррозии. [c.148]

    Предохранение металла от коррозии металлическим покрытием сводится к нанесению на поверхность защищаемого металла слоя другого металла. Для этого применяют весьма медленно корродирующие металлы, которые в гальванической цепи с защищаемым металлом служат анодами. Если же в гальванической цепи с защищаемым металлом металл, применяемый для защиты, является катодом, то он сам может быть причиной усиленной коррозии, если его слой будет нарушен и обнажится защищаемый пм металл. Такая ускоренная коррозия железа наблюдается у железных изделий, покрытых оловом. [c.22]

    Электрохимическая защита. Защищаемое сооружение присоединяют к катоду внешнего источника постоянного тока, вследствие чего оно становится катодом. Отсюда защита сооружений от коррозии таким способом получила название катодной защиты. В качестве анода при этом используется металлический лом, который и разрушается, предохраняя от коррозии сооружение. [c.196]

    Защита металлическими катодами [c.153]

    Изоляционные покрытия металлических сооружений увеличивают омическое сопротивление коррозионной цепи и, следовательно, уменьшают токи коррозии, т.е. коррозионное разрушение металла. Для подземных металлических сооружений изоляционное покрытие отделяет поверхность сооружения от почвенного электролита, что предотвращает почвенную коррозию. Для надземных металлических сооружений изоляционное покрытие отделяет поверхность металла от влаги и кислорода воздуха, что предотвращает и электрохимическую и химическую коррозию. Кроме того, поляризационное сопротивление катода (металлического сооружения) при наличии изоляционного покрытия увеличивается, а сила защитного тока снижается, следовательно, энергозатраты при защите сооружения внешним наложенным током уменьшаются, т.е. возрастает эффективность электрохимической защиты. [c.76]

    Катодная защита внешним током - защита металла, производимая с помощью постоянного тока от внешнего источника, при которой защищаемый металл присоединяется к отрицательному полюсу (т. е. в качестве катода), а к положительному полюсу - дополнительный электрод (заземление), поляризуемый при этом анодно. Катодная защита внешним током в настоящее время широко применяется как дополнительное средство (к изолирующему покрытию) защиты от коррозии подземных металлических сооружений - трубопроводов и резервуаров [2, 3, 4, 5]. [c.11]

    Важнейшая область прикладной электрохимии — гальванотехника. Этим названием объединяются два направления гальваностегия — получение гальванических покрытий иа металлах и гальванопластика — электрохимическое получение точных металлических копий с рельефных поверхностей (Якоби). Сейчас гальваиоиластика находит применение для нанесения металлических рисунков на полупроводники и непроводящие материалы (например, в производстве печатных радиосхем для миниатюрных радиоирпемииков). Гальванические покрытия наносят для защиты металлов от коррозии, а также в декоративных и специальных целях (увеличение отрам<а-тельной способности волноводов и рефлекторов, уменьшение сопротивления электрических контактов и т. д.). Покрытие осуществляют электролизом растворов как с растворимым анодом (никелирование, кадмирование, цинкование, лужение, серебрение и др.), так и с нерастворимым (хромирование, золочение). Покрываемое изделие всегда является катодо . [c.264]


    Электролиз лежит в основе гальваностегии и гальванопластики. Гальваностегия—это процесс нанесения на поверхности металлических изделий слоев других металлов. Чаще всего это делают с целью защиты от коррозии и придания изделиям красивого внешнего вида. В качестве защитных металлов наносят хром, никель н лр. Изделия, на которые наносят защитные слои, при электролизе пы-полняют функции катода. [c.245]

    Электрохимическое нанесение металлических покрытий для защиты от коррозии, декоративных целей, создания проводящих, отражающих, скользящих и других поверхностей с заданными свойствами, а также для восстановления изношенных деталей. Электролитическими методами можно наносить покрытия на катоде и на аноде. В качестве примеров катодных покрытий можно [c.221]

    Другим видом электрохимической защиты является катодная защита. Защищаемую металлическую поверхность соединяют с отрицательным полюсом источника постоянного тока, т. е. она служит катодом (рис. 10.9). Положительный полюс присоединяют к другому вспомогательному металлу, который помещают в ту же среду, что и защищаемое изделие, например в почву. Поверхность основного металла будет защищена (на ней восстанавливаются окислители из окружающей среды), а вспомогательный металл будет окисляться. Электрохимические методы чаще всего используются для защиты стального оборудования от коррозии в морской воде и почве. [c.220]

    Из металлов подгруппы цинка (2п, С(1, Нд) наиболее широко в гальванотехнике используют цинк, в меньшей степени —кадмий. Область применения кадмиевых и цинковых покрытий в значительной степени определяется защитными и физико-механическими свойствами цинка и кадмия. Основной областью использования цинковых и кадмиевых покрытий является защита стальных деталей от коррозии. Несмотря на относительно высокий нормальный потенциал —0,76 В, металлический цинк является довольно коррозионностойким в атмосферных условиях. Так как потенциал цинка имеет более отрицательное значение, чем потенциал железа, то при контакте цинка с железом и наличии влаги образуется гальванический элемент, в котором железо служит катодом. Таким образом, покрытие цинком защищает сталь не только механически, но и электрохимически. В случае повреждения цинкового покрытия на небольшом участке железо корродировать не будет. [c.280]

    Необходимо рассматривать не только реакцию между окружающей средой и металлическим покрытием, но и реакцию, которая происходит, когда воздействию окружающей среды подвергается гальваническая пара. При этом из-за пористости, дефектов покрытия, механического повреждения или в результате коррозии покрытия не обеспечивается защита основного металла. Если при воздействии определенной среды покрытие служит катодом по отношению к основному металлу, то образуются малый анод и большой катод, что приводит к интенсивной коррозии, сосредоточенной на малой площади. При дальнейшей коррозии соотношение площадей анод —катод существенным образом не изменяется, поскольку покрытие не корродирует [c.50]

    Электрохимическая защита металлов от коррозии. Этот вид защиты основан на уменьшении скорости коррозии металлических конструкций путем их катодной или анодной поляризации. Наибольшее распространение нашла так называемая катодная защита металлов. В этом случае защищаемую металлическую конструкцию присоединяют или к отрицательному полюсу внешнего источника постоянного тока (т. е. в качестве катода) или к металлу, имеющему более отрицательный потенциал. Первый способ защиты металлов, осуществляемый подачей постоянного тока от внешнего источника, получил название катодной защиты, а второй осуществляемый путем присоединения защищаемой конструкции к электроду, обладающему потенциалом, более отрицательным, чем защищаемая поверхность, — протекторной защиты. [c.133]

    На рис. 140 показаны разрезы и план усовершенствованной ванны с горизонтальным катодом. Ванна и разлагатель в конструктивном отношении не зависят друг от друга, что дает возможность независимо регулировать уклон дна обеих частей. Ванну 7 изготовляют отливкой в чугунных формах бетонных армированных блоков 2, соединяемых друг с другом металлическими фланцами на резиновых прокладках. Ванны новейшего типа строят железными и внутри гуммируют. Ванна, изображенная на рис. 140, состоит из трех блоков. Отливкой блоков в формах достигается гладкая и ровная поверхность дна. Каждый блок установлен на двух опорах 3 и регулируемых изоляторах, позволяющих достигнуть точного совпадения дна блоков. Боковые стенки ванны выложены стеклянными плитками для защиты бетона от действия хлора и кислого анолита. Ванна сверху закрывается бетонными крышками в каждой крышке укреплены графитовые аноды в виде плит с двумя стержнями. [c.339]

    Поверхность катода (пластины нз коррозионно стойкой стали) рассчитывают исходя из заданной катодной плотности тока или силы тока, подаваемого на ванну нз коррозионно-стойкой стали марки 1Х18Н9Т Наложением на металлическую конструкцию слабого анодного тока можно длительное время поддерживать металл в пассивном состоянии, тормозя воздействие на него агрессивной среды Принципиальная схема анодной защиты металлической ванны приведена на рис 34 [c.95]

    Катодную защиту металлических электродов при остановках электролиза часто используют в процессах получения хлоратов и перхлоратов, а также в некоторых других промышленных процессах. В производстве хлора и каустической соды методом электролиза с твердыл катодом и диафрашой, во время остановок процесса прекращается протекание содержащего активный хлор электролита через диафрагму к катоду, поэтому рекомендуется подщелачивание электролита в анодном пространстве для предотвращения коррозии катодов. [c.238]

    В этом случае металл был поляризован до значения потенциала-анода и не мог бы корродировать. Это может быть достигнуто путем катодной поляризации защищаемого металла с по-мощь10 внешнего источника постоянного тока (катодная защита), либо с помощью тока, получаемого при создании контактной пары (протекторная защита). Поляризацию катода можно увеличить с помощью так называемых ингибиторов коррозии (например, Са (НСОз)2, N2H4, ЫааЗОз) Другой способ — анодные металлические покрытия (цинковые, алюминиевые, кадмиевые), широко используемые в борьбе с коррозией стали в морской воде. [c.48]

    В результате перечисленных мероприятий удается значительно уменьшить скорость осаждения металлической губки на катоде и частично устранить связанные с ним нарушения работы ячейки. Однако полностью эти явления не исключаются. Для подавления процесса образования металлических мостиков между катодом и рамой ее поверхность иногда покрывают непроводящим материалом, например бетоном или асбобетоном. Благодаря этому исключается возможность электрического соединения рамы и катода металлической губкой и включения поверхности рамы в электрохимические процессы. Такая футеровка может быть полезна и для защиты металлических поверхностей рамы и ее деталей от коррозии. [c.74]

    Анодная защита внешним током — защита металла от коррозии с помощью постоянного электрического тока от внешнего источника, при которой защищаемый металл присоединяют к положительному полюсу внешнего источника постоянного тока (т. е. в качестве анода), а к отрицательному полюсу присоединяют дополнительный электрод, поляризуемый катодно. При таком пропускании тока поверхность защищаемого металла поляризуется анодно ее потенциал при этом смещается в положительную сторону, что обычно приводит к увеличению электрохимического растворения металла однако при достижении определенного значения потенциала может наступить пассивное состояние металла (что наблюдается при отсутствии депассиваторов в коррозионной среде и приводит к значительному снижению скорости электрохимической коррозии металла), для длительного сохранения которого требуется незначительная плотность анодного тока. На дополнительном электроде — катоде при этом протекает преимущественно катодный процесс. При больших плотностях анодного тока возможно достижение значений потенциала, при которых наступает явление перепассивации (транспассивности)— растворение металла с переходом в раствор ионов высшей валентности, в результате чего образуются растворимые или неустойчивые соединения (л<елезо и хром образуют ионы Ре04 и СГО4 , в которых Ре и Сг шестивалентны), что приводит к нарушению пассивного состояния и увеличению скорости растворения металла. Анодная защита металлических конструкций от коррозии уже нашла применение в химической, бумажной и других отраслях промышленности. [c.242]

    Для защиты от коррозии применяют также различные защитные неметаллические (разные лаки, краски, полимерные материалы, масла) и металлические покрытия. Металлические покрытия разделяют на анодные и катодные. Анодные покрытия защищают металл не только механически, но и электрохимически. В порах, например, цинкового покрытия на железе при образовании микрогальваноэлемента цинк является анодом, а железо — катодом (рис. 90). Цинк растворяется в электролите, а железо не будет разрушаться до тех пор, пока сохраняется цинковое покрытие. [c.375]

    Однако предотвратить процессы коррозии никогда не удается. Поэтому целесообразно проводить постоянную очистку электролита от загрязнений железом. Для этой цели электролит непрерывно фильтруют через фильтр, установленный на пути циркуляции электролита. В результате значительно уменьшаются скорость процессов осаждения металлической губки на катоде и связанные с этим нарушения работы ячейки. Для снижения опасности образования металлических мостиков между рамой и катодом поверхность рамы покрывают не проводящим ток материалом, например бетоном или асбобетоном. Одновременно исключается возможность электрического соединения рамы и катода осадками губчатого металла и включения поверхности рамы также и в электрохимический процесс. Такая футеровка может быть полезна с точки зрения защиты металлических поверхностей рамы и ее деталей от коррозии. [c.75]

    По механизму защиты различают металлические покрыти5( анодные и катодные. Металл анодных покрытий имеет электродный потенциал более отрицательный, чем потенциал защищаемого металла. В случае применения анодных покрытий ие обязательно, чтобы оно было сплошным. При действии растворов электролитов в возникающем коррозионном элементе осноиной металл — покрытие основной металл является катодом и поэтому при достаточно большой площади покрытия не разрушается, а защищается электрохимически за счет растворения металла покрытия. Примерами анодных покрытий являются покрытия железа цинком и кадмием. Анодные покрытия на железе, как правило, обладают сравнительно низкой коррозионной стойко- [c.318]

    Результат работы макрокоррозиониых элементов снижается при повышении омического сопротивления цепи элемента [см. формулу (23)]. Достаточно большим омическим сопротивлением является изоляционное покрытие, отделяющее поверхность металлического сооружения от почвенного электролита. Кроме того, поляризационное сопротивление катода при наличии изоляции увеличивается, а сила коррозионного тока снижается, следовательно, защита сооружения внешним током может быть достигнута при меньших энергозатратах. Таким образом возрастает эффективность электрохимической защиты. [c.75]

    Пологая кривая напряжения разряда Li e относительно металлического лития обусловливает высокое напряжение электрохимических систем с катодами из литированных оксидов, что требует применения повышенного количества графита в аноде для поддержания равновесия ионного обмена в целях защиты от отложения на аноде металлического лития. [c.330]

    Эффективным средством защиты металлов от коррозии являются такие электрохимические методы, как метод протекторов и метод внешнего потенциала. Методом протекторов (защитников) называют такой прием, когда к металлической детали и узлу деталей припаивают или присоединяют металлическим проводником кусок металла, электродный потенциал которого ниже, чем электродный потенциал защищаемого металла. Этим создаются условия для образования гальванического элемента, в котором более активный металл, являясь анодом, окисляется и защищает деталь до своего полного разрушения. По методу внешнего.потенциала защищаемый металл подсоединяют к отрицательному полюсу источника посто5 нного тока, тем самым превращая его в катод. На катоде восстанавливается окислитель из окружающей среды, получая электроны не от металла, а от источника тока. [c.198]

    В 1954 г. Пиерс и Вальтер Пиннер опубликовали методику электрохимического испытания с целью выявления коррозии тонких гальванических металлических покрытий, имеющих довольно ограниченный период защиты при эксплуатации. Образцы становятся анодами под действием тока напряжением 0,3 В по отношению к медному катоду в растворе 3%-ного хлорида натрия с добавлением сегнетовой соли. Испытания длятся несколько часов. [c.164]

    Электрохимическая защита заключается в катодной поляризации защищаемого металла от внешнего источника постоянного тока до потенциала, при котором анодный процесс на металле прекращается или же существенно замедляется. При этом реализуется гальванованна, т. е. система, где электрохимические процессы осуществляются за счет приложенного Извне электрического тока. В такой системе катодом является защищаемый металл, а анодом - металлический активно разрушающийся электрод. [c.113]

    Покрытия из цинка и олова (так же как и других металлов) защищают железо от коррозии при сохранении сплошности. При нарушении покрывающего слоя (трещины, царапины) коррозия изделия протекает даже более интенсивно, чем без покрытия. Это объясняется работой гальванического элемента железо — цинк и железо — олово. Трещины и царапины заполняются влагой и образуются растворы. Поскольку цинк более электроотрицателен, чем железо, то его ионы будут преимущественно переходить в раствор, а остающиеся электроны будут перетекать на более электроположительное железо, делая его катодом (рис. 2). К железу-катоду будут подходить ионы водорода (вода) и разряжаться, принимая электроны. Образующиеся атомы водорода объединяются в молекулу Нг- Таким образом, потоки ионов будут разделены и это облегчает протекание электрохимического процесса. Растворению (коррозии) будет подвергаться цинковое покрытие, а железо до поры до времени будет защищено. Цинк электрохимически защищает железо от коррозии. На этом принципе основан протекторный метод защиты от коррозии металлических конструкций и аппаратов. Английское слово претект — означает защищать, предохранять. При протекторной защите к конструкции, к аппарату через проводник электрического тока присоединяется кусок более электроотрицательного металла. Его можно поместить прямо в паровой котел. При наличии влаги, [c.145]

    Электроискровой метод катодного модифицирования [243]. Принцип этого метода заключается в переносе металла электроискрой с положительного полюса электрода (анода) на отрицательный (катод), представляющий собой обрабатываемую деталь. В зависимости от режима можно получать различную толщину обработанного слоя, состоящего из внедренных и сплавленных с основой частиц наносимого металла. Этим методом на металлических поверхностях создают покрытия из любых металлических материалов при хорошем сцеплении с основой даже без предварительной тщательной подготовки поверхности. Минусом метода является недостаточно гладкая поверхность и трудность получения хорошей сплошности покрытия. Последнее обстоятельство при катодной модификации пассивирующей основы не является существенным недостатком, так как защита имеет не кроющий, а электрохимический механизм. [c.329]

    Следует заключить, что не существует единого пути создания коррозионностойкого сплава, ка не существует и металлического сплава, устойчивого в любых условиях. В зависимости от условий коррозии пути подбора и создания коррозионностойких сплавов будут весьма сильно видоизменяться. Легирование стали значительным количеством хрома (переход к хромистым сталям) является созершенным методом защиты в условиях работы сплава в пассивном состоянии (анодный контроль), но будет совершенно бесполезным при работе конструкции в неокислительной кислоте (НС1, H2SO4), где протекает коррозия этих сталей с катодным контролем. Легирование титана большим количеством (до 32%) молибдена повышает устойчивость сплава в солянокислых растворах, но будет вредно, если в этих растворах присутствуют окислителя и кислород наоборот, в этих средах более положительный эффект будет получен от модифицирования титана ничтожными присадками (0,2—0,5%) палладия. Может быть приведено большое число подобных примеров. Общей ориентировкой может служить такое правило. Изменение состава сплава следует производить в том направлении, чтобы в предполагаемых условиях эксплуатации достигалось дальнейшее повышение основного контролирующего фактора коррозии. Например, если основной металл в данных условиях не склонен к пассивации п корродирует в активном состоянии с выделением водорода, то следует изыскивать методы изменения состава и структуры поверхности сплава, вызывающие повышение катодного контроля, например повышение перенапряжения водорода, снижение поверхности активных катодов. Для условий, в которых возможна пассивация основы сплава, наибольший эффект будет получен от добавления в сплав присадок, повышающих пассивируемость основы или повышающих эффективность катодного процесса. [c.21]

    Меры защиты от коррозии разнообразны покрытие поверхности металлов краской, эмалью, другими металлами, более корроЪионнб-устойчивыми (никелирование, хромирование, алитирование — покрытие алюминием) образование окисных пленок ( вороненая сталь) фосфатирование (покрытие нерастворимыми фосфатными пленками) соединение защищаемого металлического предмета с более активным металлом — протекторная защита присоединение к катоду источника постоянного электрического тока — электрохимическая защита. В этом случае металлическая конструкция получает отрицательный заряд и поэтому не отдает ионов металла. Коррозии препятствуют также специальные вещества — ингибиторы, вводимые в жидкую среду. Например, прибавление ингибиторов ПБ и ЧМ к кислоте в небольшом количестве (0,1—0,5%) замедляет коррозию железа в 10—100 и более раз. [c.84]


Смотреть страницы где упоминается термин Защита металлическими катодами: [c.196]    [c.503]    [c.298]    [c.154]    [c.309]    [c.527]    [c.93]   
Смотреть главы в:

Пассивность и защита металлов от коррозии -> Защита металлическими катодами




ПОИСК





Смотрите так же термины и статьи:

Защита металлическими

Катод

катод металлический



© 2025 chem21.info Реклама на сайте