Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хлориды серебра и золота

    Для снятия с анода плохо проводящих пленок хлорида серебра электролиз осуществляют асимметричным током, накладывая на постоянный ток переменный. В то время когда анод становится катодом, от него отделяются пленки хлорида серебра. Оптимальные условия процесса электролит — 50—70 кг/м золота и 60—70 кг/м соляной кислоты температура 60—70°С плотность постоянного тока 500—1500 А/м напряжение на ванне 0,6—0,8 В, расход электроэнергии 0,3—0,35 кВт-ч/кг золота. [c.306]


    Известны другие групповые реагенты. Например, сульфаты щелочноземельных металлов и свинца плохо растворимы, а сульфаты щелочных металлов, магния, марганца (И), железа (И и III), кобальта (И), никеля (II), меди (II), цинка, кадмия хорошо растворимы плохо растворимы хлориды серебра, ртути, свинца, золота (I), меди (I), таллия(1), а другие хлориды хорошо растворимы. [c.12]

    В процессе рафинирования золота, содержащего серебро, характерно поведение последнего. В растворе хлорида серебро образует нерастворимый хлорид, который частично уходит в шлам, а частично оседает на аноде, пассивируя его. Для устранения пассивирования золотого анода, содержащего серебро, применяют на- [c.318]

    Схема выделения золота в качестве побочного продукта показана на рис. 74. Электролитический процесс используется для выделения золота из остатков в электролизерах для получения серебра после того как избыток серебра удален выщелачиванием под действием горячей серной кислоты. В процессе электролиза раствора (горячего) хлорида серебра используются золотые аноды. Катод представ- [c.179]

    В середине XIX в. для получения хлорида цинка, хлорида железа (И), хлорида серебра, хлорида золота соответствующий металл растворяли либо в соляной кислоте, либо в царской водке (смесн соляной и азотной кислот). Для получения каких из перечисленных солей применялась соляная кислота, а для каких— царская водка  [c.111]

    Применение хрома (И) в качестве восстановителя очень подробно рассмотрено в монографии [1]. Можно отметить определение хлорида олова (IV) в присутствии катализаторов, например Sb или Bi" [91], Sb в 20%-ной НС при нагревании [91, 92], меди-(II) [93, 94], серебра, золота, ртути, висмута, железа, кобальта, молибдена, вольфрама, урана, бихроматов, ванадатов, титана, таллия, пероксида водорода, кислорода в воде и газах, а также органических соединений, например, азо-, нитро- и нитрозосоединений и хинонов. [c.412]

    Неограниченной растворимостью в твердом состоянии обладают вещества, имеющие близкие значения атомных или ионных радиусов, сходный химический состав и одинаковый тип кристаллической решетки. В этом случае при кристаллизации из расплава выделяются оба компонента, входящие в одну кристаллическую решетку, причем один компонент может заменяться в решетке другим в произвольных отношениях, давая однофазный твердый (кристаллический) раствор. Примером систем такого типа могут служить хлорид натрия — бромид натрия, хлорид натрия — хлорид серебра, золото — серебро и др. [c.89]


    Подгруппа хлоридов включает одновалентные медь, серебро, золото, таллий, двухвалентный свинец, выделяемые в виде плохо растворимых в воде хлоридов. Подгруппа сульфидов основного характера включает сульфиды меди (II), кадмия (II), олова (И), висмута (III). В этой же группе могут быть выделены технеции (IV), рутений (И1), родий (III), палладий (И). [c.31]

    Обычно энергия решетки тем больше, чем выше поляризуемость анионов (исключение фториды). Плохая растворимость соли определяется, конечно, не только поляризуемостью аниона. Так, например, хлориды, бромиды и иодиды одновалентных меди, серебра, золота плохорастворимы. Электронные конфигурации ионов Си+, Ag+ и Аи+ сходны —у всех полностью занят -уровень  [c.498]

    Находит применение и вариант способа прямого активирования, называемый активирующим травлением. Для его осуществления используют любой состав травления, в котором могут растворяться соли металлов-активаторов палладия, серебра, золота, платины. Особенно эффективным является раствор, состоящий из 25 — 35 % серной кислоты, 22 — 28 % хромового ангидрида и 0,005 — 0,05 % металла-активатора. При применении палладия активирующее травление протекает более эффективно, если в растворе отсутствуют хлориды. Если Н е для приготовления раствора используют двухлористый палладий, то его предварительно переводят в сернокислое соединение, так, как описано выше. [c.54]

    Описаны методы разделения, открытия и определения легко восстанавливающихся элементов, таких, как мышьяк, серебро, золото, платина, палладий, селен, теллур и иод, основанные на обработке солянокислых растворов избыточным количеством хлорида ртути (I). [c.143]

    Медь, серебро и золото образуют окислы и нитраты, которые при нагревании разлагаются с образованием металлов, имеющих следующие температуры кипения медь — 2300° С, серебро— 1950° С, золото — 2600° С. Галогениды золота при нагревании также разлагаются с образованием металла, хлорид серебра кипит без разложения при 1550° С. Вероятно, поступление этих элементов в пламя будет определяться летучестью металлов при прохождении их частиц через пламя. [c.35]

    Сплав весом в 1,000 г состоит из золота, серебра и меди. При обработке сплава получено 0,287 г хлорида серебра и 0,079 г окиси меди. Наити процентное содержание отдельных металлов в сплаве. [c.171]

    Определение золота в сплавах благородных металлов восстановлением его гидрохиноном Анализируемый сплав растворяют в царской водке и удаляют нитрат-ионы как можно полнее, выпа-зивая раствор досуха с избыточным количеством соляной кислоты. Три этом выделяется хлорид серебра, который и отфильтровывают. Дальше проводят восстановление гидрохиноном в 1,2 н. по содержанию соляной- кислоты в растворе. Золото выделяется в осадок, количественно при этом отделяясь от платины, палладия, родия, иридия, осмия, рутения, селена и теллура. [c.778]

    II — переходят в шлам металлы более электроположительные, чем медь, металлоиды и соединения, плохо растворимые в электролите золото, серебро, платина, селен, теллур, сера сульфиды, селениды, теллуриды, меди, серебра и др., хлорид серебра, сульфат свинца, окислы олова, кремнезем и др.  [c.195]

    ХЛОРИДЫ СЕРЕБРА И ЗОЛОТА Свойства хлорида серебра [c.61]

    Хотя однородные частицы определенных типов латексов и вирусов были известны еще до 1950 г., примеров неорганических систем с однородными частицами в области размеров 100—500 нм, необходимой, чтобы продемонстрировать интерференционное окрашивание, было мало, если они вообще имелись. Изодисиерсные золи приготовляли из золота, серебра, серы, хлорида серебра и сульфата бария, но не из кремнезема [389]. В более ранних исследованиях попытки приготовить частицы кремнезема в области указанных размеров были безуспешны, поскольку не было известно, каким образом повысить размер частиц. Фрейндлих [390] пробовал получить стабильные золи с концентрацией свыше 10 % Si02, однако был введен в заблуждение тем, что добавление щелочи, которая, как он знал, должна была стабилизировать отрицательно заряженные частицы, приводило лишь к гелеобразованию. [c.553]

    Применение хлоридов серебра и золота [c.64]

    В настоящее время много серебра расходуется на производство технических и бытовых зеркал. При их изготовлении стекло обезжиривается, промывается, а затем обрабатывается раствором хлорида олова (И) ЗпСЬ. После этого стекло обливают раствором нитрата серебра AgNOз с сахаром. Сахар восстанавливает соль серебра до металла и он ровным и плотным слоем ложится на поверхность стекла. Хлорид олова(II) играет роль активатора процесса восстановления и способствует образованию качественного слоя серебра. Для предотвращения потускнения серебряного покрытия в технических зеркалах его защищают слоем химического элемента индия. Не сказываясь на отражательной способности зеркал, индий позволяет продлевать срок их службы. Прототипом современных стеклянных зеркал, с пленкой металлического серебра, были отполированные металлические пластинки из олова, бронзы, серебра, золота. Их существенным недостатком было потускнение во времени. Однако наилучшим из перечисленных металлов было серебро. Оно относительно дешево, устойчиво к атмосферным воздействиям, характеризуется высокой отражательной способностью и не дает оттенков. К сожалению, в настоящее время такие зеркала являются редкостью даже для музеев. [c.154]


    В производстве практикуют извлечение серебра из промывных вод фильтрованием через колонки, заполненные ионообменными (анионитными) смолами, которые адсорбируют серебро, золото и прочие тяжелые металлы. После насыщения смолу сжигают, а серебро извлекают из золы азотной кислотой с последующим осаждением его хлоридами. [c.179]

    Но, в отличие от. ртути, платина анодно практически не растворяется и на ней весьма значительно перенапряжение для выделения кислорода. Вследствие этого платиновый электрод можно поляризовать до очень высоких положительных потенциалов (+1,7— +2,0 В) и тем самым осуществлять анодное окисление различных неорганических и органических восстановителей, а также катодное восстановление электроположительных ионов металлов (серебро, золото, иридий и т. д.), и сильных окислителей (перманганат, бихромат и т. д.). Передел анодных потенциалов, до которых возможна поляризация платинового электрода, определяется процессом выделения молекулярного кислорода при данной кислотности раствора за счет разряда молекул воды или анодным процессом окисления аниона ( )она (например, в хлоридной среде— электроокисление хлорид-иона). Поэтому рабочая область потенциалов платинового электрода, как и ртутного, зависит от кислотности и природы фонового раствора (табл. 2). [c.24]

    Основное внимание в этих исследованиях уделено кинетике электроосаждения металлов из различных растворов их комплексных солей и усовершенствованию технологии нанесения электролитических покрытий. Более подробно изучены закономерности процессов, протекающих при электроосаждении меди, цинка, кадмия, серебра, золота, индия и палладия из широко распространенных в практической гальваностегии цианистых растворов. Рассмотрены особенности процессов выделения палладия из растворов едкого кали, хлоридов и нитритов, фосфатов, этилендиами-на, хлористого аммония. [c.6]

    Особенностью электролитического рафинирования золота является то, что его проводят обычно не постоянным, а переменным асимметричным током. Применение асимметричного тока вызвано необходимостью удаления с поверхности анода пленки хлорида серебра. При приложении к электролизеру асимметричного напряжения анод на короткое время становится катодом, при этом пленка хлорида серебра отделяется от электрода и падает в шлам. Использование асимметричного тока позволяет вести электролиз [c.45]

    Взвешенные частички большинства коллоидов несут электрический заряд между частичками и жидкостью существует разность потенциалов. Иногда частички заряжены положительно, как это бывает с коллоидными растворами гидроокиси железа, а1люмшия и хрома, иногда — отрицательно, как это бывает с коллоидными растворами кремневой и оловянной кислот, сульфидами мышьяка и кадмия, иодидом и хлоридом серебра, золотом, платиной и серебром. Вещества, в коллоидном состоянии несущие электрический заряд, осаждаются электролитами. Отрицательно за,ряженные коллоиды осаждаются под действием положительных ионов и, наоборот, положительно заряженные коллоиды осаждаются отрицательными ионами. Осажденное вещество захватывает с собой осаждающие ионы, образуя с ними адсорбционное соединение. Осаждающая способность электролитов увеличивается с увеличением валентности осаждающего иона. [c.79]

    Выделяющееся металлическое золото и осадок хлорида серебра Ag l образуют заметное пятно. По интенсивности окраски этого пятна и определяют пробу сплава. [c.159]

    Электролитическому рафинированию подвергают золотой лом, рудное золото и черновое золото — полученное после переработки шлама от рафинирования серебра. Электролитом служат солянокислые растворы хлоридов. Другие соединения золота плохо растворимы и неустойчивы. Циайидные растворы золота не применяют, так как на катоде наряду с осаждением золота происходит соосаж-дение меди и серебра. Но и анодное растворение золота в солянокислом электролите осложняется образованием ионов р.азной степени окисления, пассивированием анода и образованием пленок хлорида серебра на аноде. [c.306]

    При кипячении изделий в соляной кислоте или разбавленной царской водке можно также получить насыщенную желтую окраску поверхности, особенно в случае высокопробных сплавов. Недостатком этого метода является возможность появления на поверхности изделия пятен из-за осаждения хлорида серебра. Так как соляная кислота ускоряет коррозию поверхности изделий, находящихся в напряженном состоянии, в ней нельзя обрабатьшать сильнодеформированные в холодном состоянии изделия из золотых сплавов. Такие изделия следует предварительно подвергать обжигу. [c.181]

    Предложен ускоренный метод титриметрического определения ртути в рудах и огарках ртутного производства, основанный на растворении навески анализируемого материала в смеси концентрированных НС1 и HNO3 и на дальнейшем титровании ионов Hg(H) диэтилдитиокарбаматом натрия в присутствии органического экстрагента ( H I3 или I4) и солей меди в качестве индикатора [19, 190, 1335]. После полного осаждения белого карба-мата ртути в конце титрования образующийся карбамат меди окрашивает органический слой в лимонно-желтый цвет. Большинство катионов, в том числе мышьяк, сурьма и следы золота, присутствующие в ртутных рудах, не мешают определению. Мешает катион серебра, но его влияние исключается фильтрованием хлорида серебра вместе с нерастворимым остатком после кислотного разложения навески. [c.151]

    Известно несколько работ, в которых в качестве электрода сравнения применялись амальгамированные металлы. С. И. Синякова исследовала возможность замены донного ртутного электрода различными металлами, в частности амальгамированными и неамальгамированными серебром, золотом, палладием, медью и никелем. Амальгамированные металлы позволяют получать почти такие же полярограммы, как ртутный электрод неамальгамиро-ванные золото, палладий, медь и никель легко поляризуются. Хорошие результаты дало также применение серебра в растворах хлоридов, в аммиачной и тартратной среде. Е. М. Ско бец и Н. С. Kaвeцкий2 снимая полярограммы методом бросковых токов , пользовались донным ртутным анодом или амальгамированной серебряной пластинкой. [c.135]

    Рн2о1Ря2 и PAi i/pii, принимают значения 1,3 10 (безразмерная величина) и 1,8-10 Па соответственно. Если равновесные значения отношений больше экспериментальных, при выбранных условиях восстановление возможно. Основываясь на этих данных, образования восстановленных металлических катализаторов можно ожидать для металлов УИ1 группы, а также для меди, серебра, золота, рения, молибдена и вольфрама. Хлориды восстанавливаются легче, чем окислы, но полностью избежать присутствия окислов в процессе приготовления катализаторов никогда не удается. Восстановление водородом других металлов (не названных выше) при условии сохранения целостности катализатора маловероятно. [c.174]

    Следует также упомянуть о двух органических восстановителях. Широко изучено, в частности Эрдейем и сотрудника-ми 1-62, применение аскорбиновой кислоты. Трехвалентное железо титруют в 0,1—0,2 н. растворе соляной кислоты с индикатором тноцианатом или лучше — вариаминовым синим Б (4-амино-4 -метоксидифениламин). Соли серебра, золота, платины и ртути определяются путем восстановления их до металлов Хлорат восстанавливается до хлорида в присутствии Se в качестве катализатора .  [c.492]

    Содержание хлорида ртути (I) и об1цее содержание ртути в рудах, в состав которых входят каломель и оксихлориды ртути, можно определить в одной навеске пробы, отгонкой в стеклянной трубке, в которой выделяющиеся пары сначала соприкасаются с карбонатом натрия, а потом — с предварительно, взвещенной золотой фольгой. Выделяющийся при отгонке хлор задерживается карбонатом натрия в виде хлорида натрия, который затем превращают в хлорид серебра и пересчитывают на хлорид ртути (I), а пары металлической ртути задерживаются золотой фольгой, которую потом взвешивают. [c.244]

    Для определения золота применяется несколько объемных и колориметрических методов [26]. Опишем метод, отличаюш ийся исключительной точностью. В качестве восстановителя-титранта для благо-родны х металлов была предложена аскорбиновая кислота [23]. Аликвотную часть раствора, содержащую золото, титруют соляной кислотой до получения концентрации не более 0,1 н. при pH = = 1,3- -3,0. Затем раствор разбавляют до 100 мл, подогревают до 50° С и титруют потенциометрически 0,1 п. аскорбиновой кислотой, пользуясь системой электродов платина — серебро — хлорид серебра. Децинормальный раствор аскорбиновой кислоты приготавливают растворением 8,806 г этого соединения в дистиллированной воде, содержащей 0,1 г трилона Б с 4 мл 60%-ной муравьиной кислоты и доводят объем раствора до 1 л. Вместо хлоридного электрода, который нужно менять после трех-четырех титрований, можно использовать стеклянный. В случае присутствия железа к анализируемому раствору прибавляют 1 мл ортофосфорпой кислоты. [c.132]

    Новый способ сварки, напоминающий пайку. Смесь хлоридов цинка, лития, калия и натрия в оболочке из цинка вводится в расплавленном состоянии в шов. Получающееся в результате реакции между этой смесью и металлом соединение имеет большую прочность, чем основной металл, сохраняет основные физические и электрические свойства последнего и Обладает высокой коррозионной устойчивостью. Процесс проходит при относительно низкой температуре, в частности для алюминия при 450°. Способ применим для сверки алюминия с алюминием и алюминия с медью, для сварки титана, серебра, золота, бериллия, платины, осмия, тория, урайа, ванадия, вольфрама и нескольких видов стали в разных сочетаниях. Отмечается перспективность применения его в химическом машиностроении, строительстве самолетов, управляемых снарядов, производстве автомашин и моторов [c.28]

    Определению золота мешают ионы серебра, окисной и закисной ртути, закисного железа, мышьяка, сурьмы и олова. Но серебро после обработки царской водкой переходит в осадок в виде хлорида серебра, а ион железа (П) переходит в ион железа (И1), не мешающий определению. [c.240]

    Главная трудность в турбидиметрии и нефелометрии — подыскание условий, при которых получаются воспроизводимые суспензии. На поглощение или рассеяние света могут резко влиять небольшие изменения в способе добавления осадителя, в температуре и во времени, проходящем до наблюдения. От этих факторов зависит первоначальный и последующий размеры частиц осадка. Кроме того, большое влияние могут оказывать электролиты. Малорастворимые вещества сильно отличаются по их пригодности для применения в турбидиметрии и нефелометрии. Же ла тельно, чтобы осадок был очень мало растворим, чтобы ега образование шло быстро и чтобы он был окрашен или непрозрачен (последнее — для турбидиметрии). Оптическая плотность коллоидных растворов часто изменяется линейно в зависимости-от концентрации вещества в широких пределах, особенно если вещество сильно абсорбирует свет. Это соотношение не соблюдается при очень малых концентрациях. Коллоидные растворы теллура, получаемые осаждением хлоридом олова (II), коллоидное золото (стр. 235), соединение серебра с диэтиламинобензил-иденроданином, ферроцианид меди и суспензии сульфидов многих тяжелых металлов показывают линейное соотношение. Пр суспензиях хлорида серебра получается более сложная форма [c.88]

    Поэтому, если возможно присутствие палладия, то золото вчень тщательно отделяют от него. Платина мешает меньше. Раствор, й содержащий 0,8 у/мл платины в 0,1 н. соляной кислоте, не дает окраски с реактивом после 20-минутного стояния. Одиако более концентрированные растворы дают окраску, особенно после долгого стояния. Серебро в количествах, не превышающих количества золота, серьезно не мешает, если только оно не присутствует в такой концентрации, чтобы мог образоваться осадок хлорида серебра. Раствор, содержащий 5,5 т золота и 20 у серебра, по окраске соответствует 6,5 у золота. Реакция серебра подавляется соляной кислотой. Реакция ртути с реактивом также подавляется хлоридами, и, кроме того, ртуть можно удалить слабым прокаливанием. , [c.237]


Смотреть страницы где упоминается термин Хлориды серебра и золота: [c.497]    [c.178]    [c.162]    [c.436]    [c.1497]    [c.337]    [c.121]    [c.436]    [c.255]    [c.390]    [c.144]    [c.719]   
Смотреть главы в:

Неорганические хлориды -> Хлориды серебра и золота




ПОИСК





Смотрите так же термины и статьи:

Золото из серебра

Серебро хлорид



© 2025 chem21.info Реклама на сайте