Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Размер и заряд коллоидных частиц

    Различают периоды скрытой коагуляции и коагуляции явной. Вначале происходит укрупнение частиц, невидимое невооруженным глазом (скрытая коагуляция), затем размер частиц достигает предела видимости, после чего скрытая коагуляция переходит в явную. Коагулирующая сила электролита существенно зависит от величины заряда ионов, несущих заряд одноименный с противоионами. Чем больше их заряд, тем при меньшей их концентрации начинается коагуляция. Различие их во влиянии на коагуляцию чрезвычайно велико. Для однозарядных ионов порог коагуляции в зависимости от природы золя, степени его дисперсности и концентрации составляет 25—100 ммоль/л, для двухзарядных ионов 0,5—2,0 ммоль/л и для трехзарядных 0,01—0,1 ммоль/л. Эта закономерность получила название правила Шульце—Гарди. Порог коагуляции не зависит от природы ионов, вызывающих коагуляцию, за исключением случаев, когда эти ионы специфически адсорбируются на поверхности коллоидной частицы. Величина заряда ионов, несущих заряд, одноименный с зарядом ядра, на пороге коагуляции практически не оказывается. Отметим также, что анионы оказывают большее коагулирующее действие, чем катионы. [c.419]


    Эффективность депрессорных присадок при кристаллизации твердых углеводородов связывают с их полярностью, снижением сольватации молекул парафина молекулами масла, нарушением агрегативной устойчивости дисперсии парафина и повышением при этом компактности кристаллических агрегатов, образованием ассоциированных комплексов молекул присадки и твердых углеводородов, что приводит к увеличению скорости фильтрования в процессе депарафинизации масляного сырья. Изучение влияния депрессорных присадок на поведение суспензий твердых углеводородов в сопоставлении с электрокинетическими исследованиями позволяет сделать вывод о возможной электростатической природе их действия. В работе [104], проведенной в этом направлении, в качестве критерия эффективности маслорастворимых присадок, используемых для интенсификации процесса депарафинизации, предложено значение энергетического барьера, создаваемого присадками на поверхности частиц дисперсной фазы в их суспензиях. Энергетический барьер учитывает кроме электрокинетического потенциала частиц дисперсной фазы и их размеры. В работе показана возможность применения маслорастворимых присадок для создания электрического заряда у частиц твердых углеводородов, обеспечивающего образование устойчивых коллоидных систем. Электрокинетические исследования реальных систем твердых углеводородов показали, что присадки, обладающие только депрессор-ным действием, эффективны в дистиллятном сырье. Для остаточного сырья следует использовать металлсодержащие многофункциональные присадки. Однако многокомпонентность масляных рафинатов, сложность состава твердых углеводородов и присутствие двух ПАВ при осуществлении процесса депарафинизации нефтяного сырья в присутствии присадок сильно усложняют изучение механизма кристаллизации твердых углеводородов, что, в свою очередь, затрудняет направленный поиск наиболее эффективных присадок для интенсификации этого процесса. [c.171]

    Методы исследования золей (определение размера, формы и заряда коллоидных частиц) основаны на изучении их особых свойств, в частности оптических, обусловленных гетерогенностью и дисперсностью. Из явлений, возникающих при действии света на золь, наиболее характерно рассеяние света. Это явление проявляется в виде опалесценции при боковом расстворе-нии золя, через который проходит световой луч, внутри коллоидной системы наблюдается светящийся конус (явление Тиндаля). [c.423]


    Лиофобные золи. Мы уже видели, что обязательными условиями устойчивости лиофобных золей являются очень малый размер частиц, наличие у них электрических зарядов, одинаковых по знаку, и сольватация частиц. Первое предохраняет их от оседания, второе и третье — от укрупнения в результате слипания (коагуляции). Своим происхождением заряды коллоидных частиц обязаны адсорбционным процессам заряд появляется у частицы вследствие того, что частица данного коллоида преимущественно или избирательно) адсорбирует из раствора ионы того или иного вида в зависимости от природы коллоидного вещества и от условий опыта. Чтобы выяснить ближе характер этой адсорбции, обратимся прежде всего к результатам экспериментального изучения структуры коллоидных растворов. [c.507]

    Биологические макромолекулы — белки, нуклеиновые кислоты, полисахариды — находятся в растворе в виде частиц, которые по своим размерам соответствуют коллоидным частицам. Они несут определенный электрический заряд благодаря наличию групп, способных к электролитической диссоциации. Общий заряд данной частицы определяется прежде всего концентрацией Н+- ионов в среде и может изменяться при ее взаимодействии с ионами малой молекулярной массы или другими макромолекулами. Под действием электрического поля заряженные частицы перемещаются к катоду или аноду в зависимости от знака их суммарного заряда. Такое явление носит название электрофореза. Скорость движения частицы (см/с) при напряженности электрического поля 1 В/см называется электрофоретической подвижностью. Она имеет размерность ом .с- -В , а ее знак совпадает со знаком суммарного заряда. Различия в подвижности частиц служат основой для разделения смесей веществ в аналитических или препаративных целях. Определение подвижности используется также для характеристики вещества, [c.11]

    Для определения относительного размера и заряда коллоидных частиц присадок исследовали их перемещение из слоя масла с присадкой в слой масла без присадки под действием электрического поля. Схема прибора для этих исследований показана иа рис. 4. [c.173]

    Коллоидные частицы довольно стабильны. Одна из причин этого состоит в следующем благодаря малому размеру таких частиц броуновское движение молекул воды оказывает на них более сильное воздействие, чем силы гравитации. Кроме того, электростатические силы отталкивания, обусловленные поверхностным зарядом коллоидных частиц, предотвращают их коагуляцию и последующее осаждение. [c.391]

    СВОЙСТВА КОЛЛОИДНЫХ СИСТЕМ Размер и заряд коллоидных частиц [c.143]

    Во всяком коллоидном растворе этот процесс вначале протекает очень медленно, когда же частицы достигнут определенных размеров, то начинается быстрое их осаждение. Основным методом ускорения коагуляции является добавление к нему электролита. Введение электролитов сильно увеличивает концентрацию ионов в растворе, в результате чего возникают условия для поглощения заряженными коллоидными частицами ионов противоположного знака. При этом снижается первоначальный заряд коллоидных частиц лишенные заряда, они боль--ше не отталкиваются друг от друга, а при столкновении укрупняются и выпадают в осадок. [c.159]

    В предыдущих наших работах [3, 4, 5] мы указывали на положительное влияние электролитов в процессе извлечения коллоидов из их гидрозолей методом эмульгирования. В данном исследовании мы ставим вопрос о возможности по величине коагуляции электролитов рассчитать их количество, необходимое для понижения степени дисперсности коллоидных частиц до размеров их, способных к флотации. Известно, что в электролите-коагуляторе коагулирующей частью является тот ион, знак заряда которого противоположен заряду коллоидной частицы. [c.103]

    Как считают некоторые авторы, результаты электрокинетических измерений должны выражаться не через С-потенциал, а через величины, соответствующие тем, которыми пользуются в отношении электролитов, содержащих небольшие ионы, а именно, через подвижности и валентности. Это, однако, связано с тем затруднением, что, несмотря на измерения подвижности, истинные заряды коллоидных частиц или поверхностные плотности их зарядов известны лишь в редких случаях. Заряд и валентность коллоидной частицы должны зависеть от её размеров, а возможно, и от формы, которые, вероятно, мало влияют на С-потенциал. [c.460]

    Почему же не происходит укрупнения уже образовавшихся коллоидных частиц Объясняется это тем, что как только частицы достигают таких размеров, при которых существуют поверхности раздела между ними и средой, так на их поверхности начинают адсорбироваться ионы электролита и они становятся электрически заряженными. Если заряды частиц невелики и силы отталкивания между одноименно заряженными частицами не могут преодолеть их кинетическую энергию, то происходит дальнейшее их укрупнение. Наконец наступает такой момент, когда электрические заряды коллоидных частиц становятся такими, что при их сближении они отталкиваются друг от друга. В справедливости наших рассуждений можно убедиться на конкретных примерах. При образовании золя полуторасернистого мышьяка на поверхности его частиц адсорбируются анионы сероводородной кислоты Н5 , а катионы Н будут притягиваться к такой частице, образуя вокруг нее довольно размытый слой (рис. 82). Образование размытого слоя из ионов Н вокруг коллоидной частицы объясняется тем, что они, с одной стороны, притягиваются к отрицательно заряженной коллоидной частице, а с другой стороны, под влиянием теплового движения эти ионы находятся в непрерывном движении. Коллоидная частица в целом называется мицеллой. Формулу мицеллы полуторасернистого мышьяка можно записать следующим образом  [c.238]


    В приготовленных подобным образом препаратах, содержащих вместо заливки воздушный слой, бактерии не прокрашиваются и выделяются на темно-синем фоне ярким свечением. В дальнейшем они даже могут быть использованы в работах по изучению характера и степени разрушения клеток (гл. 5). Негативно окрашенные препараты не следует применять для измерения длины и ширины клеток (см. ниже), так как вокруг клеточной стенки может находиться капсула или слой слизи. Более того, отрицательно заряженные частицы коллоидного нигрозина не реагируют с клеточной поверхностью, поскольку при физиологических значениях pH последняя также заряжена отрицательно. При высыхании коллоидной пленки благодаря одинаковому заряду коллоидных частиц и бактерий черный край высыхающей пленки находится на относительно значительном, хотя и маленьком абсолютно расстоянии от истинной границы клетки. В результате видимый размер бактерии оказывается больше, чем действительный, даже если нет капсулы. [c.59]

    В то время как лимитирующей стадией образования осадка является процесс на поверхности раздела, растворение осадка и его созревание по Оствальду, вероятно, лимитируются процессами диффузии [11]. Свободная энергия поверхности системы, содержащей частицы осадка различного размера, понижается за счет агломерации или созревания по Оствальду. Мелкие частицы находятся в равновесии с раствором при некоторой степени пересыщения Si, более крупные частицы — при более низкой степени пересыщения 52. В системе устанавливается пересыщение, промежуточное между 5i и S2, что ведет к растворению мелких частиц и дальнейшему росту более крупных. Агломерация является другим путем снижения общей поверхностной энергии. Скорость агломерации зависит от количества частиц и заряда их поверхностей. Для систем, содержащих менее 10 частица/мл, скорость агломерации незначительна даже при отсутствии заряда на частицах, а если заряд поверхностей частиц высок, то агломерации вообще не наблюдается. К числу стабилизируемых таким образом систем принадлежит коллоидный оксид кремния. [c.21]

    Коллоидная химия сулит огромные перспективы фундаментальных исследований по разработке катализаторов. Возможность регулирования заряда поверхности, размера и морфологии частиц в некоторых системах [16] позволит систематически изучить влияние этих параметров на каталитические свойства. [c.21]

    В связи с тем, что поверхностный заряд распределяется диффузно в обеих жидких фазах и лишь часть межфазного скачка потенциала приходится на дисперсионную среду, f-потенциал дисперсных капелек, как правило, невелик. С одной стороны,это сильно снижает высоту возникающего потенциального барьера, с другой - затрудняет управление разделением эмульсий в электрических полях. К тому же диаметр капелек в разбавленных эмульсиях близок к размеру коллоидных частиц и составляет, как правило, 10" см. [c.15]

    Образование дельт при впадении рек в море также является в значительной мере коллоидным процессом. В пресной воде рек обычно содержится огромное число взвешенных минеральных частиц с размерами, близкими к коллоидным. Эти частицы обладают электрическим зарядом, как и большинство коллоидных частиц. При впадении рек в море в результате смешения речной воды с морской, содержащей значительное количество электролитов, взвешенные частицы теряют устойчивость, слипаются друг с другом и в виде агрегатов выпадают на дно, образуя отмели. [c.30]

    О. П. Мчедлов-Петросян и В. И. Бабушкин на основе теоретических расчетов показали, что в присутствии электролитов объемные изменения коллоидных систем определяются не только величиной осмотического давления, но и толщиной диффузионного слоя коллоидных частиц, зависящей от электрокинетического потенциала. Необходимым условием появления расширения структуры является согласование во времени процесса образования частиц коллоидных размеров (с достаточной концентрацией их) и более крупных частиц в единице объема. При этом процесс образования положительно заряженных продуктов гидратации во времени должен быть согласован с процессом структурообразования системы. Считают, что гидросиликаты кальция имеют отрицательный заряд, что и опреде- [c.361]

    Частицы дисперсной фазы коллоидных растворов называют коллоидными частицами, их размер соответствует размерам нескольких десятков, сотен, а иногда и тысяч атомов. Эти частицы несут на себе заряд, что обусловливает притяжение к ним диполей воды. Вследствие взаимодействия с водой на поверхности частиц создается гидратная оболочка . Заряд частиц дисперсной фазы обязан своим происхождением адсорбционным процессам, имеющим избирательный характер. [c.173]

    Коллоидные системы. Они имеют размеры частиц дисперсной фазы от 0,1 мк до 1 ммк (или от 10 до 10 см). Такие частицы могут проходить через поры фильтровальной бумаги, но не проникают через поры животных и растительных мембран. Коллоидные частицы при наличии у них электрического заряда и сольватно-ионных оболочек остаются во взвешенном состоянии и без изменения условий очень долго могут не выпадать в осадок. Примерами коллоидных систем могут служить растворы альбумина, желатина, гуммиарабика, коллоидные растворы золота, серебра, сернистого мышьяка и др. [c.134]

    Выделение из сточных вод коллоидов и солей тяжелых металлов можно достигнуть смешиванием сточных вод, которые имеют кислуЮ и щелочную реакцию среды. Содержащиеся в сточных водах нерастворимые гидроокиси металлов и карбонат кальция, которые имеют положительный заряд, нейтрализуют отрицательно заряженные коллоидные частицы. Образовавшиеся частицы являются центрами коагуляции, обрастают до больших размеров и быстро осаждаются в отстойниках в виде хлопьев. [c.401]

    Силы, вызывающие адсорбцию макромолекул флокулянта на дисперсной фазе (взвешенных веществ), имеют различную природу. Они зависят от химического состава ВМС и дисперсных частиц, наличия йоногенных групп в макромолекуле, а также структуры и электрического заряда коллоидных частиц. Так, линейные полимеры или полимеры со слегка изогнутой цепью являются лучшими флокулянтами, чем глобулообразные макромолекулы. Флокулирующее воздействие ВМС зависит не столько от жесткости макро-молекулярного клубка, сколько от его размеров в растворе, которые определяются как природой полимера, так и его макромолекулярной массой. Молекулярная масса в основном влияет на флокулирующую способность неионных и одноименно заряженных полиэлектролитов ее увеличение способствует снижению оптимальной флокулирующей дозы реагента. В нейтрализации заряда поверхности дисперсных частиц молекулярная масса полимеров играет меньшую роль. [c.211]

    Рост частиц твердой фазы за счет процесса коагуляции происходит следующим образом. Как правило, по достижении определенных размеров зародыш стабилизируется вследствие адсорбции ионов и молекул на его поверхности. При этом образуются частицы коллоидных размеров. Коллоидная частица (мицелла) состоит из двух частей — ядра, образованного из твердой фазы, и стабилизатора, состоящего из потенциалоопределяющих ионов растворенного электролита, связанных с ядром адсорбционными силами . Благодаря электростатическому притяжению вокруг стабилизатора собираются противоположно заряженные компенсирующие ионы электролита, образующие внешнюю оболочку мицеллы. Часть компенсирующих ионов находится на молекулярном расстоянии от потенциалоопределяющих ионов, образуя так называемый гельмгольцевский двойной слой, а другая часть расположена диффузно, т. е. концентрация ионов постепенно убывает от поверхности мицеллы к периферии слоя (диффузная часть двойного электрического слоя)Ч Существование диффузной части двойного электрического слоя обусловливает наличие заряда коллоидной частицы (так называемый электрокинетический потенциал), который служит одним из факторов стабильности коллоидных частиц. [c.66]

    Название золя Концентрация вещества в исходном золе в расчете на металл, г на мл золя Добавка йодистого калия для получения золя, г на м.л золя Добавка избытка йодистого калия как стабилизатора золя, г на мл золя Цвет золя и отношение к диализу pH золя Размер (г) КОЛЛОИДНЫХ частиц до добавки электро-лита-коагуля тора тр. Знак заряда и устойчивость золя [c.105]

    В некоторых случаях, например при осаждении Са У 04, коагуляции благоприятствует разбавление раствора. Это объясняется десорбцией электролита (в рассматриваемом примере СаСЬ) с поверхности первичных частиц и соответствующим уменьшением их заряда. Снижение концентрации реагирующих веществ влечет за собой также уменьшение степени пересыщения, что может привести к увеличению размера первичных коллоидных частиц. Поскольку с технологической точки зрения разбавление раствора невыгодно, то иногда прибегают к одновременному вливанию в частично заполненный водой реакционный сосуд растворов обоих реагирующих друг с другом веществ с такой скоростью, чтобы поддерживать примерно стехиометрическое соотношение между ними или незначительный избыток одного из них [92]. Это позволяет, во-первых, проводить реакцию в условиях весьма малых и притом практически постоянных концентраций взаимодействующих веществ и, во-вторых, свести к минимуму образование побочных продуктов, состав которых отвечает иному соотношению между этими веществами [40]. Такой прием, известный из практики количественного химического анализа, рекомендован, в частности, для получения дикаль-цийфосфата СаНР04, применяемого в производстве галофосфатио-го люминофора, а также люминофоров на основе ортофосфата кальция. [c.246]

    В последние годы все большее применение для синтеза катализаторов находпт метод золь —гель. Сначала получают золь, обычно с частицами размером менее 200 А, суспендированными в жидкости. Концентрация твердых веществ в этих золях чаще всего низка, но производится коллоидный оксид кремния, содержащий 40 масс. % SIO2. Регулируя pH золя, а следовательно, и заряд поверхности частиц, можно добиться образования геля [17]. При этом частицы золя слипаются, образуя непрерывную жесткую сетку с исключительно однородным распределением компонентов. В поры геля можно ввести растворы различных катионов, как при пропитке обычного носителя. Чрезвычайно важна методика удаления воды из геля, так как при этом может измениться его микроструктура. Данный вопрос рассмотрен в разд. УП.Б. [c.21]

    Вообще следует отметить, что единой общепринятой всеобъемлющей 1еории коагуляции в настоящее время еще не существует. Дальнейшие исследования в этой области обнаруживают все новые осложняющие обстоятельства. Так, теперь выяснено, что большую роль играют размер и форма коллоидных частиц. Установлена резкая неоднородность поверхности этих частиц, в особенности, если они имеют удлиненную форму. Отдельные участки поверхности такой частицы различаются между собой не только по величине, но, по-видимому, и по знаку потенциала, а также плотности заряда. Коллоидная частица приобретает характер своеобразного макродиполя (отмечается существование гигантских дипольных моментов на указанных частицах). В результате возникает неоднородная поверхностная гидратация частиц, вызывающая неоднородность граничных условий поверхности раздела коллоидная частица— дисперсионная среда. Требует уточнения вопрос [c.313]

    Каждая молекула или тонкодиснерсная частичка в ходе броуновского колебания в целом совершает какое-то хаотическое поступательное движение. И этот путь тем сильнее, чем больше разнообразие размеров молекул или величины зарядов коллоидных частиц, т.к. это создает нуть молекулы в результате соударений с [c.107]

    Так как коллоидные частицы имеют слабый отрицательный заряд, хлопья коагулянтов — слабый положительный заряд, то между ними возникает взаимное притяжение, способствующее формированию крупных частиц. В процессе коагуляционной очистки сточных вод происходит соосаждение с минеральными примесями за счет адсорбции последних на поверхности оседающих частиц. Из воды удаляются соединения железа (на 78—89 %), фосфора (на 80—90 %), мышьяка, цинка, меди, фтора и других. Снижение по ХПК составляет 90—93 %, а по БПКб —80—85 % Степень очистки зависит от условий воздействия на коагуляцию дисперсной системы радиации, магнитного и электрического полей, введения частиц, взаихмодействующих с системой и стабилизирующих ее. Воздействие излучения, как и окисление органических соединений озоном способствует разрушению поверхностно-активных веществ (ПАВ), являющихся стабилизаторами твердых и жидких частиц, загрязняющих сточные воды. Под воздействием электрического поля происходит образование агрегатов размером до 500—1000 мкм в системах Ж — Т, Ж] — Ж2 и Г — Т. [c.479]

    Прп быстром смешивании реагентов увеличивается число центров кристаллизации, вследствие чего образуются мелкокристаллические осадки. Интенсивное перемешивание может влиять на размер частиц и препятствовать их слипанию. Наличие посторонних ионов влияет на химию поверхности осадков. После осаждения концентрация электролита высока это может нарушить двойной электрический слой вокруг частиц п привести к образованию хлопьевидного осадка. Если же избыток электролита отмыт, то частицы могут образовать устойчивый коллоидный раствор, который трудно отфильтровать. Твердый комионент выделяют из таких суспензий центрифугированием, что позволяет получать высокодисперсные материалы. Использованпе закономерностей коллоидной химии открывает реальные возможности в целенаправленном воздействии на заряд новерхности, размер и морфологию частиц, что в конечном итоге позволит проводить направленный синтез катализатора с заранее заданными свойствами 4, 5]. [c.123]

    Прежде всего, разбавленные эмульсии по размеру частиц резко отличаются от концентрированных и выссжоконцентрированных эмульсий, являясь наиболее высокодисперсными. Диаметр капелек в разбавленных эмульсиях составляет, как правило, порядка 10- см, т. е. близок к размеру коллоидных частиц. Далее, разбавленные эмульсии обычно образуются без введения в-систему специальных эмульгаторов. Тем не менее, как показал опыт, частицы этих эмульсий обнаруживают электрофоретическую подвижность и, следовательно, несут электрический заряд. Заряд возникает на частицах дисперсной фазы таких эмульсий в. результате адсорб- ции ионов неорганических электролитов, которые могут присутствовать в среде в ничтожных количествах. Некоторые исследователи полагают, что в отсутствие чужеродных электролитов на поверхности капелек таких эмульсий могут адсорбироваться гидроксильные или водородные ионы, всегда присутствующие в воде в результате диссоциации ее молекул. Наконец, разбавленные эмульсии по свойствам более, чем все остальные эмульсии, сходны [c.369]

    Если две частицы дисперсной фазы сблизить на достаточно короткое расстояние, то далее они будут удерживаться друг около друга силами ван-дер-ваальсова притяжения, которые весьма существенны для частиц большого размера. Это должно привести к их слипанию в случае твердой дисперсной фазы или к слиянию — в случае жидкой и газообразной. Если бы это происходило при каждой встрече частиц, то расслаивание эмульсий и коагуляция суспензий происходили бы за очень короткое время. Однако это случается далеко не всегда в силу наличия у частиц дисперсной фазы электрического заряда. Например, золь Ре(ОН)з проявляет основные свойства и присоединяет протоны, в результате чего коллоидная частица Ре(ОН)з приобретает положительный заряд. Частицы коллоидного золота адсорбируют на своей поверхности многие анионы и заряжаются отрицательно. Заряд на поверхности коллоидных частиц скомпенсирован ионами противоположного знака (противоионами), которые под действием электростатического поля этих частиц концентрируются вблизи поверхности, образуя ионную атмосферу (см. 13.2). Заряженную поверхность вместе с примыкающей к ней ионной атмосферой называют двойным электрическим слоем. Поскольку все одинаковые по своей химической природе коллоидные частицы имеют одноименный заряд, между их ионными атмосферами действуют силы электростатического отталкивания. Это препятствует их сближению до расстояний, на которых ван-дер-ваальсово притяжение пересиливает электростатическое отталкивание и создаются условия, благоприятные для слипания частиц. [c.321]

    В ряде аспектов с коллоидными растворами сходны истинные растворы высокомолекулярных соединений. Молекулы полимеров имеют размеры того же порядка, что и коллоидные частицы, и при достаточно большой силе, действующей на частицы (центробежная сила в центрифугах, см. 18.3), могут оказаться кинетически неустойчивыми и оседать из раствора. В силу больших размеров таких молекул они имеют тенденцию к слипанию под действием ван-дер-ваальсова притяжения, и этому слипанию противодействует наличие у них электрического заряда и возникающего вследствие этого отталкивания одноименно заряженных ионных атмосфер. Сжатие ионных атмосфер путем увеличения ионной силы раствора может привести к осаждению полимера из раствора. Это явление широко используется для осаждения полимеров. Например, многие белки удается перевести из раствора в осадок созданием достаточно в1лсокой концентрации сульфата аммония. Благодаря этим и некоторым другим чертам сходства растворы высокомолекулярных соединений часто рассматривают как особую форму коллоидных растворов и называют лиофильными коллоидами. Истинно коллоидные растворы в этом случае называют лиофибными коллоидами. [c.322]

    При денатурации нарушаются форма и размеры молекул изменяется удельная оптическая активность белков увеличивается в>гЗкость растворов, так как глобулярная форма белков раскручивается с образованием ыитепидных молекул уменьшается растворимость белков и степень набухания происходит снятие с коллоидных частиц электрического заряда и др. [c.209]

    Из данных о скорости передвижения коллоидных частиц при электрофорезе можно оценить величину их заряда. Получаемые по этому и по друг методам значения в общем хорошо согласуются. Это указывает прежде всего на то, что заряд большинства коллоидных частиц значительно больше, чем у отдельных ионов. С увеличением размеров частиц возрастает обычно и их заряд если при диаметре частицы в 1 нм заряд составляет 2—3 единицы элементарного количества электричества (равного заряду электрона), то для частиц с диаметром 100 нм заряд увеличивается до сотеи и тысяч таких единиц. При всей громадности этой величины по сравнению с числом образующих коллоидную частицу атомов или молекул она все же очень мала. Поэтому при электрофорезе переносится гораздо больше вещества, чем то отвечало бы закону электролиза. [c.334]


Смотреть страницы где упоминается термин Размер и заряд коллоидных частиц: [c.108]    [c.175]    [c.594]    [c.38]    [c.322]    [c.616]   
Смотреть главы в:

Демонстрационный эксперимент по общему курсу аналитической химии -> Размер и заряд коллоидных частиц




ПОИСК





Смотрите так же термины и статьи:

Заряд коллоидной частицы

Заряд частицы ВМС

Коллоидные частицы

Коллоидные частицы размеры

Частицы заряженные

Частицы размер

Частицы размер см Размер частиц



© 2025 chem21.info Реклама на сайте