Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Родий валентность

    Согласно этой теории, катализ происходит только при структурном и энергетическом соответствии катализируемых молекул данному катализатору. Теорией Баландина было предсказано, что реакции каталитического гидрирования бензола и дегидрирования циклогексана могут идти только на переходных металлах, имеющих гранецентрированную кубическую структуру или гексагональную структуру и притом атомные радиусы строго определенных размеров. При этих условиях шестичленные циклы образуют на октаэдрических гранях кристаллов металла шесть связей М— — С — С, валентный угол которых близок тетраэдрическому углу. Данным условиям удовлетворяют палладий, платина, иридий, родий, осмий и все они являются активными катализаторами гидрирования бензола и дегидрирования циклогексана. В то же время металлы, обладающие объемноцентрированной структурой, например тантал, вольфрам, даже при почти таких же размерах их атомных радиусов, как у платиновых металлов, а также металлы, имеющие такую же кристаллическую структуру, как платина, но иные размеры атомных радиусов, в частности серебро, золото, или не относящиеся к переходным элементам — медь, цинк,—все эти металлы не проявляют каталитической активности в вышеуказанных реакциях. Таким образом, структура поверхностных соединений бензола и циклогексана с платиновыми металлами была описана и доказана. Мало того, было, в сущности, установлено, что в условиях катализа подобные соединения легко и притом в точности воспроизводятся. Иначе катализ был бы невозможен. [c.59]


    Теория электролитической диссоциации. Теория электролитической диссоциации создана С. Аррениусом в 1887 г. Основными положениями этой теории являются следующие. При растворении электролитов происходит диссоциация их молекул на электрически заряженные частицы — ионы. При этом устанавливается термодинамическое равновесие между образовавшимися ионами и не-продиссоциировавшими молекулами. Величина заряда иона совпадает с валентностью атома элемента или кислотного остатка, а число положительных зарядов равно числу отрицательных зарядов. Раствор в целом электронейтрален. Растворы электролитов проводят электрический ток (проводники второго рода). Так как диссоциация — процесс обратимый, то его принято обозначать двумя противоположными стрелками  [c.207]

    Как мы знаем, валентности в реакционных элементах суть вешества. Поэтому родов валентностей очень много, их существует столько же, сколько существует веществ. Два реакционных элемента могут соединяться между собой только посредством одинаковых веществ (если это вещество X, мы будем писать его, когда нужно, при валентной черте X). Отсюда вытекает существенное ограничение возможности соединения по сравнению с атомами и молекулами. В последних классическая теория все валентности принимает одинаковыми лишь в дальнейшем стали различать положительные, отрицательные, семиполярные валентности и т. д. Электроны, в том числе и валентные, согласно принципу Паули, в молекуле все разные. [c.327]

    Общее число степеней свободы, которыми обладает л-атом-ная молекула, равно 2>п, из которых три степени свободы (или две в случае линейной молекулы) характеризуют вращение молекулы и три степени свободы определяют поступательное движение молекулы в целом. Таким образом, общее число колебательных степеней свободы для системы, состоящей из п атомов, будет равно 2>п — 6 (для линейной системы — 2п — 5). Для активного комплекса это число на единицу меньше, так как одна из колебательных степеней свободы превращается в координату реакции. Колебание образовавшегося комплекса X — V — 2 вдоль валентных связей ведет к реакции распада. Это колебание заменяется движением комплекса X—V—2 особого рода, ведущим к образованию молекул 2 и X. Оно было описано выше и изображено на рис. V, 1 как путь реакции. Это движение рассматривается как вид поступательного движения активного комплекса. Понятия вращение и колебание в применении к активному комплексу не имеют обычного смысла, так как комплекс существует очень недолго. Эти понятия обозначают, что зависимость потенциальной и кинетической энергии системы атомов от координат и сопряженных с ними импульсов такая же, как и для устойчивых молекул. [c.143]


    Согласно зонной теории полупроводников в полупроводнике имеется два рода носителей тока электроны в зоне проводимости и дырки в валентной зоне. В чистом (собственном) полупроводнике, например в чистом германии или кремнии, число электронов Па в зоне проводимости равно числу дырок ро в валентной зоне  [c.139]

    Уже сама возможность обнаружить в реагирующей системе парамагнитные центры, например атомы и радикалы, являющиеся промежуточными продуктами сложных химических процессов, часто позволяет высказать предположение о механизме этих процессов. Знание параметров спектров, в первую очередь СТС, делает принципиально возможной идентификацию парамагнитных центров, хотя практически эта задача оказывается часто весьма сложной и трудоемкой. Тонкая структура (ТС) может наблюдаться в спектрах парамагнитных частиц со спином 5 1. Связь вида ТС с симметрией электрического поля, в котором находятся соответствующие частицы, является важным источником сведений о природе -а геометрии их окружения. Такого рода данные существенны, например, при изучении координационных соединений ионов металлов переменной валентности. [c.248]

    Следует всегда помнить, что таким образом отражается лишь-то обстоятельство, что метод валентных связей является приближенным и что валентные структуры, которые составляются с помощью черточек , следует понимать лишь как схему, условно отображающую действительное строение молекулы. В противном случае может сложиться опасное заблуждение, например, о том, что мезомерия — реальное явление. Однако следует также иметь в виду, что валентные структуры дают очень полезные указания о физико-химическом поведении молекул. Если строение молекулы можно представить в виде нескольких валентных структур, то говорят, что связи делокализованы . В рамках теории МО, которая не рассматривает локализованных связей, образованных парой электронов, а следовательно, и валентных связей, такого рода недоразумения невозможны,, в чем можно убедиться ниже. [c.95]

    II энергию других форм взаимодействия между содержащимися в молекулах атомами или между связями. Однако пока полный учет всех форм такого взаимодействия затруднителен, приближенно можно ограничиться рассмотрением лишь валентных связей, условно распределяя между ними энергию других форм взаимодействия и выражая таким образом своего рода терм энергии связи. [c.258]

    Первые две стадии реакций контактного окисления, наряду с изложенными выше механизмами, могут протекать по механизму комплексообразования в тех случаях, когда катионы решетки сохраняют свою индивидуальность. Вервей [241 для обратных шпинелей , а затем Морин [25] — для окислов металлов с незапол- ненными З -уровнями электронов указали на такую возможность, объяснив возникновение в таких соединениях электропроводности присутствием в них ионов одного и того же металла в различных валентных состояниях и в эквивалентных позициях кристаллической решетки. Можно предполагать, что подобного рода механизм электропроводности возможен не только для окислов (в том числе и тройных систем окислов [26]), но и для многих полупроводниковых соединений переходных металлов. Базируясь на этих представлениях, Дауден [27 ] рассматривает хемосорбцию на поверхности и явления замещения одного сорбента другим как реакции образования и превращения комплексов по механизму и 8)у2-замещения. Киселев, [28] также рассматривает адсорбцию как процесс поверхностного комплексообразования, когда при возникновении донорно-акцеп-торных связей неподеленная пара электронов лиганда оказывается затянутой на внутренние орбитали атома решетки, являющегос центром адсорбции. При таком механизме адсорбированные молекулы всегда будут в той или иной мере реакционноспособны. Действительно, затягивание неподеленной пары лиганда на внутренние орбитали центрального атома приведет к деформации адсорбированной молекулы и ослаблению внутримолекулярных связей. Отметим попутно, что трактовка Киселева справедливо распространяет электронные представления и на механизм кислотно-основного гетерогенного катализа. Развивая представления теории поля лигандов, Руней и Уэбб [29 ] показали, что механизм реакций дейтеро- бмена, гидрирования и дегидрирования углеводородов на переходных [c.27]

    Рассмотренное строение двойного слоя характерно для собственных полупроводников, в которых нет ни объемных примесей (добавок), ни так называемых поверхностных состояний, обусловленных чаще всего адсорбцией чужеродных атомов. Часто полупроводник в качестве примеси содержит атомы такого вещества, благодаря которому резко увеличивается число свободных электронов п. Такие добавки называются донорами электронов. Для германия такой добавкой служит мышьяк. Поскольку произведение пр в присутствии доноров электронов остается постоянным [уравнение (28.3)1, то увеличение п приводит к соответствующему уменьшению числа дырок р--=К 1п. Поэтому проводимость таких примесных полупроводников п-типа осуществляется в основном за счет свободных электронов в зоне проводимости. Если же атомы примеси резко увеличивают число дырок в валентной зоне, то растет дырочная проводимость и соответственно уменьшается число свободных электронов п = Кз/р- Такого рода примеси называются акцепторами электронов, а полупроводники с дырочной проводимостью — полупроводниками /7-типа. Акцепторами электрона для германия служат атомы галлия. В присутствии примесей соотношение (28.2) в объеме полупроводника уже не остается справедливым. Вместо него следует записать [c.141]


    Прочность связи уходящей группы X с атомом углерода субстрата зависит не только от природы галогена, но также и от того, и каком валентном состоянии находится этог атом угле-рода, [c.116]

    Эффекты, вызываемые высоким давлением при действии его на вещества, весьма разнообразны. В настоящее время даже в большой монографии невозможно осветить все многообразие явлений, которое наблюдалось в опытах, где применялось высокое давление. В данном параграфе будут рассмотрены некоторые системы под давлением, которые выбраны так, чтобы эффекты, которые имеют место, были бы различны но своей природе. Так, например, будут изложены результаты опытов, где происходят простые фазовые превращения первого рода с изменением структуры кристаллов, превращения с переходом электронов с одной орбитали на другую, специфические процессы полимеризации, превращения неметаллов в металлы, своеобразные химические реакции, изменения валентности и т. д. [c.149]

    Фосфор имеет 5 валентных электронов, т. е. на один больше, чем германий, и после образования связи с четырьмя соседними атомами Ge остается один лишний валентный электрон. Этот электрон становится свободным. При наложении электрического поля возникнет л-проводимость, так как в процессе ионизации не образуется свободных дырок, а положительно заряженные ионы фосфора прочно связаны в решетке германия. Такого рода примеси делают вещество л-полу-проводником. [c.95]

    Следует отметить, что в образующейся на поверхности твердого вещества группировке ( = 81—О—)т ЭГ ш, составляющей с ним единое целое, сочетаются две структуры — структура поверхности двуокиси кремния н структура оксида (хлороксида) другого элемента. Иными словами, для образования устойчивых группировок такого рода необходимы изменения в расположении атомов как иа поверхности подложки, так и в присоединяемой группировке (эффект согласования структур). Это проявляется в изменении величии валентных углов II межатомных расстояний в группировке ( = 81—О—)тЭГ т. Так, ири образовании ( = 81— [c.21]

    Мюнцберг объясняет такое поведение перекиси водорода тем, что вещества с высокой диэлектрической постоянной и дипольным характером притягиваются отрицательным и положительным концом диполя к противоположно заряженным ионам решетки. При этом силы решетки выпрямляют диполь-ный момент. Дипольная молекула можег, таким образом, внедряться между ионами решетки. На дипольиых молекулах, благодаря этому, появляются особого рода валентные силы, обусловливающие образование комплексов внутри решетки. Так как перекись водорода обладает особенно высокой диэлектрической постоянной, то она особенно склонна образовывать продукты молекулярного присоединения. [c.381]

    Повышенная энергия Движения электронов может достигаться при поглощении видимого света (или других электромагнитных колебаний) и переходе электронов на волее высокий энергетический уровень (как, например, при активации хлора в реакции Н2- -С12 = 2НС1). Энергия электронов в атомах может повышаться при разрыве валентной связи, например при диссоциации молекулы водорода на атомы или при образовании других атомов с ненасыщенной валентностью или свободных радикалов. Такая активация может осуществляться и при химических взаимодействиях (как, например, в реакции Ыа + С12 = НаС1 + С1) и при ударах молекул о стенку сосуда и пр. Наконец, молекулы могут активироваться действием электрического разряда, ультразвуковыми колебаниями, действием излучений различного рода и другими путями. [c.479]

    Сходной с гипотезой Тиле по своей основной предпосылке была теория сродствоемкости, о которой мы упомянули выше. Ее целью было подвести фундамент под материал, накопленный химиками при феноменологическом изучении взаимного влияния атомов и притом не только в ненасыщенных, нон в насыщенных соединениях, в основе теории сродствоелпдасти лежала с современно точки зрения очень здоровая идея, хотя опять-таки ни в коей мере не основанная на каких-либо определенных данных о пр1 роде валентности. Эта идея была выражена еще в 1881 г. с большой определенностью Клаусом. Он отверг довольно популярный взгляд, согласно которому химическая энергия атома углерода изначально состоит из четырех раздельно действую цих, одинаковых по величине [c.22]

    Уильям Джексон Поуп (1870—1939) продемонстрировал, что трехмерную модель можно распространить также на атомы серы, селена и олова, а несколько позднее швейцарский химик Альфред Вернер (1866—1919) добавил к этому списку кобальт, хром, родий и ряд других металлов. (Начиная с 1891 г. Вернер занимался разработкой координационной теории, которая позволила бы объяснить свойства некоторых необычных неорганических соединений . Согласно этой теории, кроме главных валентных сил имеются еще и силы побочной валентности. Первоначально считалось, что они резко отличаются от основных валентных сил, но впоследствии выяснилось, что существенного различия между ними не существует. [c.89]

    Однако представления теории резонанса применимы не только в органической химии. Основываясь на старых представлениях, нельзя, в частности, четко объяснить строение молекул бороводо-родов. У атома бора слишком мало валентных электронов, чтобы образовалось требуемое число связей. Если же принять, что электроны соответствующим образом размазаны , то можно предложить приемлемую структуру молекул. [c.163]

    Потенциалы простых редокси-электродов можно легко связать с потенциалами соответствующих электродов первого рода. Пусть, например, металл М способен существовать в растворе в виде ионов высшей валентности М и низшей валентности М". Для него возможны два электрода первого рода М 1М и M M и одни ре-доксн-электрод М , М М, стандартные потенциалы которых со-ветственпо равны [c.170]

    Если исходить из предположения, что адсорбция ионов на ртути определяется исключительно электростатическими силами, то все анионы должны изменять ход лишь восходящей ветви электрокапиллярной кривой, где поверхность ртути заряжена положительно. Напротив, влияние катионов должно локализоваться только иа кисходя1цей ветви, где они электростатически притягиваются к отрицательно заряженной поверхности ртути. В действительности, как это было найдено еще Гуи, многие анионы изменяют ход элек-трокапиллярпой кривой справа от точки максимума, а некоторые катионы влияют не только на нисходящую, но и на восходящую ветвь кривой. Такое поведение ионов нельзя объяснить действием только кулоновских сил. Оно связано с силами взаимодействия, отличными от простых электростатических сил. Такими силами, специфическими для данного рода частиц, могут быть, например, силы Ваи-дер-Ваальса или химические (валентные). Благодаря этим силам ионы в состоянии удерживаться на одноименно заряженной поверхности ртути и влиять на электрокапиллярные свойства границы металл — раствор. Точно так же нельзя на основе одних только электростатических представлений объяснить влияние неиоинзированных органических веществ на ход электрокапиллярных кривых. Дело в том, что большинство органических веигеств обладает меньшей диэлектрической постоянной, чем вода, и поэтому должны были бы изгоняться ею из двойного слоя уже при не- [c.239]

    Ионы металлов переменной валентности как восстанавливающие и окисляющие агенты. Три )ассмотреиных варианта не исчерпывают всех во Можных иутсЙ нротекания окислительно-восстановительных реакций. В роди восстановительных (или окислительных) агентов могут выступать также находящиеся в растворе коны металлов. В этом с.лучае электродный процесс сводится к окислению (или восстановлению) ионов металлов переменной валентности, которые затем восстанавливают (или окисляют) органическое соединение. В качестве при у1сра можно указать на электроокисление суспензии антрацена. При проведении электролиза такой суспензии иочти весь ток на аноде расходуется на выделение кислорода. Если, однако, добавить к ней немного солен церия, хрома или марганца, то на аноде наряду с кислородом появится также антрахинон. Реакция идет, по-видимому, следующим образом ионы металла, наиример церия, окисляются на аноде [c.443]

    Все три рассмотренных типа связи — ковалентная, ионная и донорно-акцепторная — являются двухэлектронными, в них атомы связаны при помощи пары электронов. Помимо химических соединений, в которых атомы связаны двухэлектронными связями, известны вполне устойчивые соединения, у которых на одну связь приходится меньше, чем по два электрона — так называемые соединения с дефицитными структурами. Примером такого рода соединений являются бороводороды. Так, н молекуле В2Н0 шесть валентных электронов двух атомов В и шесть валентных электронов шести атомов Н обеспечивают соединение 8 атомов, т. е. образование по крайней мере 7 связей. [c.13]

    Таким образом, сочетание модифицированного принципа геометрического соответствия [62] с моделью циклического переходного состояния, в состав которого входят и субстрат и катализатор, по-видимому, наиболее логично может объяснить механизм реакции Сз-дегид-роциклизации углеводородов на поверхности Pt/ . Что же касается некоторой модификации принципа геометрического соответствия, то здесь необходимо сделать небольшое пояснение. В тех случаях, когда переходное состояние близко по геометрическим параметрам к исходным молекулам и деформации невелики, наше толкование геометрического соответствия сливается с его толкованием в мультиплетной теории. В случае же Сз-дегидроциклизации и гидрогенолиза пятичленного кольца положение иное в свободном циклопентане все пять С—С-связей равны, а в переходном состоянии одна из них сильно растянута и валентные углы искажены. Поэтому положения мультиплетной теории в их классическом толковании здесь неприменимы. В связи с этим предложена [63] новая (в определенном смысле, более строгая) формулировка должно иметься геометрическое соответствие между молекулами в переходном состоянии и поверхностью катализатора. Такого рода де-формационно-мультиплетные представления позволили охватить несколько больший круг явлений, че.м это делала мультиплетная теория, не теряя ничего пз достижений последней. В частности, эти соображения хорошо согласуются с конформационными представлениями, благодаря которым можно объяснить ряд тонких эффектов, проявляющихся в ходе Сб-дегидроциклизации. [c.210]

    Химические свойства водорода в значительной степени определяются способностью его атомов отдавать единственный имеющийся у них электрон и превращаться в положительно заряженные ионы. При этом проявляется особенность атома водорода, отличающая его от атомов всех других элементов отсутствие про ме 4<уточиых электронов между валентным электроном и ядром. Иои водорода, образующийся в результате потери атомом водо рода электрона, предбтавляет собой протон, размефы которого на несколько порядков меньше размера катионов в(зсх других эле ментов. Поэтому поляризующее действие протона очень велико, вследствие чего водород ие способен образовывать ионных соеди нений, в которых он выступал бы в качестве катиона. Его соединения даже с наиболее активными неметаллами, например, е фтором, представляют собой вещества с полярной ковалентной связью. [c.344]

    В случае сложных многоатомных молекул пе представляется возможным проведение подобного рода расчетов энергетических состояний. Все известные до сих пор спектры индивидуальных соединений получены опытным путем. Достаточно строгий теоретический расчет раепределения интенсивностей в масс-спектре удалось произвести только для молекулы Нг. Масс-спектры многоатомных молекул слишком сложны, чтобы их можно было рассчитать, исходя из простейших представлений, о выбивании из молекулы ионизирующим электроном валентного электрона с распадом образовавшегося иона по слабейшим связям. [c.17]

    Представляя энергию взаимодействия меиеду коллоидными частицами в виде суммы двух компонент — электростатической и вандерваальсовой (У и,), следует принимать во внимание форму и размер частиц. Подобного рода расчеты, например для сферических частиц, читатель найдет в книгах [2, 3]. Мы ограничимся только простым случаем взаимодействия двух одинаковых плоских частиц, между которыми имеется плоскопараллельный зазор с шириной много меньше линейных размеров частиц. Эта предельно упрощенная модель все же позволяет объяснить чрезвычайно сильно проявляющуюся зависимость критической концентрации коагулирующего иона от валентности. Для более тонких эффектов такая модель по меньшей мере не совсем точна. [c.210]

    Зонная теория кристаллов. В зависимости от строения атомов и пр1]роды кристаллических решеток валентная зона и зона проводимости люгут перекрываться или не перекрываться. В случае, когда зоны не перекрываются, между ними имеется энергетический разрыв, который называется запрещенной зоной. В зависимости от характера заполнершя зон вещества подразделяют на проводники, полупроводн1П<и н диэлектрики (рис. 5.25). Различие между металлами и полупроводниками определяется прежде всего энергетическим состоянием электронов проводимости. Оио может быть охарактеризовано шириной запрещенной зоны, т. е. тем количеством энергии, которое необходимо затратить, чтобы перевести электрон из валентной зоны в зону проводимости. У металлов сразу же за валентной зоной идет зона проводимости (зона свободных электрон- [c.138]

    Итак, мы познакомились с двумя приближенными решениями уравнения Шрёдингера для молекул. Ранее (разд. 6.2.1) было показано, как, исходя из одноэлектронной модели молекулярного иона водорода Нг+, можно построить в некотором роде периодическую систему двухатомных молекул. Для применяемого при этом метода молекулярных орбиталей (МО) характерно заполнение молекулярной (а не атомной) орбитали ф последовательно одним, а затем и двумя электронами. В методе валентных связей (ВС) Гейтлера — Лондона исходят из атомных орбиталей, занятых одним электроном, а далее переходят к двухэлектронной системе (Не или На) путем линейной комбинации занятых атомных орбиталей, в которой учитывается неразличимость электронов. [c.87]

    Электроды третьего рода (редокс-электроды) характеризуются тем, что все участники электродной реакции находятся в растворе. Применяемый в них инертный металл служит лишь резервуаром электронов и непосредственного участия в электродном процессе не принимает. Например, электродом третьего рода является электрод Fe +, Fe + Pt, состоящий из платиновой пластинки, находящейся в растворе, содержащем ионы железа различной валентности (например, раствор РеСЬ и Fe la). Платиновая пластинка приобретает определенный потенциал вследствие того, что ионы железа различной валентности превращаются друг в друга, отдавая ей излишние электроны или приобретая от нее недостающие. [c.240]

    В настоящее время явление химического транспорта успешно используется в целях глубокой очистки ряда веществ, как простых, так и сложных, а также для получения эпитаксиальных полупроводниковых пленок и монокристаллов. Реагентами, с помощью которых осуществляется перевод очищаемого вещества в транспортируемое соединение, помимо указанных выше оксида углерода (И) и иода служат хлор, бром, галогеноводо-роды, галогениды. Интересно отметить, что при использовании последних процесс переноса обычно протекает через стадию образования соответствующего субгалогенида, т. е. соединения с низшей валентностью. В результате перенос вещества в целом осуществляется за счет реакции диспропорционирования, как это, например, имеет место в случае очистки элементов III— IV групп периодической системы  [c.22]

    Как правило, под действием внешнесферного заместителя происходит несильное изменение в положении полос поглощения в ИК-спектре. Однако, если внешнесферный ион имеет тенденцию к Н-связеобразованию с аддендом, то такого рода взаимодействие неминуемо скажется на характере колебаний внутрисферной группы, что в свою очередь ведет к смещению полосы поглощения. Так, в ряду СЮ N0 , 1 , Вг , С1 слева направо увеличивается тенденция к образованию водородных связей. В соответствии с этим уменьшаются частоты валентных колебаний ЫН. [c.331]

    Положительный заряд принадлежит целому иону, и все четьь ре связи азота с водородом абсолютно равноценны. Однако, как это видно из электронной формулы иона аммония, три электронные пары (три связи) в этом ионе образованы за счет валентных электронов азота и водорода, четвертая электронная пара (четвертая связь) путем взаимодействия неподелен-ной электронной пары азота с вакантной орбпталью иона во/ю-рода. Такой способ образования химической связи называется донорно-акцепторным, а образовавшаяся связь — донорно-акцепгорной. В качестве донора выступает атом, имеющий не-поделенную пару электронов (донор электронной пары), акцептором является ион водорода, имеющий вакантную орбиталь (акцептор электронной пары). [c.79]

    Из сказанного можно сделать вывод, что для многих простых и сложных веществ в твердом агрегатном состоянии молекулярная форма существования не характерна. Такие вещества образуют различного рода немолекулярные структуры. Однако необходимо иметь в виду, что в немолекулярных структурах правила валентности и, следовательно, соотношения количеств взаимодействующих атомов, вытекающие из этих правил, соблюдаются так же, как и в молекулах. Поэтому часто формулы веществ с немолекулярной структурой записываются в виде молекул, например, ЗЮз, А Оз, ЫаС1, СаСЬ, N82804 и т. д. Но поскольку подобные молекулы не существуют, то в применении к ним лучше пользоваться термином формульная масса вместо молекулярная масса . Напри- [c.97]


Смотреть страницы где упоминается термин Родий валентность: [c.209]    [c.209]    [c.40]    [c.41]    [c.86]    [c.36]    [c.111]    [c.143]    [c.185]    [c.91]    [c.143]    [c.16]    [c.150]    [c.16]   
Учебник общей химии (1981) -- [ c.453 ]

Учебник общей химии 1963 (0) -- [ c.416 ]




ПОИСК





Смотрите так же термины и статьи:

Родий шести валентный

Родий, атомный и катионный радиусы валентные состояния



© 2024 chem21.info Реклама на сайте