Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Потенциометрические методы измерения pH Электродные потенциалы

    Кислоты и щелочи можно титровать потенциометрическим методом, измеряя электродный потенциал между водородом на поверхности водородного электрода и ионами водорода в окружающем растворе , но хорошего метода измерения этого потенциала нет. Можно, однако, определять разность потенциалов между этим водородным электродом и другим водородным электродом, погруженным в раствор, содержащий ионы водорода в известной концентрации или, что более удобно, сравнивать первый электрод с любым другим, имеющим постоянный потенциал, например с каломельным полуэлементом. При многих таких титрованиях нет необходимости измерять действительные значения потенциалов, а достаточно, чтобы применяемый прибор давал возможность отмечать указанные резкие изменения потенциала. [c.210]


    Потенциометрический метод анализа основан на измерении электродного потенциала и нахождении зависимости между его величиной н концентрацией, точнее, активностью потенциалопределяющего компонента в растворе. [c.102]

    Потенциометрический метод анализа основан на измерении электродного потенциала и изменении величины его от концентрации титруемого иона. Зависимость потенциала электрода от концентрации ионов выражается формулой Нернста  [c.399]

    Основой потенциометрического метода является зависимость потенциала электрода от активности ионов в растворе. Измерение производятся электродной парой, состоящей из измерительного и сравнительного электродов. Потенциал измерительного электрода меняется в зависимости от изменения содержания измеряемой величины Г5>и постоянстве потенциала сравнительного электрода. [c.431]

    Измерение электродных потенциалов лежит в основе потенциометрии. Потенциометрия применяется, например, для определения конечных точек титрования (потенциометрическое титрование). В зависимости от типа используемых при титровании реакций различают потенциометрическое титрование по методу осаждения, комплексообразования, нейтрализации и окислительно-восстановительное потенциометрическое титрование. В первых двух разновидностях потенциометрического титрования используют электроды, обратимые по отношению к ионам, которые входят в состав осадка или комплексного соединения. Потенциал таких электродов определяют относительно какого-либо электрода сравнения в ходе постепенного добавления титранта. Потенциометрическое титрование, например, очень удобно для определения анионов, образующих нерастворимые соли с ионом серебра. При этом часто в качестве индикаторного используют серебряный электрод. [c.276]

    Под потенциометрией понимается ряд методов анализа и определения физико-химических характеристик электролитов и химических реакций, основанных на измерении электродных потенциалов и электродвижущих сил гальванических элементов. Потенциометрические измерения являются наиболее надежными при изучении констант равновесия электродных реакций, термодинамических характеристик реакций, протекающих в растворах, определении растворимости солей, коэффициентов активности ионов, pH растворов. Особенно общирное применение нашли потенциометрические измерения именно при определении pH, которое является важнейшей характеристикой жидких систем. Для этого используют электрохимическую цепь, составленную из электрода сравнения и индикаторного электрода, потенциал которого зависит от концентрации (активности) ионов Н (так называемые электроды с водородной функцией). К таким электродам относятся, например, рассмотренные ранее водородный и стеклянный электроды. [c.264]


    Потенциометрические методы анализа подразделяют на прямую потенциометрию (ионометрию) и потенциометрическое титрование. Методы прямой потенциометрии основаны на прямом применении уравнения Нернста (9.1) для нахождения активности или концентрации участника электродной реакции по экспериментально измеренной ЭДС цепи или потенциалу соответствующего электрода. При потенциометрическом титровании точку эквивалентности определяют по резкому изменению (скачку) потенциала вблизи точки эквивалентности. [c.189]

    Определение pH потенциометрическим методом. Потенциометрический метод определения концентрации водородных ионов в растворе основан на измерении величины электродного потенциала. [c.48]

    В качестве измерителя свободного хлора (сигнализатора отклонения от его заданной концентрации по величине э. д. с.) использован прибор типа СЦ-1М1. Однако его датчик был снабжен электродной парой вольфрам-платина. В качестве платинового использован платинированный электрод типа ЭТПЛ. Электрод из вольфрама изготовлен в лаборатории автоматизации ВНИИ Водгео. Он представляет собой вольфрамовый стержень, вделанный в корпус бывшего в употреблении мембранного электрода 3M- N-02. Возможность измерения концентрации активного хлора потенциометрическим методом при помощи электродной системы вольфрам-платина обоснована п. 4 данной главы. Характеристика электродной пары вольфрам — ЭТПЛ (зависимость потенциала от концентрации ОСЬ) в диапазоне малых концентраций активного хлора близка к линейной. [c.105]

    Потенциометрические измерения проводится очень быстро время установления равновесного потенциала мало, что удобно для изучения кинетики реакций и контроля технологических процессов. Используя модификации метода, удается проводить анализ в пробах объемом до десятых долей миллилитра. Это имеет особое значение в биологии и медицине, где некоторые определения приходится проводить с чрезвычайно малыми объемами пробы. Метод обеспечивает прямое наблюдение за изменением концентраций в реакторах технологических процессов без отбора проб анализируемой смеси. Автоматизированные аналитические определения, основанные на измерении электродных потенциалов, чрезвычайно просты в исполнении. Наконец, приборы для потенциометрических измерений просты по конструкции и дешевы при геологических изысканиях, при контроле загрязнений воды, в океанографии и т. д. можно использовать приборы с батарейным питанием. [c.44]

    Потенциометрия —важный метод исследования и анализа, в основе которого лежат термодинамические соотношения между э. д. с. электрохимических систем или электродными потенциалами, с одной стороны, и физико-химическими параметрами растворов и химических реакций—с другой. Для измерения э. д. с. гальванических элементов в равновесном состоянии наиболее удобен компенсационный метод. Для определения потенциалов отдельных электродов электрохимическая цепь составляется из исследуемого электрода и электрода сравнения с известным значением потенциала (см. 176). Рассмотрим отдельные области применения потенциометрических определений.  [c.494]

    Серьезным недостатком метода градуировочного графика является погрешность, обусловленная предположением, что Е" после градуировки электрода остается постоянной. Это предположение редко бывает правильным, поскольку состав анализируемого раствора почти всегда отличается от состава растворов, применяемых для градуировки. Вследствие этого диффузионный потенциал, входящий в °, будет слегка изменяться, если даже применяется солевой мостик. Обычно эта погрешность составляет величину порядка 1 мВ, что приводит к ошибке 4% при прямом потенциометрическом определении концентрации однозарядного иона, + 8% при определении двухзарядных ионов и 12% при определении трехзарядных ионов. Такой точности во многих случаях оказывается достаточно для практических целей. В погрешность прямых потенциометрических измерений существенный вклад вносят также флуктуация значений S во времени и зависимость крутизны наклона электродной функции от концентрации и температуры анализируемого раствора. Говорят, что отклик электрода нернстовский, если наклон зависимости Е - Ig отличается от теоретической величины не более чем на 1-2 мВ. Ниже этой величины зависимость называется суб-нернстовской, выше - гипер-нернстовской. [c.225]

    Потенциометрическое титрование объединяет способы определения конечной точки титрования (КТТ), основанные на зависимости потенциала индикаторного электрода от объема добавленного титранта. Примеры кривых такой зависимости представлены на рис. 7.1. По сравнению с прямыми измерениями полученные при потенциометрическом титровании данные более точно и правильно характеризуют концентрацию определяемого вещества, поскольку не зависят от его активности. Кроме того, в методах потенциометрического титрования к электродам предъявляются менее жесткие требования в отношении стабильности потенциала и крутизны наклона электродной функции. Электроды, непригодные для прямых потенциометрических измерений, могут отвечать требованиям потенциометрического титрования. Наконец, методы потенциометрического титрования позволяют находить концентрацию анализируемого компонента даже в присутствии мешающих ионов, если титрант селективно взаимодействует с определяемым веществом. [c.230]


    Потенциометрия основана на измерении потенциала электрода, погруженного в анализируемый раствор. Значение потенциала зависит от состава раствора. Стандартные электродные потенциалы для ряда металлов приведены в табл. 10.16. Метод применяют для определения концентрации ионов водорода, натрия, аммония, хлора, калия. Потенциометрическое титрование — вариант объемного анализа, при котором измерение потенциала используют для определения конца титрования (точки эквивалентности) при анализе методами нейтрализации, [c.216]

    Потенциометрия как электрохимический метод исследования и анализа заключается в измерении электродного потенциала и нахождении зависимости между его величиной и концентрацией (точнее, активностью) потенциалопределяюшего компонента в растворе. Используя эту зависимость, можно установить не только активность ионов, но и ряд характеристик изучаемых равновесных химических, биологических и других систем. С другой стороны, проследив во время химической реакции за изменением электродного потенциала, можно судить об изменении концентрации реагирующих веществ в растворе. Таким приемом, например, пользуются в производстве при непрерывном технологическом контроле химических процессов и при количественном определении веществ. В последнем случае имеется в виду широко используемый в аналитической химии метод потенциометрической индикации конечной точки титрования (к.т.т.). [c.19]

    Прямая потенциометрия. Метод прямой потенциометрии основан на точном измерении величины электродного потенциала ( равн) нахождении по уравнению Нернста активности потен-циалопределяющего иона в растворе. Предметом изучения в прямой потенциометрии могут быть лишь обратимые редокс системы. Этот потенциометрический метод является единственным методом непосредственного определения активности ионов в растворе. К прямой потенциометрии относятся  [c.26]

    Вместо индикаторов можно пользоваться данными, полученными путем контроля (измерения) подходящей физической величины, которая в пределах скачка претерпевает значительные изменения. Такой величиной может служить электродный потенциал, если он определяется редоксипарой титруемого вещества или реагента. Такой вид титрования называют потенциометрическим титрованием. Если нахождение скачка осуществляют путем измерения предельного диффузионного тока, говорят об амперометрическом титровании. Когда для этой цели используют светопоглощение титруемого раствора, метод называют фотометрическим титрованием. В случае радиометрического титрования измеряют радиоактивное излучение. [c.164]

    Потенциометрический анализ — метод определения концентрации ионов, основанный на измерении электрохимического потенциала индикаторного электрода, погруженного в исследуемый раствор. П-отенциомет-рический метод был разработан еще в конце прошлого столетия, после того как Нернст вывел уравнение, связывающее электродный потенциал с активностью (концентрацией) компонентов обратимой окислительно-восстановительной системы. В разбавленных растворах коэффициенты активности ионов близки к единице, а активность близка к концентрации, поэтому можно пользоваться уравнениями Нернста в концентрационной форме, а именно  [c.454]

    Выгюлпение гютенциометрическнх определений можно, значительно упростить. Описанные до спх пор анализы выполняют компенсационным методом потенциометрического титрования. При анализе абсолютное значение электродного потенциала не имеет роли, важно изменение потенцпала в точке эквивалентности — скачок потенциала. Это скачок потенциала во многих случаях можно обнаружить при помощи более простой схемы измерения, называемой некомпенсациониой. [c.388]

    Потенциометрический метод определения pH. Активную концентрацию ионов водорода и pH точно определяют потенциометрически. В основу метода положено измерение электродвижущей силы (а. д. с.) концентрационной цепи, состоящей из двух электродов. Потенциал Е любого электрода можно вычислить по формуле Нерн-ста, зная нормальный электродный потенциал о, валентность п (число электронов, теряемых атомом металла при переходе в ион) и концентрацию а ионов в растворе [c.54]

    Наиболее просто механизм электродной реакции можно интерпретировать лишь в случае, когда одно исходное вещество превращается в одни продукт со 100%-ным выходом по току. Проверка реакции на соответствие закону Фарадея нли проведение кулонометрнческпх измерений позволяет одновременно определить число электронов z, участвующих в суммарной электродной реакции. Знание состава исходного вещества и продукта реакцни, а также общего числа переносимых электронов дает возможность записать уравнение суммарной электродной реакцни. Если состав исходного вещества и продукта реакции установлен ие потенциометрическим методом, то уравненне суммарной электродной реакции может быть экспериментально проверено из измерений зависимости равновесного потенцнала от активностей исходного вещества и продукта реакции. При потенциометрических определениях состава исходных и конечных продуктов необходима полная проверка уравнения для равновесного потенциала, т. е. его зависимость от всех компонентов, присутствующих в растворе, в том числе от фонового электролита. [c.398]

    Распространено мнение, что при использовании потенциалов для изучения равновесия химических реакций, особенно реакций комплексообразования, полярография заметно уступает потенциометрии. С этим мнением согласиться нельзя, так как каждый из этих методов имеет и преимущества, и недостатки. Действительно, точность измерения потенциалов в потенциометрическом методе выше, однако это преимущество не так велико, учитывая, что во многих случаях трудно полностью устранить искажающее влияние диффузионного скачка потенциала. Более существенно другое преимущество потенциометрического метода, свободного, как было показано недавно Бондом и Хефтером [1], в отличие от полярографии, от погрешностей, связанных со значительной адсорбцией реагирующих компонентов. Подробнее этот вопрос рассмотрен в гл. 2. В то же время, по сравнению с полярографией, потенциометрия имеет ряд недостатков. Во-первых, надежное потенциометрическое изучение равновеспя химических реакций возможно только при обратимом электродном процессе, в то время как в полярографии с этой целью успешно используются и необратимые процессы. Во-вторых, обратимость электродного процесса в потенциометрии, [c.14]

    Прямую потенциометрию широко используют для определения малых и ультрамалых концентраций. Большое число работ посвяшено методу градуировочной кривой, когда концентрацию определяемого иона в анализируемом растворе находят по градуировочному графику, построенному по серии эталонных растворов, по составу, возможно, меньше отличающихся от анализируемого раствора. Дрейф потенциала электрода нельзя не учитывать при использовании этого метода измерения, поэтому через каждые 10 определений необходимо строить новый градуировочный график [66]. Теоретическая оценка воспроизводимости потенциометрических измерений при калибровании электрода лишь по двум стандартным растворам показала, что ошибка измерений в этом случае за счет погрешности определения крутизны электродной функции меньше погрешности, вносимой измерительным прибором. При п 5 и п=0,95 относительное стандартное отклонение составляет 4—6 %. [c.179]

    В качестве примера приведем титрование мышьяка (III) броматом1 В солянокислом растворе, содержащем избыток бромида, конечную точку можно определить потенциометрпчески, пользуясь парой бром — бромид-иои как системой, определяющей потенциал. То же титрование можно осуществить и амперометрическим методом — путем измерения диффузионного тока, возникающего при избытке брома после конечной точки. При начальной концентрации арсенита 10 и. потенциометрическое титрование осуществить почти невозможно, так как в каждой точке титрования необходимо выжидать несколько минут, пока не установится электродное равновесие. Амперометрическое титрование, наоборот, дает возможность легко обнаружить конечную точку даже при концентрации арсенита 10 н., при этом вся операция титрования занимает лишь несколько минут. [c.364]

    Непосредственно измеренный сульфид-селективным электродом потенциал 0,1 М растворов 2-тиоурацила, 6-метил-2-тиоурацила и 2,4-дитиоурацила в 0,1 н. гидроксиде натрия составил -120, -80 и -470 мВ относительно нас. к. э. [338]. Это показывает, что в указанной среде данные соединения имеют вполне определенную электродную функцию относительно сульфид-иона. Однако при потенциометрическом титровании перечисленных соединений в 0,1 н. гидроксиде натрия нитратом серебра скачок потенциала смазывается из-за соосаждения оксида серебра, которое начинается раньше, чем достигается теоретическая точка эквивалентности. Для того чтобы избежать соосаждения оксида серебра, необходимо вести титрование в ацетатном буферном растворе при pH 5,6. В этих условиях на кривых потенциометрического титрования наблюдается один скачок для 2-тиоурацила и б-метил-2-тиоурацила при стехиометрическом соотношении реагирующих веществ 1 1. Результаты исследований, проведенных потенциометрическим титрованием и методом ИК-спектроскопии, позволяют принять следующий механизм реакции  [c.109]

    Потенциометрическое титрование основано на определении точки эквивалентности по результатам потенциометрических измерений. Вблизи точки эквивалентности происходит резкое изменение (скачок) потенциала индикаторного электрода. Это наблюдается, конечно, лишь тогда, когда хотя бы один из участников реакции титрования является участником электродного процесса. Так, например, титрование по методу кислотно-основного взаимодействия может быть выполнено со стеклянным электродом, определение хлорида — с хлорсеребряный и т. д. Так же, как и в других титриметрических методах, реакции потенциометрического титрования должны протекать строго стехиометрически, иметь высокую скорость и идти до конца. [c.206]

    Эти методы применяют, как правило, при определении макроколичеств измеряемого иона, поскольку в этом случае особенно важна прецизионность анализа. Точность определения в титри-метрических методах определяется тем, что в конечной точке титрования (КТТ) изменение потенциала электрода значительно превосходит градиент электродной функции, и поэтому погрешности определения величин Ед, Е и 5, от которых зависят погрешности прямых потенциометрических измерений, вносят меньший вклад в погрешность анализа с помощью титриметри-ческих методов. [c.8]


Смотреть страницы где упоминается термин Потенциометрические методы измерения pH Электродные потенциалы: [c.253]   
Смотреть главы в:

Методы определения концентрации водородных ионов Издание 2 -> Потенциометрические методы измерения pH Электродные потенциалы




ПОИСК





Смотрите так же термины и статьи:

Метод потенциале

Потенциал измерения

Потенциал электродный потенциал

Потенциометрические измерения

Потенциометрический метод

Электродный потенциал

потенциометрическое



© 2025 chem21.info Реклама на сайте