Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Область рассмотрения и ее границы

    Как видно из приведенного примера, конфигурация областей устойчивости может в рассматриваемом случае изменяться весьма сильно в зависимости от того, каковы величины />1, 01, и Оа в плоскости подвода тепла. Такое разнообразие конфигураций связано, в частности, с тем, что границы устойчивости могут уходить в бесконечность. Если построить аналогичные границы в системе координат, принятой в 19, то случаи р = 0 и >1 = 0 дали бы совершенно однотипные конфигурации областей неустойчивости — окружности. Эти окружности приведены, например, на рис. 28. Что касается случаев />2 = О и О2 = О, то в системе координат 19 построение областей неустойчивости не дало бы столь простых границ. Дело в том, что эта система предполагает ориентировку векторов и 1 в положительных направлениях осей координат, в то время как положение векторов р и остается произвольным. Это и ряд дополнительных трудностей делает нецелесообразным подробное рассмотрение границ такого рода. [c.190]


    Объектами рассмотрения в данной главе являются неоднородные системы, состоящие из двух однородных областей (/ и 2), отделенных одна от другой изолирующей перегородкой с вентильными устройствами, посредством которых осуществляется регулирование интенсивности взаимодействия областей между собой (рис. 5.1). Для удобства описания объединим вентильные устройства в самостоятельную область 3, границы которой со стороны областей I и 2 задаются контрольными поверхностями (О1 и (о соответственно. Если область 3 мала по сравнению с / и 2, то при переходе через нее интенсивные свойства У претерпевают скачкообразные изменения. Кажущееся в этом случае нарушение непрерывности функ- [c.295]

    I. ОБЛАСТЬ РАССМОТРЕНИЯ И ЕЕ ГРАНИЦЫ [c.9]

    Нужно отметить, что нельзя пренебрегать плотностью заряда в приэлектродном двойном слое, так как в этой области электрическое поле в действительности велико. Эта область, рассмотренная в разд. 52, может иметь толщину 10—100 А. Двойной слой разумно рассматривать как часть границы раздела фаз, а не часть раствора. В крайне разбавленных растворах плотность заряда также может быть значительной по сравнению с полной ионной концентрацией. [c.262]

    Настоящая глава посвящена рассмотрению новых, только зарождающихся научных направлений и вопросов, на которые пока еще нет ответов, а также обсуждению возможности создания новых материалов. В этой главе нами предпринята попытка классификации и кодирования композиционных материалов и смесей с использованием топологического подхода, рассмотрены возможные пути образования новых комбинаций на основе двух полимеров, пути смешения двух типов полимерных молекул и, наконец, вопрос о том, что общего между такими различными материалами, как наполненные мелкодисперсными частицами и усиленные волокнами пластики, бетоны, импрегнированные полимерами и пенопласты, пленкообразующие красители и другие. Кроме того, в этой главе рассмотрены некоторые другие проблемы смешения полимеров. Коротко освещены представления о возможности образования полимерных эвтектик (до сих пор еще не полученных), а также изложены представления о явлениях, происходящих в области фазовых границ полимерной смеси при этом мы попытались выявить ранее неизвестные или мало понятные факторы. Заключают главу разделы, в которых кратко изложены характеристики красок и адгезивов на основе смесей и композиций, а также некоторые вопросы экономики и охраны окружающей среды, связанные с производством и эксплуатацией композиционных полимерных материалов. [c.385]


    Рассматриваемые в данной главе реакции хотя и не исчерпывают химии нафталина, но в связи с их особым значением требуют специального обсуждения. При этом особое внимание уделяется рассмотрению области и границ применения каждой из этих реакций и значению их в промышленности. [c.45]

    Мищенко с сотрудниками [114, 444] показали, что при теоретическом рассмотрении зависимости свойств растворов электролитов от их концентрации необходимо различать две концентрированные области. В первой имеется избыток свободной воды (Н20)р+< и (HgO) , не вошедшей в ионные гидраты во второй же вся наличная вода входит в гидратные сферы и при дальнейшем внедрении ионов возникает недостаток молекул растворителя. Последнее приводит к конкуренции за растворитель, в результате чего начинается его перераспределение в пользу иона, обладающего большей энергией гидратации. В первой области поведение растворителя изменено (по сравнению с таковым для чистого растворителя) присутствием ионов. Во второй области [от границы полной сольватации (ГПС) до насыщения] уже следует говорить об электролите и влиянии на него присутствующего растворителя. Структурные особенности растворов второй области связаны со структурой кристаллов растворенных веществ и по этой причине нами не рассматриваются. [c.175]

    Уравнения Фика выведены, исходя из предположения, что среда гомогенна, поэтому при применении их для описания диффузии по границам зерен следует рассматривать только область самой границы. Эти уравнения неприменимы также в случаях, когда процесс диффузии вызывает образование в решетке дефектных мест. В таких условиях в рассмотренные уравнения необходимо ввести члены, учитывающие возможность возникновения и поглощения точечных дефектов. [c.201]

    Применение метода исследования двумерных моделей химических реакторов, о которых будет рассказано ниже (при рассмотрении протекания реакции первого порядка в реакторе непрерывного действия), позволяет выяснить характер разбиения пространства пара.метров исследуемой системы на области, различающиеся числом и устойчивостью положений равновесия. Границы этих областей определяются условиями а = О и Д = 0. [c.78]

    Как уже отмечалось, подвижность ионов оксония и гидроксила аномально высока по сравнению с примесными ионами. Перенос этих ионов обусловлен транспортом протона по цепочкам молекул воды, связанных водородными связями. Для объяснения этого процесса предложены коллективный механизм Грот-куса и основанный на рассмотрении перехода частицы через барьер механизм Эйринга. В работе [356] рассмотрен механизм переноса протона в водных системах, связанный с коллективным возбуждением солитонного типа. Этот механизм в значительной степени зависит от стабильности проводящей протон цепочки молекул воды. Выполненный анализ [349, 350] показывает, что в приповерхностной области более прочные водородные связи образуются вдоль направлений, параллельных границе. Поэтому можно ожидать, что вклад транспорта протонов в поверхностную проводимость водных систем будет существенным. [c.132]

    На водяных моделях печей исследования в большинстве случаев осуществляют для рассмотрения качественной картины движения печной среды в рабочей камере печи и выявления воздействия различных факторов на характер ее движения. К этим факторам относятся загруженность рабочей камеры садкой и ее расположение, количество и места расположения ввода газовых исходных материалов, топлива, теплоносителя, рециркуляционных газов и отвода готового продукта, печной среды и т. д. Эт1 ми исследованиями устанавливаются границы автомодельной области движения, образование и влияние пристенных эффектов на характер движения газов, границы кольцевых зон движения газов в печи. Поставленные задачи достигаются закрашиванием отдельных струй и потоков, а также вводом краски в отдельные участки печи. [c.129]

    Значение параметрической чувствительности температуры смеси после первого слоя к начальной температуре рассчитано при помощи рассмотренного выше кинетического уравнения реакции окисления двуокиси серы (см. табл. 56). На рис. ХУ-32 величины параметрической чувствительности приведены для различных времен контакта и температур и для газа начального состава 7,5% 502 и 10,5% О2- Здесь же пунктирной линией отмечена граница области, отвечающая правой части неравенства (XV,92) и равная [c.518]

    Это движение сменяется движением по направлению антиградиента,-как только текущая точка поиска снова окажется в допустимой области и т. д. По рис. 3.5 хорошо видно, что по мере приближения к цели (точка Зо) снижение. минимизируемой функции 3 постепенно замедляется. Медленная сходимость вычислительного процесса является основным недостатком рассмотренного метода. Аналогичным образом изложенный способ может быть использован для движения вдоль границ ограничений по У и при одновременном учете ограничений по и У. [c.139]


    С другой стороны, рост треш,ины серебра будет продолжаться или возобновляться, если ослабляются молекулярные нити (переход от трещины серебра к обычной трещине, область D на рис. 9.14). Из рассмотрения рис. 9.14 и выражения (9.18) становится ясно, что тем больше рассеивается энергии в раскрывающейся трещине серебра, чем длиннее и шире последняя (область С) и чем больше ар- Никоим образом нельзя считать, что разрешены все вопросы, касающиеся структуры и реологии молекулярных нитей и границы раздела трещина серебра— матрица. Тем не менее можно сказать, что при содержании пустот 50 % на молекулярную пить действует напряжение растяжения - 2ai , которое ие очень сильно изменяется при развитии трещины серебра от области В к D. Упомянутый выше максимум приращения напряжения на расстоянии (0,2—0,4) длины трещины серебра в ПК не противоречит предыдущему утверждению. Однако он указывает, что дифференциальная податливость только что образовавшейся нити меньше, чем у вытянутой фибриллы. [c.381]

    Что касается органических суперэкотоксикантов как объектов эколого-аналитического мониторинга, то исключительно низкие концентрации этих веществ в природных средах и во многих случаях электрохимическая инертность в доступной области потенциалов являются основной причиной ограниченного применения вольтамперометрии в решении проблем контроля окружающей среды. По-видимому, самым эффективным способом увеличения аналитического сигнала, позволяющим на несколько порядков снизить нижнюю границу определяемых концентраций, является предварительное концентрирование органических микрокомпонентов на поверхности электрода, как и в случае рассмотренных выше неорганических токсикантов. Существует несколько способов концентрирования органических веществ. Среди них наибольшее применение находит адсорбция на электроде [4]. Это явление широко известно в вольтамперометрии, однако обычно его считают нежелательным и всячески стараются от него избавиться. Образование адсорбционных пленок мешает протеканию электрохимических процессов и осложняет интерпретацию результатов. Развитие направления, связанного с созданием [c.286]

    Как показали дальнейшие исследования, электрокинетические явления тесно связаны со свойствами поверхности и структурой двойного электрического слоя на межфазной границе. Вследствие той важной роли, которую они играют в коллоидных системах, их рассмотрению посвящена отдельная глава. В этой главе будут изложены и основные представления в области электрохимии двойного слоя, возникшие в большой степени в результате исследования электрокинетических явлений. [c.134]

    Большое количество работ было посвящено рассмотрению тех изменений, которые происходят в свойствах жидкости на границе раздела фаз в электрическом поле двойного слоя. Градиент электрического поля в области двойного слоя довольно велик и оценивается величиной порядка 10 в см. В этих условиях такие важные с точки зрения электрокинетики параметры жидкости, как диэлектрическая проницаемость и вязкость, входящие в электрокинетические формулы для вычисления величины -потенци-ала, могут существенно изменить свое значение по сравнению со значениями для свободной жидкости, находящейся вне пределов двойного слоя. Результаты этих работ будут изложены в данном курсе позднее, при рассмотрении отдельных электрокинетических явлений, поскольку этот вопрос тесно связан с представлениями об их механизме. [c.46]

    Каждой реакции посвящен свой раздел [1], и они последовательно пронумерованы в каждой главе. Первая цифра номера реакции соответствует номеру главы. Так, реакция 16-1 — это первая реакция в гл. 16, а реакция 13-21 — это двадцать первая реакция в гл. 13. Вторая часть номера реакции это всего лишь порядковый номер. Порядок рассмотрения реакций не произвольный, а отвечает определенному плану изложения, который зависит от типа реакции. Такая нумерация способствует легкому запоминанию и пониманию, поскольку между реакциями проводится четкая граница (иногда эти границы произвольны) и ясно показана взаимосвязь каждой реакции со всеми остальными. Для каждой реакции обсуждается область применения и ее возможности, а также приводятся ссылки на обзорные статьи, если таковые имеются. Если механизм реакции имеет особые, лишь ему присущие особенности, то они также обсуждаются при описании самой реакции, а не в первой части главы, где вопросы механизма рассматриваются в более общем аспекте. [c.6]

    Допустим, что по-прежнему выполняются условия рассмотренного в разд. 6.1 утверждения (для законов семейства экспоненциальных, к которым относятся и рассматриваемые в работе экспоненциальный и биномиальный, эти условия всегда выполняются). Тогда можно убедиться, что из всех критериев, последовательных и непоследовательных, проверки простой гипотезы ф = фо против ф = ф с уровнями а л 0 последовательный критерий (обозначим его для удобства через J) силы (а,/3) с областями принятия решений Зг яог,фо) — область приема и Зг Я1г,ф1) —область забракования, границы которых выбраны так, что Яог и 91г1 определенные по (6.4), при любых г постоянны и равнъ некоторым до и 1, обеспечивают наибольшие гарантируемые коэффициенты доверия для наиболее точных доверительных границ или ф, удовлетворяющих неравенствам (6.5). Доказательство дано в [18]. [c.98]

    Движение пламени по газовой смеси называется распространением пламени. При этом газовая смесь делится на две части — сгоревший газ, через который пламя уже прошло, и иесгоревший газ, который вскоре войдет в область пламени. Граница между этими двумя частями горящей газовой смеси называется фронтом пламени. Распространение пламени бывает двух типов детонационная волна и волна горения. Детонационная волна является одним из видов ударной волны, распространение которой сопровождается тепловыделением благодаря химическим реакциям во фронте пламени. При этом имеется разница давлений перед и за фронтом волны (фронтом пламени) скорость распространения детонационной волны превышает скорость звука. Волна горения характеризуется тем, что пламя распространяется посредством теплопередачи и диффузии активных молекул от фронта пламени, последовательно преобразовывая несгоревший газ в продукты сгорания. Скорость распространения волны горения значительно ниже скорости звука, а разностью величин давления перед и за фронтом волны можно пренебречь. В данной книге уделим основное внимание рассмотрению волны горения при наличии горячего пламени, называя это просто распространением пламени. [c.13]

    Восходящая и нисходящая части электрофореграммы не симметричны. Границы обычно острее на восходящей стороне. Не совпадают также и площади под соответствующими пиками. Причина этих явлений понятна из рассмотренного выше примера. Очевидно, что опреде.чение состава белковой смеси по электро-фореграмме будет неточным, так как на границах меняется одновременно концентрация всех компонентов, включая концентрацию буферных солей, и каждый из них вносит вклад в изменение показателя преломления на границе. Очевидно также, что точно определить подвижность можно в общем случае только для самого быстрого компонента смеси на нисходящей стороне, подставив в уравнение (9) значение электропроводности исходного белкового раствора. Все остальные подвижности можно определить лишь приблизительно, так как электропроводность раствора в областях между границами точно не известна. Идеальность электрофореграммы (т. е. симметрия на обеих сторонах и отсутст- [c.54]

    Рассмотренные границы существования областей отдельных фаз в системе Ре — Сг сильно зависят от других составляющих, в первую очередь от содержания углерода, который расширяет область Y-фaзы. Чем больше в сплаве содержится углерода, тем больше хрома надо ввести в сплав, чтобы получить устойчивую ферритную структуру. Если при отсутствии углерода у-область 14 Заказ 775 [c.209]

    В настоящем параграфе рассмотрен случай связной области (г граница которой имеет пустое пересечение с границей Q. Тогда тензор А°т, характеризующий эффективные теплопроводящие свойства материала, имеет порядок единицы, в то время как соответствующие коэффициенты наполнителя имеют порядок (О 1. Это означает, что армирование высокомодульными зернами или однонаправленными волокнами не приводит к существенному возрастанию эффективных характеристик композита в направлениях, ортогональных направлениям армирования (эффективные свойства волокнистых материалов в направлении армирования до сих пор исключались из рассмотрения, поскольку исследовалась двумерная задача, s = 2). [c.238]

    Остановимся теперь на рассмотрении границ применимости данного подхода. Основной вклад в интегралы, определяющие скорость рекомбинации, дает область интегрирования вблизи вершины потенциального барьера. Поэтому при анализе условия классичности рассмотрения следует сравнивать температуру Т среды с энергией колебательного кванта йю, вблизи границы диссоциации. Теория применима, если [c.107]

    Известно, что составы азеотропов зависят от условий существования системы, в частности от давления. При изменении давления в многокомпонентных системах происходит изменение положения границ областей ректификации. На основе этого явления разработан принцип перераспределения полей концентрации между областями ректификации [29], который может использоваться для разделения многокомпонентных азеотропных смесей ректификацией без введения каких-либо вспомогательных веществ. Это же явление, как следует из рассмотренных примеров I и III, может использоваться для увеличения предельнд возможных степеней превращений реагентов, образующих азеотропные смеси, в реакционно-ректификационном процессе. В самом деле, если, например, при повышенном (пониженном), по сравнению с атмосферным, рабочем давлении в аппарате состав азеотропа (рис, 40,6) будет соответствовать более высокому содержанию компонента С, то линия предельных составов псевдоисходных смесей ВМ (рис. 40, в) займет положение, соответствующее более высокой предельной конверсии компонента А, [c.208]

    Рассмотренный выше метод определения граничных составов последовательных областей предельных концентраций лежит в основе выбора нижней границы минимального флегмового числа, обеспечивающего требуемый режим работы сложной укрепляющей колонны. Если требуется обеспечить наличие в дистилляте всех компонентов системы, то рабочее флегмовое число укрепляющей колонны не может быть равно или меньше / ин- Оно должно быть больше / ин- Если же требуется обеспечить удаление из дистиллята наименее летучего комнонепта, то рабочее паровое число не может быть равно или меньше, чем /мтг Оно должно обязательно превосходить его, чтобы в колонне осуществилось намеченное разделение с конечным числом ступеней контакта. [c.360]

    Недостатком рассмотренного метода является сравнительно небольшая скорость поиска при двпжеппп вдоль гиперповерхности ограничений. В особенности это проявляется в тех случаях, когда пскомьп" о[ тимум расположен на границе области X. Процесс поиска вблизи от оптимума существенно замедляется (рис. 1Х-33). [c.543]

    В исследовании Остергаарда, весьма похожем на рассмотренное выше, показано, что для значений Т , выходящих за границу критической области, существует только одно стационарное состояние. Более того, если переменная [c.185]

    При разработке схемы конвекции веществ было принято, что в начальный период процесса гравитационной дифференциации более интенсивное погружение веществ повышенной плотности происходит вблизи оси 00 . Это приводит к образованию первичного блока с центральной (ОО СО) и периферийной (ОСС О) зонами, размеры которых определяются углами и д. Однако рассмотрение соответствующей схемы образования вторичной полости пониженного давления приводит к выходу, что вещества повышенной плотности погружаются преимущественно у границы ОС или даже несколько правее. Вблизи же оси 00 существует не погружающийся, а восходящий поток. Это кажущееся противоречие указывает на возможность объяснения циклических процессов, сопровождающихся опусканием и поднятием слоя легких веществ в опре 1еленных областях центральной зоны. Если в первичном блоке значительно смещается ось симметрии погружающегося потока веществ повышенной плотности, то это приводит к образованию другой вторичной полости пониженного давления, положение которой определяется описанным выше способом. Например, если считать границу ОаС новой осью симметрии погружающегося потока веществ повышенной плотности, то осью новой вторичной полости пониженного давления является прямая линия, проведенная под углом з к главной оси. [c.145]

    Движение потока в радиальных каталитических реакторах есть совокупность течений в системе каналов с проницаемыми (нористымп) стенками. Поэтому метод аэродинамического расчета базируется па задаче о распределении средней скорости по оси пористого канала. Исследуя течение в пористых каналах с отсосом через стенки, обнаружили [4], что при интенсивном отсосе конвективный поток импульса на 3—4 порядка превышает вязкие напряжения вплоть до зпачений г/Я = 0,91 и, следовательно, вязкой диссинацие механической энергии в ядре потока можно пренебречь. Основные динамические процессы локализованы в пристенной области. Это позволяет посредством усреднений свести задачу к рассмотрению одномерного течения, на границе которого возникают силы Мещерского, вызванные изменением расхода. В этом случае главным является вопрос, каким образом их работа распределяется между механически обратимой и диссипируемой энергией. На этот вопрос можно ответить, рассматривая течение в рамках уравнения энергии. Общая теория и анализ литературных данных приводят к выводу, что работа сил Мещерского примерно поровну распределяется между механически обратимой и диссипируемой энергией. [c.132]

    Имеются некоторые ограничения применимости этого метода для расчета потерь давления, наиболее важным из которых является влияние межфазных волн. При высоких скоростях газа они могут давать значительный вклад в нанряжени г трения на границе раздела фаз, и тогда основные допущения анализа утрачивают свою силу. Одпако доказано, что этот метод имеет большую ценность при рассмотрении переходов из одного режима течения в другой, а также что он дает надежные значения истинного объемного газосодержания и потерь давления при условии, что поверхность раздела фаз не слишком волнистая Таким образом, этот метод применим в области гладкого расслоенного течения (см. рис. 6). Можно также попытаться использовать его для условий, которые не слишком далеки от условий в этой обл.1Сти потока. [c.200]

    Необходимо исследовать, какие из свойств цепи эффективно выражаются с помощью этих модельных представлений деформирования полимеров. Известно, что рассмотренные ранее частично кристаллические образцы являются иоликристалли-ческими твердыми телами, в которых имеются распределенные аморфные области с зачастую плохо определенными границами и столь же нечетко определенным взаимодействием между аморфными и кристаллическими областями. В упрощенном [c.44]

    Помимо контроля скорости реакции диффузионным процессом, характерного для обратимых реакций, существует контроль переносом заряженных частиц (электронов или ионов) через границу раздела электрод—раствор. В этом случае электродную реакцию называют необратимой. К необратимым процессам урапнепие Нернста неприменимо, поскольку на значительной части поляризационной кривой поляризация электрода при протекании тока не связана с изменением концентрации электродно-активного вещества в приэлектродной области, последнее просто отсутствует. Рассмотрение теории замедленного разряда приводит к следующему выражению, связывающему потенциал электрода и силу поляризующего тока [c.277]

    Из рассмотренной кинетической теории стеклования следует согласующийся с экспериментальными данными вывод, что время релаксации обратно пропорционально скорости охлаждения вещества. Иначе можно сказать, что при температуре стеклования Тс произведение тш = onst (формула Б а р т е н е в а). Так как константа здесь равна kT lU (U — энергия активации при Тс), данное соотношение служит математическим определением температуры стеклования. Если скорость нагревания w+ = dTldt та же самая, что и скорость охлаждения, т. е. w- = q, то температура размягчения Тс = Тс и границы областей стеклования и размягчения совпадают. [c.40]

    Детальное рассмотрение теории Гуи показывает, однако, что она не охватывает всей проблемы строения двойного электрического слоя и имеет ряд недостатков. По поводу теории Гуи Штерн в своей статье пищет следующее Вывод уравнения предполагает, что концентрация ионов даже на самой границе раздела столь мала, что для осмотического давления справедливы газовые законы. Это означает, что, например, при 1,0 н. растворе эта формула (уравнение Гуи) применима максимум до разности потенциалов, равной 0,1 в. Вследствие этого ограничения практическая применимость формулы становится почти иллюзорной. Но даже и в этой ограниченной области она не согласуется с опытом, так как дает слишком большие значения для емкости (приблизительно 240 мкф см ). Легко видеть, отчего происходит это отклонение. Большая емкость означает, что заряды, сидящие на отрицательных ионах, находятся очень близко [c.33]

    Электродные процессы происходят в пределах тонкого поверхностного слоя на границе электрод — ионная система, где образуется так называемый двойной электрический слой. Поэтому механизм электродных процессов не может быть выяснен без знания структуры этого слоя. Это обстоятельство оправдывает детальное рассмотрение структуры заряженных межфазных границ в курсе кинетики электродных процессов. Построение теории двойного электрического слоя и электрохимической кинетики основывается на достижениях статистической физики, квантовой механики, теории адсорбции, теории твердого тела и других разделов теоретической физики и химии. Поэтому в настоящее время теория электрохимических процессов сделалась одним из наиболее математизированных разделов химической науки. Экспериментальное исследование строения границы раздела электрод—ионная система и возникающих на этой границе явлений во все возрастающем объеме требует использования возможностей современной электронной техники, оптики, электронографии. Впитывая достижения современной науки и техники и сохраняя свои традиционные позиции, электрохимия вместе с тем прокладывает себе путь в области кибернетики, проблем сохранения чистоты окружающей среды, молекулярной биологии. [c.7]

    В рассмотренных выше теориях не учитывают существования сольватного слоя жидкости с измененными свойствами на поверхности частиц. Между тем, вряд ли можно представить себе систему с полным отсутствием взаимодействия между веществами дисперсной фазы и дисперсионной среды, даже в случае типично гидрофобных коллоидов (например, золей металлов). Ориентация молекул в сольватных слоях приводит к свойствам, характерным для квазитвердых тел — высокой вязкости, упругости, сопротивлению сдвигу — и препятствующим взаимопроникновению слоев при сближении частиц. Наряду с кинетическими факторами (резкое уменьшение скорости вследствие высокой вязкости), следует учитывать и термодинамические необходимость затраты работы на преодоление упругих сил или на частичную десорбцию молекул сольватной оболочки при утончении зазора между частицами. Затрата работы приводит к увеличению потенциальной энергии, к подъему нисходящей ветви кривой II(Н) в области малых И. Влияние сольватных слоев должно резко искажать потенциальные кривые при к с1 где ё — расстояние от поверхности до границы скольжения жидкости. [c.259]


Смотреть страницы где упоминается термин Область рассмотрения и ее границы: [c.51]    [c.190]    [c.386]    [c.546]    [c.138]    [c.20]    [c.229]    [c.580]   
Смотреть главы в:

Химия карбенов -> Область рассмотрения и ее границы




ПОИСК







© 2025 chem21.info Реклама на сайте