Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение кадмия, цинка, никеля и магния

    Определению не мешают алюминий, барий, кальций, кадмий, кобальт, калий, магний, марганец, молибден (VI), никель, теллур (IV), натрий, цинк, аммоний, бромид, хлорид, нитрат, фосфат, сульфат, цитрат, оксалат и тартрат. [c.383]

    Свойства. Применяют в кислой среде (при pH 2—3) для определения висмута и тория (IV). В щелочной среде определяют кадмий, кобальт, медь, магний, марганец, никель и цинк. [c.273]

    Пристли [7, с. 194] успешно титровал растворы (1/60-м.), содержащие один из следующих металлов кальций, никель, медь, кадмий, цинк, барий, серебро, кобальт (III), хром ОН), алюминий, магний, бериллий и растворы церия (IV) и олова (IV) концентрацией (1/120-м.). За исключением результатов анализа серебра, магния и бериллия точность определения содержания элементов составила 1% от теоретического. Кривые титрования имели обычную для экзотермических и эндотермических реакций форму. Теплота образования большинства хелатов относительно низкая (только. хе-лат свинец— ЕОТА имеет теплоту образования, приближающуюся к теплоте нейтрализации сильной кисло- [c.82]


    ОПРЕДЕЛЕНИЕ ЖЕЛЕЗА, АЛЮМИНИЯ, КАЛЬЦИЯ, МАГНИЯ, МЕДИ, МАРГАНЦА, КОБАЛЬТА, КАДМИЯ, ХРОМА, СВИНЦА, НИКЕЛЯ, МОЛИБДЕНА, ВАНАДИЯ В АКТИВНЫХ УГЛЯХ И ЦИНК-АЦЕТАТНЫХ КАТАЛИЗАТОРАХ НА ИХ ОСНОВЕ [c.41]

    При затруднениях в определении скорости коррозии рекомендуется пользоваться распределением металлов по группам, в пределах которых контакт может считаться допустимым. Для атмосферных условий эксплуатации можно выделить пять таких групп I — магний П — алюминий, цинк, кадмий П1 — железо, углеродистые стали, свинец, олово IV — никель, хром, коррозионностойкие стали (в пассивном состоянии) типа Х17 и 18—8 V — медно-никелевые и медноцинковые сплавы, медь, серебро, золото. [c.74]

    Неясный переход окраски индикатора происходит вследствие присутствия металлов, комплексы которых с примененным индикатором более прочны, чем с комплексоном И1. Определению жесткости мешают присутствие железа (10 лгг/л), кобальта (0, 1 жг/л), никеля (ОД жг/л) и меди (0,5 жг/л). Другие катионы, как, например, свинец, кадмий, марганец, цинк, барий и стронций, титруются вместе с кальцием и магнием и повышают этим расход титрованного раствора комплексона III. Для устранения мешающих влияний при титровании и для связывания некоторых катионов, вызывающих повышенный расход раствора, можно применить цианид калия, гидроксиламин солянокислый или сульфид натрия, которые прибавляют к титруемому раствору. [c.55]

    Для анализа использован атомно-абсорбционный СФМ Перкин-Элмер , модель 303. Условия определения каждого элемента взяты из рекомендаций фирмы-изготовителя прибора. В расчете на анализ 2%-ного раствора достигнуты следующие пределы обнаружения (в мкг/г) литий, натрий — 0,1, калий — 0,3, магний, цинк, кадмий — 0,5, кальций—1,0, серебро—1,5, медь — 2,5, сурьма — 3, железо, никель — 5, свинец—10, алюминий, кремний, олово—50, титан—70, ртуть—100, бор—1000. [c.218]

    Определению не мешают следующие ионы ацетат, арсенит, борат, бромид, хлорид, цитрат, формиат, фосфат, силикат, сульфат, тартрат, тетраборат, роданид, алюминий, аммоний, барий, кадмий, кальций, двухвалентный кобальт, литий, магний, двухвалентные марганец и никель, калий, натрий, стронций, торий и цинк. [c.134]

    Определению мешают никель, кобальт, цинк и кадмий, вступающие в реакцию с индикатором, алюминий и висмут, образующие нерастворимые фосфаты, и сульфаты, арсенаты и хроматы, реагирующие со свинцом. Допустимы только малые количества хлоридов, ацетатов, магния и марганца. Нитраты щелочных металлов могут присутствовать в довольно больших количествах. [c.394]

    В растворе гидроокиси тетрабутиламмония в присутствии комплексона полярографически не восстанавливаются никель, кобальт, цинк, хром, кадмий, кальций, магний и алюминий [17], Комплексон не оказывает влияния на восстановление натрия и калия. Его можно использовать при определении щелочных металлов, присутствующих в солях кальция, магния и бария в виде примесей, которые определить другим путем невозможно. В цитируемой работе подробности не приведены. [c.232]


    ИСО 11885 устанавливает метод определения растворенных и нерастворенных элементов, а также их общего количества в питьевой воде и в природных и сточных водах атомно-эмиссионной спектроскопией. Данным методом можно определять алюминий, барий, бериллий, бор, ванадий, висмут, вольфрам, железо, кадмий, калий, кальций, кобальт, кремний, литий, магний, марганец, медь, молибден, мышьяк, натрий, никель, олово, свинец, селен, серебро, серу, стронций, сурьму, титан, фосфор, хром, цинк, цирконий. [c.334]

    В условиях определения цинка флуоресцируют лишь кадмий и индий [49], но многие элементы, в том числе такие постоянные компоненты минерального сырья, как железо, титан и магний, в значительной степени тушат свечение цинкового комплекса. Поэтому для определения цинка в рудах и минералах необходимо предварительно отделять его от большинства посторонних элементов. С этой целью применяют экстракцию рода-нидного комплекса цинка изо-амиловым спиртом из фторидно-сернокислой среды. При этом вместе с цинком извлекаются медь и частично кадмий, кобальт и никель эти четыре элемента отделяют путем промывки экстракта подкисленным раствором роданида, после чего цинк реэкстрагируют аммиачным раствором хлорида аммония [1]. Однако следует учитывать, что при таком способе выделения малых количеств цинка во всех стадиях процесса возможна его общая потеря в размере до 25% от исходного содержания [8]. [c.246]

    Было установлено, что из исследованных элементов определению мышьяка мешает только кадмий. В присутствии сурьмы, свинца, олова искажается первая волна мышьяка, но для определения можно использовать вторую волну, правда, с меньшей точностью определения. Трехвалентное железо, висмут и медь мешают определению мышьяка в том случае, если их количество превышает в 20 раз содержание мышьяка. Определению не мешают двухвалентное железо, цинк, алюминий, марганец, никель, кобальт, хром, натрий, калий, кальций и магний. Большинство обычно присутствующих в воде анионов также не влияет на определение мышьяка. [c.250]

    Не мешают определению титана магний, алюминий, цинк, кадмий, марганец, медь, цирконий, церий, р.з.э. кобальт, ванадий (17), железо (П), молибден (У). Никель, хром (Ш) мешают только собственной окраской. Железо (Ш), ванадий (У), молибден (У1)- образуют с реактивом окрашенные соединения, их мешающее действие устра-няется восстановлением аскорбиновой кислотой. [c.23]

    Определению мешают алюминий, галлий, таллий(1П), олово(И), висмут, медь, железо(1П), ванадий(У), молибден(У1), никель и кобальт (мало) при pH 3,5 они окрашивают экстракт. При этом pH не экстрагируются магний, кальций, стронций, цинк, кадмий, ртуть(П), олово(1 / ), свинец, марганец, хром(1П) и серебро. Показано, что индий можно определить в присутствии небольших количеств цинка, свинца и кадмия. [c.461]

    Миграция и перенос элементов в первичной окружающей среде известны как процессы первоначального рассеивания. При этом элементы концентрируются в определенных геологических формациях, что приводит к образованию руд. С точки зрения геохимии элементы можно классифицировать на три группы сидерофильные элементы, которые концентрируются в железистых осадках и железо-никелевом ядре Земли (к ним относятся железо, никель, хром, кобальт и платиновые металлы) халькофильные элементы, концентрирующиеся в сульфидных осадках (сурьма, мышьяк, кадмий, медь, свинец, ртуть, серебро и цинк) и литофильные элементы (щелочные металлы, магний, кальций, хром и ванадий), имеющие сродство к силикатам. [c.372]

    Определение молибдена в искусственной смеси выполняют таким же образом, как и при построении калибровочной кривой, только с тем отличием, что кислотность сначала доводят до слабокислой по универсальной индикаторной бумаге. Кальций, магний, кобальт, цинк, никель, кадмий, двухвалентный марганец, трехвалентный хром и четырехвалентный церий, комплексон III, винная кислота и ЫагНР04 при количестве <50 мг не мешают [c.228]

    Новый спектрофотометрический метод определения фторида [44] основан на его взаимодействии с хлоранилатом тория при pH 4,5 в водном растворе, содержащем метилцеллозольв. Метилцеллозольв ускоряет взаимодействие фторида с хлоранилатом тория (образуется ТЬр2С С1204) и значительно повышает чувствительность метода. Чувствительность варьируется путем измерения оптической плотности при 540 или при 330 ммк или путем изменения концентрации метилцеллозольва в растворе. Метод был проверен на водах и катализаторах. Ионы серебра, кальция, бария, магния, натрия, калия и аммония не мешают определению. Кадмий, олово, стронций, железо, цирконий, кобальт, свинец, никель, цинк, медь и алюминий мешают, и их следует удалять. При помощи ионообменной смолы удается удалить все катионы, за исключением алюминия и циркония. Если они присутствуют, фторид выделяют дистилляцией. [c.280]

    Металлоорганические соединения могут быть определены наиболее просто как соединения, содержащие связь углерод — металл. Такое определение исключает вещества, подобные ацетату и метилату натрия, поскольку они содержат связи кислород — металл. К числу обычных металлов, образующих относительно устойчивые органические производные, относятся щелочные металлы 1 группы периодической системы (литий, натрий и калий), щелочноземельные металлы 2 группы (магний и кальций), алюминий из 3 группы, олово и свинец из 4 группы и переходные металлы, такие, как цинк, кадмий, железо, никель, хром и ртуть. Органическими остатками могут быть алкил, алкенил, алкинил или арил. Ниже приведены некоторые типичные примеры. [c.306]


    Алюминий, магний, марганец, медь, цирконий и др. редко земельные элементы, а также кобальт и никель не образуют с диантипирилметаном окрашенных соединений и не мешают определению титана. Цинк, кадмий и ртуть образуют труднораствог римые осадки и в их присутствии необходимо употреблять большие количества реагента. [c.35]

    Медь, цинк, кадмий, кобальт, никель, лантан, уран, марганец, (И) также образуют с сульфарсазеном окрашенные соединения. Не образуют последних и не мешают определению свинца литий, калий, натрий, рубидий, цезий, магний, барий, стронций, кальций мышьяк, висмут, вольфрам, толлий (HI), германий, галлий в количествах до 50у. Железо (III), алюминий, титан,бериллий, олово (IV), теллур, иттрий, скандий, цирконий, ванадий (V), молибден (VI), торий в количествах 50у мешают определению свинца. [c.210]

    Успешная попытка систематизировать многочисленные аналитические реакции с участием соединений металлов по определенной логической схеме была осуществлена немецким химиком Генрихом Розе (1795—1864) и описана в 1829 г. в его книге Руководство по аналитической химии . Разработанная им общая схема систематического качественного анализа металлов (катионов металлов — на современном языке) основана на определенной последовательности действия химических реагентов (хлороводородная кислота, сероводород, азотная кислота, раствор аммиака и др.) на анализируемый раствор и про укты реакций компонентов этого раствора с прибавляемыми реагентами. При этом исходный анализируемый раствор в схеме Г. Розе содержал соединения многих известных к тому времени металлов серебро, рт>ть, свинец золото, сурьма, олово, мышьяк кадмий, висмут медь, железо, никель, кобальт, цинк, марганец, алюминий барий, стронций, кальций, магний. Здесь химические элементы перечислены в последовательности их разделения или открытия по схеме Г. Розе. [c.35]

    Применяют для определения алюминия при pH 7—8 методом обратного титрования солью цинка в присутствии пиридина. Барий, кальций и ртуть титруют при pH 10 в присутствии комплексоната магния. Кадмий и кобальт при pH 10 определяют прямым титрованием. Магний, цинк, железо (III) и титан (IV)—методом обратного титрования солью цинка в присутствии пиридина. Галлий (III) при pH 6,5—9,5 определяют обратным титрованием солью цинка. Индий определяют при pH 8—10 в присутствии сегнетовой соли марганец при pH 10 —с добавлением гидроксиламина. Никель и свинец при pH 10—методом обратного титрования солью магния или цинка. Титан (IV) определяют при pH 10 обратным титрованием солью магния или с добавлением комплексоната магния. Ванадий (V) определяют при pH 10 методом обратного титрования солью марганца. Переход окраски от винно-красной к синей. [c.279]

    Наряду с разрывом углерод-углеродных связей ионы металлов способствуют расщеплению связей углерод—водород. Для этого необходимо, чтобы ион металла координировался с субстратом в строго определенном месте. Целый ряд многозарядных катионов (в порядке эффективности медь(П), никель(П), лантан(1П), цинк, марганец(П), кадмий, магний и кальций) катализирует бромирование этилацетоацетата и 2-карбоэтокси-циклопентанона. Аналогично ионы цинка катализируют иодирование пирувата и о-карбоксиацетофенона. В этих процессах галогенирования кетонов скоростьлимитирующей стадией является образование енола с переносом протона на общее основание. Как и при декарбоксилировании, ион металла катализирует реакцию за счет стабилизации отрицательного заряда, генерирующегося в ходе разрыва связи углерод—водород. Относительная каталитическая эффективность перечисленных выше катионов изменяется в том же порядке, что и устойчивость их комплексов с салициловым альдегидом, а также согласуется с ено--лятным механизмом каталитического декарбоксилирования. [c.224]

    Анализируемый азотнокислый раствор, содержащий около 0,3 г висмута и свободный от соляной и серной кислот, осторожно йрибавляют при непрерывном перемешивании к 50 мл титрованного (1%-ного) раствора арсената калия KH2ASO4, находящегося в мерной колбочке на 100 мл, разбавляют водой до метки, хорошо перемешивают и отфильтровывают осадок арсената висмута. Для определения избытка арсената к 50 мл фильтрата прибавляют 40 мл 25%-ного раствора соляной кислоты и 1 г иодистого калия и титруют через 15—20 мин. выделившийся иод 0,1 н. раствором тиосульфата (без применения раствора крахмала). Титр раствора мышьяковокислого калия устанавливают таким же образом по тиосульфату. Кроме висмута, Валентин определял аналогичным методом магний, кальций, стронций, барий, цинк, кадмий, свинец, марганец, никель, кобальт, алюминий и хром. [c.97]

    Шестивлентный вольфрам не дает с 8-оксихинолин-5-суль-фокислотой каких-либо окрашенных соединений и при условиях Определения молибдена не восстанавливается, а поэтому не влияет на результаты определения молибдена. Однако в присутствии больших количеств вольфрама (больше 10 мг) нужно увеличить количество добавляемого реагента. Определению молибдена мешают ванадий, двухвалентное железо, кобальт, цинк, большие количества меди, комплексон III и винная кислота. Кальций, магний, барий, никель, кадмий, двухвалентный марганец, трехвалентный хром, алюминий, торий, небольшие количества висмута и урана, цианид, щавелевая кислота не мешают определению молибдена. [c.228]

    Определению содержания титана не мешают магний, алюмиий, цинк, кадмий, марганец, РЗЭ, медь, цирконий, церий, кобальт, молибден (V), ванадий (IV). Молибден (VI) образует с реактивом окрашенное соединение и его мешающее влияние устраняют также, как и мешающее влияние железа рП) и ванадия (V), восстановлением аскорбиновой кислотой, гидроксиламином. Никель, хром (III) мешают определению содержания титана собственной окраской. [c.123]

    Руды и промпродукты медно-никель-кобальтового производства. Определение массовых долей меди, никеля, кобальта, железа методом атомно-эмиссионной спектрометрии с индуктивно-связанной плазмой (ИАЦ РАО Норильский никель ) Руды, концентраты, промежуточные и отвальные продукты. Определение массовых долей кремния, алюминия, кальция, магния, железа, хрома, марганца, титана, ванадия, калия и натрия методом атомно-эмиссионной спектрометрии с индуктивно-связанной плазмой (ИАЦ РАО Норильский никель ) Минеральное сырье, руды, продукты их переработки, содержащие свинец, цинк, кадмий и мышьяк. Определение массовых долей свинца, цинка, кадмия и мышьяка методами атомной спектрометрии (ИАЦ РАО Норильский никель ) Никель. Методы химико-атомноэмиссионного спектрального анализа [c.823]

    Определение ионов металлов. Благодаря соответствующему выбору фонового электролита, pH и лигандов практически любой металл может быть восстановлен на ртутном капающем электроде до амальгамы или до растворимого иона с более низкой степенью окисления. Во многих случаях получают полярографические волны, пригодные для количественного определения этих веществ. Такие двухвалентные катионы, как кадмий, кобальт, медь, свинец, марганец, никель, олово и цинк, можно определить во многих различных комплексующих и некомплексующих средах. Ионы щелочно-земельных элементов — бария, кальция, магния и стронция — дают хорошо выраженные полярографические волны при приблизительно —2,0 В относительно Нас. КЭ в растворах, содержащих иодид тетраэтиламмония в качестве фонового электролита. Цезий, литий, калий, рубидий и натрий восстанавливаются между —2,1 и —2,3 В отн. Нас. КЭ в водной и спиртовой среде гидроксида тетраалкиламмония. Опубликованы данные полярографического поведения трехзарядных ионов алюминия, висмута, хрома, европия, галлия, золота, индия, железа, самария, урана, ванадия и иттербия в различных растворах фоновых электролитов. [c.457]

    Перекись водорода и перекись натрия препятствуют полному осаждению циркония на холоду при кипячении в их присутствии цирконий полностью осаждается. При осаждении гидроокиси циркония щелочами отделяются следующие элементы мюминий, галлий, цинк, молибден, вольфрам, ванадий, бериллий, мышьяк и Сурьма. В присутствии карбонатов отделяется уран. Для этой цели к щелочи прибавляют I—2 г Na Og. Прибавление перекиси водорода улучшает отделение. В осадке с цирконием находятся железо, титан, марганец, хром, кобальт, никель, медь, кадмий, серебро, индий, таллий, торий и редкоземельные элементы. Магний и щелочноземельные металлы при достаточном содержании карбонатов также полностью осаждаются. Этот метод может иметь некоторое значение для отделения циркония от молибдена, вольфрама, ванадия, алюминия и бериллия. По данным Руффа [700], бериллий не отделяется щелочью количественно, так же как и алюминий, особенно в присутствии больших количеств аммонийных солей. Осаждение гидроокиси циркония аммиаком может применяться при гравиметрическом определении циркония. Но этот метод используется лишь в случае отсутствия примесей, осаждаемых аммиаком. [c.53]

    Теоретически 1 мл 0,05 М раствора комплексона соответствует 13,49 мг А1. Однако лучше устанавливать титр раствора комплексона по раствору соли алюминия известной концентрации. Определению не мешают следы кальция, бария и магния. При титровании в присутствии марганца н кобальта переход окраски нечеткий. Остальные тяжелые металлы мешают определению (железо, висмут и никель в условиях определения реагируют количественно с комплексоном медь, свинец, цинк, кадмий реагируют только частично). Из анионов определению мешают фториды, фосфаты и оксалаты. хМешают также сульфаты вследствие образования ими комплексных соединений с торием, и поэтому их следует перед определением отделить в виде сульфата бария. [c.364]

    При определении следов элементов-примесей в хлористом кадмии для повышения чувствительности спектрального анализа была применена экстракция вещества-основы (кадмия) из йодидных растворов в форме двух соединений С(1Л2 и СдЛз П, 2]. В качестве органического растворителя в нашем случае был использован диэтиловый эфир. Указанный прием позволил сбросить большую часть вещества-основы, после чего водную азу выпаривали на графитовом коллекторе, и в сухом остатке определяли алюминий, железо, кальций, кобальт, магний, марганец, никель, титан, хром и цинк. [c.44]

    Изменение цвета раствора наступает очень резко от 1—2 капель 0,025-м. раствора трилона. Точность определения 0,05%, Метод рекомбнд /ется для определения тория в количестве 0,25% И более. Магний, цинк, кадмий, марганец, алюминий, кальций, церий (Hi), железо (II) и небольшие количества меди и никеля (до 1 % каждого) определению не мешают. Мешает же лезо (III) и церий (IV), поэтому их до титрования тория восстанавливают гидроксиламином. [c.248]

    Атомно-абсорбциснными методами с повышенной чувствительностью определяют серебро, магний, кадмий, таллий, свинец, марганец, железо, кобальт, никель, родий и, кро-ме того, трудноопределяемые эмиссионными методами золото, ртуть, молибден, палладий, платину, цинк, сурьму, висмут, олово. Чувствительность определений элементов пламеннофотометрическими методами представлена в табл. 1. [c.310]

    Установлено, что азотная и серная кислоты при концентрации до 25 /о (по объему), а также литий, натрий, калий, кальций, барий, стронций, медь, кадмий, свинец, хром, марганец, железо, серебро, титан, цирконий, фосфор, мышьяк, бор, алюминий, висмут, кобальт, никель, сурьма, торий и олово при концентрации по 1000 мкг/мл каждого определению не мешают. Несколько заниженные результаты получаются в присутствии магния и кремния (найдено соответственно 4,75 мкг/мл и 2,85 мкг/мл цинка вместо 5 мкг/мл). Значительный мешающий эффект был обнаружен первоначально со стороны галоидных кислот. Оптическая плотность при 2139 А 2,5 н. раствора соляной кислоты, содержащей цинк в концентрации 7,5 мкг/мл, равнялась 0,52 вместо 0,30 для водного раствора при той же концентрации цинка. С уменьшением концентрации кислоты оптическая плотность раствора приближалась к 0,30 (в растворе 0,1 н. соляной кислоты оптическая плотность равна 0,28). Объясняя полученный результат, авторы предположили наличие в области 2100—2200 А молекулярных абсорбционных полос соляной, бромистоводородной и йодистоводородной кислот, ранее не идентифицированных и в связи с этим рекомендовали определение цинка проводить в отсутствии галоидных кислот. С этим объяснением не согласился автор работы [8]. По его данным, галоидные кислоты при использовании горелки из нержавеющей стали определению цинка не мешают. В связи с этим он высказал предположение, что поглощение в области 2000—2200 А вызвано поступлением в пламя загрязнений. В последующих исследованиях это предположение подтвердилось [9] было показано, что при использовании латунной горелки ее поверхностный окисный слой разрушается соляной кислотой и вносится в пламя вместе с распылохм анализируемого раствора. Этим объясняется поглощение в пламени растворов галоидных кислот как при длине волны Zn 2139 А, так и при длинах волн 2024,. 2165, 2178 и 2182 А. При указанных длинах волн [81] расположены сильные абсорбционные линии меди. [c.149]

    Так, ГОСТ 10398—71 позволяет комплексонометрическим методом определить содержание основного вещества большого числа химических реактивов, в состав которых входят 22 элемента адю-миний, барий, ванадий (V), висмут, галлий, железо (И1), индий, кадмий, кальций, кобальт, лантан, магний, марганец (II), медь, молибден (VI), никель, свинец, скандий, стронций, титан (IV), цинк и цирконий. Этот метод определения основан на мгновенном образовании малодиссоциированных комплексных соединений различных катионов с трилоном Б. [c.161]

    Поданным Вебстера и Файрхола, висмут, кадмий, кобальт, медь, фтор-ион, железо(И), магний, марганец, ртуть, молибден, никель, нитрат-ион, олово(П), сульфат-ион и цинк, присутствуя в количестве нескольких миллиграммов, не образуют с родамином Б окрашенных соединений. Из данных табл. 37 следует, что небольшие количества многих других металлов также не мешают определению. Хром(У1) обесцвечивает родамин Б. Ртуть(П) в 3 М соляной кислоте дает соединение, окрашенное в красный цвет окраска, обусловленная присутствием золота, более интенсивна в 3 УИ, чем в 6 УИ соляной кислоте. [c.233]


Смотреть страницы где упоминается термин Определение кадмия, цинка, никеля и магния: [c.169]    [c.204]    [c.352]    [c.102]    [c.104]    [c.125]    [c.124]    [c.181]   
Смотреть главы в:

Комплексоны в химическом анализе -> Определение кадмия, цинка, никеля и магния




ПОИСК





Смотрите так же термины и статьи:

Кадмий определение

Магний определение

Никель определение

Определение железа, алюминия, кальция, магния, меди, марганца, J кобальта, кадмия, хрома, свинца, никеля, молибдена, ванадия в я активных углях и цинк-ацетатных катализаторах на их основе

Определение магния и цинка (кадмия)

Определение магния, никеля и цинка

Определение никеля и цинка

Прямое определение железа, кадмия, кальция, кобальта, магния, марганца, меди, никеля, свинца, серебра, хрома и цинка

Химико-спектральное определение алюминия, висмута, индия, кадмия, магния, марганца, меди, никеля, свинца и цинка в таллии

Химико-спектральное определение алюминия, висмута, кадмия, кобальта, магния, меди, никеля, свинца, серебра и цинка в металлическом индии

Химико-спектральное определение алюминия, висмута, кадмия, магния, марганца, меди, никеля, свинца и цинка в индии

Химико-спектральное определение алюминия, индия, кадмия, магния, марганца, меди, никеля, свинца, серебра и цинка в металлическом талии и хлориде таллия

Химико-спектральное определение алюминия, кадмия, магния, марганца, меди, никеля, свинца и цинка в фосфиде индия

Химико-спектральное определение алюминия, кадмия, магния, марганца, меди, никеля, свинца, цинка и серебра в висмуте

Химико-спектральное определение меди, серебра, кадмия, магния, марганца, висмута, алюминия, титана, индия, кальция, свинца, хрома, кобальта, никеля и цинка в сурьме



© 2024 chem21.info Реклама на сайте