Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стереорегулярность и кристалличность

    Механизм процесса и структура получаемого продукта. В химич. термодинамике постулируется, что путь реакции (т. е. механизм) не влияет на термодинамику процесса. Это справедливо, если несколькими способами можно одни и те же начальные вещества превратить в одни и те же конечные. В случае синтеза высокомолекулярных полимеров это условие трудно выполнимо. Полимеры при одинаковой химич. структуре практически всегда будут отличаться средними мол. массами, молекулярно-массовым распределением (ММР), стереорегулярностью, кристалличностью, природой концевых групп и др. Напр., при П. ацетальдегида и высших альдегидов возможно образование (в зависимости от применяемых катализаторов и темп-ры реакции) изотактических или аморфных атактич. полимеров. В случае образования изотактич. продукта Т р на 8 °С меньше. [c.307]


    Все сказанное выше справедливо и для высокомолекулярных соединений. Правда, двумя различными способами из одного и того же мономера полностью идентичные полимерные продукты практически никогда не получаются. Это обусловлено тем, что полимеры даже при одинаковом химическом строений могут различаться средними молекулярными массами, распределением по молекулярным массам, стереорегулярностью, кристалличностью, природой концевых групп, надмолекулярной организацией и т. д. [c.92]

    Исследование процесса плавления полимеров с помощью ДТА дает возможность изучить некоторые их свойства (температуру и температурный интервал плавления, теплоту плавления и др.) и особенности структуры (степень кристалличности, состав статистических и блок-сополимеров, стереорегулярность [c.105]

    В стереорегулярных полимерах, благодаря упорядоченному расположению боковых групп, достигается очень близкое расположение как главных цепей, так и боковых групп. Все это способствует проявлению действия межмолекулярных сил. В результате этого стереорегулярные полимеры характеризуются высокой степенью кристалличности, обладают более высокими молекулярными массами, меньшей растворимостью, повышенными механическими свойствами, олее высокой температурой плавления (размягчения), чем это имеет место у атактических полимеров. Последние — обычно аморфные массы, легче растворяются", обладают низкой механической прочностью, теплостойкостью. Понятно, почему в промышленности главное внимание обращается на получение именно стереорегулярных полимеров (стереоспецифическая полимеризация). [c.250]

    В последнее время найдены методы получения стереорегулярных полимеров. В молекулах таких полимеров замещающие группы всех звеньев расположены в одной плоскости и по одну сторону основной цепи макромолекул. Благодаря такому расположению замещающих групп нет препятствий к сближению макромолекул относительно друг друга и возникновению, упорядоченных участков. Стереорегулярные полимеры характеризуются наиболее высокой степенью кристалличности. Синтезы стереорегулярных полимеров осуществляют преимущественно на катализаторах, возбуждающих анионную полимеризацию и не растворимых в мономере [59, 60], Стереорегулярные полимеры можно получить и катионной полимеризацией, но при низких температурах (—40 , —60°). [c.764]

    Сонолимеризацией полипропилена и полиэтилена на катализаторах стереорегулярной полимеризации также можно регулировать степень кристалличности материала, а следовательно, и степень эластичности пленок [63—65]. В табл. XII. 8 приведена зависимость степени кристалличности сополимера от количества ме-тильных боковых групп на каждые 1000 атомов углерода в цепи макромолекул. [c.787]


    При полимеризации других оле-финов повышение регулярности строения также ведет к увеличению кристалличности полимеров, которые благодаря этому отличаются повышенной температурой плавления и большей механической прочностью. Кристаллические компоненты продукта сопровождаются высокомолекулярными аморфными полимерами и эластомерами. Стереорегулярность строения сообщает продуктам новые и необычные свойства, которые, несомненно, расширят области применения высокополимеров. [c.290]

    Регулярное строение цепи облегчает кристаллизацию полимера. Поэтому количеств, данные о кристалличности в нек-рых случаях м.б. использованы для оценки стереорегулярности полимера. Однако кристалличность зависит [c.430]

    Кристалличность полиамидов, как и других полимеров, повышается, если молекулы характеризуются высокой степенью пространственной регулярности в расположении функциональных групп (стереорегулярность), небольшим объемом таких групп и возможностью возникновения межмолекулярных взаимодействий, способствующих плотной упаковке макромолекул. [c.77]

    Детальное исследование микроструктуры полимерных цепей с помощью аппаратуры высокого разрешения. Метод ЯМР позволяет определить порядок присоединения мономерных единиц в цепи, характер и степень стереорегулярности полимера. Для изучения упаковки макромолекул сравнивают теоретические и экспериментальные значения второго момента спектральной линии. По соотношению узкой и широкой компонент линии поглощения можно определить динамическую степень кристалличности полимеров. Величина второго момента в ориентированных полимерах дает возможность судить об ориентации молекулярных цепей. Особо следует отметить, что ЯМР позволяет определить положение водородных атомов [5]. [c.264]

    Для оценки степени кристалличности полиоксипропилена кроме рентгеновских методов используют измерения плотности (плотности кристаллического и аморфного полимеров равны 1,157 и 1,002 г/см Соответственно) [83]. Стереорегулярность полимеров оценивают также по температуре плавления [83, 114], исходя из уравнения [c.257]

    Ионную полимеризацию можно проводить при очень низких температурах. Это предотвращает протекание побочных процессов, поэтому данным методом получают полимеры бо .ее регулярной структуры. При соответствующем подборе катализатора ионной полимеризации возможна строгая взаимная ориентация в пространстве боковых групп в молекулах мономера в момент их присоединения к макроиону. Это позволяет придать строению макромолекул высокую регулярность и получить стереорегулярные полимеры. Чем регулярнее строение макромолекул, тем выше степень кристалличности полимера. [c.401]

    Высокая цепь кристалличности препятствует растворению. Так. например, стереорегулярный поливиниловый спирт совершенно не растворим в воде, тогда как обычный поливиниловый спирт растворяется легко. [c.16]

    Катализаторами, в наибольшей степени напоминающими обычные гетерогенные катализаторы, являются нанесенные металлические или окисные катализаторы. Они легко дают полимеры большого молекулярного веса, но некоторые из этих полимеров содержат незначительную часть стереорегулярных молекул. Например, окислы переходных металлов, и в особенности хрома, нанесенного на уголь, силикагель, окись алюминия или двуокись тория, дают полиэтилен с высокой степенью кристалличности, в то время как из других олефинов или диенов получаются продукты с очень [c.433]

    Экспериментальные исследования указывают, что неполностью стереорегулярные полимеры действительно ведут себя, в этом смысле, как сополимеры. Хотя количественное сопоставление провести трудно, качественные подтверждения этого вывода имеются. Так, используя метод анионной полимеризации и изменяя условия реакции, в частности тип катализаторов, Натта [39] приготовил из пропилена ряд кристаллических образцов, температура плавления которых изменялась в пределах от 176° С (предполагается, что эта температура характеризует полностью изотактический полимер) до 106° С достижимая степень кристалличности убывала, соответственно от 85 до 20%. Эти результаты подтверждают сополимерный характер кристаллизации таких полиме.ров и тот факт, что кристаллизующиеся звенья образуют беспорядочно распределенные по цепи последовательности. [c.109]

    Возможность более простой регистрации, когда не полностью стереорегулярный полимер получается в кристаллической форме непосредственно в ходе его приготовления, определяется конкретными условиями полимеризации. Еще задолго до детальных исследований процессов полимеризации, приводящих к образованию стереорегулярных полимеров, было известно, что -некоторые полимеры (например, поливинилхлорид, полиакрилонитрил, политрифторхлорэтилен и поливиниловый спирт) получаются обычно сразу в кристаллической форме, несмотря на больщую вероятность стереохимических нерегулярностей. Нередко в подобных случаях рентгеноструктурный анализ не подтверждает с полной определенностью наличие развитой кристалличности. Однако особенно для поливинилхлорида [46, 47] и полиакрилонитрила [48], анализ свойств этих полимеров в растворе и механических свойств дал явные подтверждения их кристалличности. Последующее получение указанных полимеров новыми методами, обеспечивающими повыщенную регулярность цепей, также подтвердило эти наблюдения [36, 49]. [c.111]


    Степень кристалличности полимеров, влияющая на многие их реакции, определяется стереорегулярностью, т. е. возможные надмолекулярные эффекты связаны и с конфигурационными. Таким образом, специфические эффекты, присущие реакциям макромолекул, проявляются в совокупности, как правило даже чаще, чем в чистом виде. Поэтому для того, чтобы создать фундаментальную теорию макромолекулярных реакций, необходимо уметь количественно описывать каждый из этих эффектов. Наиболее целесообразно начать такое количественное рассмотрение с эффекта соседа , теоретическому и экспериментальному исследованию которого и посвящены следующие главы. [c.51]

    Как уже было сказано выше, полимеризация 4МП1 с образованием полимера с большей или меньшей степенью стереорегулярности (кристалличности) осуществлена более 20 лет назад на катализаторах Циглера-Натта. В последние годы исследование полимеризации 4МП1 было направлено на изучение как закономерностей реакции, так и свойств полимера, сочетание которых открывало интересные пути применения нового ПО. [c.63]

    На основе непредельных силанов были получены методом анионной полимеризации высокомолекулярные стереорегулярпые полимеры с высокой степенью кристалличности. Реакция протекает в присутствии 1 С и триэтилалюминия при 60—70°. Полученный в зтнх условиях стереорегулярный полимер моно-аллилсилана [c.489]

    Регулярность структуры. Кристаллизоваться могут только такие полимеры, молекулы которых построены регулярно. Б гомополимерах может возникнуть нерегулярность за счет разного пространственного расположения заместителей. Поэтому к кристаллизации способны только стереорегулярные полимеры. Чем больше нарушений регулярности в полимере, тем меньше содержание его кристаллической части. В таких промышленных полимерах, как полистирол или полиметилметакрилат, заместители расположены нерегулярно, эти полимеры аморфны и не содержат кристаллической части. Поливинилхлорид содержит сильно полярные атомы хлора, которые взаимно отталкиваются и поэтому значительная часть макромолекул поливинилхлорида построена относительно регулярно даже при получении полимера методом эмульсионноГ полимеризации. Поэтому поливинилхлорид частично кристаллизуется. В полиэтилене нет заместителей, поэтому полиэтилен мог Оы быть идеально кристаллическим. Однако в условиях синтеза в макромолекулах его возникают разветвления, которые нарушают регулярность, и это приводит к снижению степени кpи тaJrличнo ти в тем большей степени, чем больше разветвлений. Так, полиэтилен, полученный путем разложения диазометапа (так называемый полиметилен), является полностью линейным. Степень кристалличности достигает в нем 95%. Полиэтилен высокой плотности, полученный на катализаторах Циглера — Натта, разветвлен в большей степе- [c.182]

    Структура полимерных молекул во многих случаях оказывает такое же влияние на растворимость и точку плавления, как и в случае органически к соединений. Так, кристалличность, высокая симметрия, водородные связи, высокая полярность, жес1 кость цепи и стереорегулярность в цепи обусловливают более высокую точку плавления и ху хшую растворимость. Для быстрого качественного определения растворимости можно рекомендовать следующую методику. [c.71]

    Новые твердые пли копирующие-катализаторы приводят к образованию-так называемых стереорегулярных полимеров, характеризующихся высокой степенью упорядоченности их молекулярного строения. Применение этих катализаторов позволяет получать полиэтилен практически правильного линейного строения. Вследствие линей-Рис. 1. Изотактическая (а) и синдиотак- ности парафиновой цепи такой политическая (6) структуры с плоскими цс- этилен отличается большей степенью пями [68]. кристалличности, повышенной плот- [c.284]

    Разновидностью С. первого типа являются системы, в к-рых устойчивые контакты между макромолекулами обеспечиваются локальной кристаллизацией группы цепей. Отрезки макромолекул между кристаллич. узламй способны к таким же конформац. превращениям под действием внеш. мех. нагрузок, как и химически сшитые полимеры, но верх, предел области обратимой деформации ограничивается т-рой плавления кристаллич. узлов. Выше этой т-ры С. превращ. в обычный р-р полимера. Примером С. этого типа могут служить р-ры поливинилхлорида с невысокой степенью кристалличности, обусловленной низкой синдиотактичностью макромолекул (см. Стереорегулярные полимеры). Локальная кристаллизация в этом случае ответственна за обратимую деформацию высокопластифицир. изделий из поливинилхлорида. Аналогичные С. часто образуются из р-ров сополимеров, у к-рых в результате неоднородного распределения сомономеров в цепи возникает возможность 887 [c.448]

    Благодаря развитию современных приборов с лазерными источниками возбуждения получение спектров КР превращается в стандартную процедуру. Путем сравнения спектров комбинационного рассеяния света, поляризованного параллельно и перпендикулярно к оси ориентированных макромолекул полимеров, удается вьщелить линии, чувствительные к изменению ориентации различных фрагментов макромолекул [36]. Метод КР с Фурье-преобразованием и возбуждением в ближней ИК области применяется [37] для определения цис-, транс- и винильных звеньев в полибутадиене, стереорегулярности полистирола, степени кристалличности полимеров и т.д. [c.208]

    Ряд полисахаридов проявляет свойства стереорегулярных полимеров и может с большей или меньшей легкостью образовывать квази-кристаллические структуры. В этом случае применение рентгеноструктурного анализа дает сведения о конформации полимерной цепи, способе упаковки полимерных цепей в кристаллических областях и размерах элементарной ячейки кристалла. Исследования проводят либо с природными образцами полисахаридов с высокой степенью ориентации молекул (например, кристалличность целлюлозы в клеточных стенках водоросли Valonia ventri osa приближается к 100%), либо с пленками полисахаридов, ориентация молекул в которых достигается наложением механического напряжения. С помощью рентгеноструктурного анализа установлено, например, что полимерная цепь целлюлозы имеет линейную конфор-мaцию с повторяющимся звеном длиной 10,3 А, состоящим из двух остатков глюкозы, повернутых друг относительно друга на 180°. Сходные [c.516]

    ПВФ, полученный в присутствии обычных свободно-радикальных инициаторов, имеет беспорядочно ориентированную (атактическую) молекулярную структуру и содержит до 32% звеньев, соединенных по типу голова к голове , т. е. в поли-.мерной цепи одно мономерное звено из каждых шести присоединяется обратно . Степень стереорегулярности образцов ПВФ, синтезированных на катализаторах Пиглера — Натта, а также при инициировании полимеризациич ооралкилами, существенно не улучшается. У образцов обнаружен одни и тот же тип спектров дифракции рентгеновских лучей полимеры отличаются лишь повыщенными степенью кристалличности и температурой плавления кристаллитов [121], что обусловлено более регулярным присоединением по типу голова к хвосту . С понижением те.мпературы полимеризации повышается регулярность ПВФ за счет уменьшения аномальных мономерных связей голова— голова , хвост—хвост и разветвлений цепи полимера. [c.74]

    Переходя далее к рассмотрению структуры пленок триметилцеллюлозы, следует отметить интересную особенность этого эфира. Триметилцеллюлоза способна растворяться не только в органических растворителях, но и в холодной воде (7=273 К). Структура пленок, сформованных методом испарения на стекле раствора метилцеллюлозы в хлороформе и воде (при низкой температуре), представлена дифрактограммами на рис. 4.15. Как видно, структура пленок триметилцеллюлозы как стереорегулярного полимера отличается высокой кристалличностью. Вода для триметилцеллюлозы является о-растворителем, поэтому пленки, сформованные из водного рас- [c.93]

    Мы видели (см. разд. 4.5), что растворитель при полимеризации мало влияет или вовсе не влияет на стереорегулярность поливинилацетата и, конечно, на стереорегулярность полученного из него поливинилового спирта в частности, изомасляный альдегид не вызывает, как утверждалось в ряде работ [19], увеличения доли синдиотактических структур. Полимер при всех температурах полимеризации почти атактичен следовательно, как и для акрилонитрила, А(ДЯ ) и А(А5+ ) должны быть близки к нулю. Несмотря на это степень кристалличности поливинилового спирта может быть достаточно высока, чему, несомненно, способствует образование водородных связей. Кристалличность поливинилтрифторацетата, полученного из поливинилацетата, растет по мере понижения температуры полимеризации винилацетата [27]. Наиболее вероятное объяснение этих фактов дано в предыдущих разделах. [c.163]

    Интенсивное изучение жидкокристаллического порядка в полимерах проливает свет на новый класс полимеров с нематической, смектической или холестерической организацией боковых групп. Эти полимеры часто обнаруживают высокую степень межмолекулярной и внутримолекулярной организации и являются промежуточным звеном между высокоорганизованными биологическими макромолекулами и менее упорядоченньгми и более простыми синтетическими полимерами, на которых до сих пор изучалось большинство взаимосвязей между структурой и свойствами. Структура и свойства полимеров этого класса определяются боковой группой, ее геометрией, жесткостью, поляризуемостью и полярностью. Таким образом, боковая группа определяет ближний порядок в полимере и его динамические и равновесные свойства. Из имеющихся, правда, весьма скудных данных очевидно, что кристалличность и стереорегулярно сть в таких полимерах не оказывают на надмолекулярную структуру такого определяющего влияния, как в других случаях [41, 48, 49, 58, 66, 75]. [c.149]

    Проблема кристаллизации молекул полимеров возникла в науке совсем недавно Дело в том, что кристаллизуются исключительно стереорегулярные полимеры, которые были открыты только в 1955 г. Начало было положено работой Циглера и сотрудников [1], сообщивших о полимеризации этилена при низком давлении. Эти авторы использовали новый катализатор — смесь расгворов триметилалюминия А1(СНз)з н тетрахлорида титана Т1С14. В том же году Натта и сотрудник 2—4], применив циглсровский метод полимеризации, синтезировали некоторые поли-а-олефины, в том числе полипропилен и полистирол. Высокая степень кристалличности этих полимеров обязана их стереорегулярной структуре. За это открытие Циглер и Натта были удостоены нобелевской премии. [c.6]

    На основании перечисленных наблюдений Эдлер [48] пришел к выводу, что для объяснения механизма образования полимерных кристаллов в рассмотренном случае необходимо привлечь представление об эпитаксиальном росте. Не следует ли отсюда, что протекание реакции облегчается на каких-то внутренних поверхностях (дефектных участках) кристаллов, когда твердая фаза играет роль некоторого субстрата, на котором происходит рост кристалла По-видимому, наиболее убедительным подтверждением механизма эпитаксиального роста является хорошо известное исследование процесса твердофазной полимеризации е-аминокапроновой кислоты [17], при котором было обнаружено явление переноса мономера в паровой фазе. Следует заметить, что мономеры, способные к твердо-4)азной полимеризации, как правило, легко полимеризуются и не в твердой фазе. Это в полной мере относится как к триоксану, так и к акриламиду [49], из которого образуется некристаллизующийся полимер, поскольку часто оба эти мономера легко сублимируются. С этой точки зрения, по-видимому, не существует значительных различий в механизмах твердофазной полимеризации и полимеризации в жидкой или газовой фазе. Тот факт, что проведение реакции полимеризации триоксана вблизи температуры плавления, когда нарушения решетки проявляются заведомо значительно сильнее, чем при низких температурах, тем не менее делает возможным получение полимеров с высокой степенью кристалличности, свидетельствует в пользу этих представлений. Очевидно, эта модель сохранила бы свою силу даже в том случае, если бы удалось получить кристаллический стереорегулярный полимер на основе акрил амида. [c.292]

    Стереорегулярные полимеры образуют кристаллиты и при больших размерах замещающих групп. Для них характерна спиралевидная форма макромолекулы, что облегчает их сближение. Степень кристалличности их очень высока, они имеют более высокую механическух прочность и температуру плавления и меньшую ползучесть, чем у атактических полимеров. [c.88]


Смотреть страницы где упоминается термин Стереорегулярность и кристалличность: [c.326]    [c.59]    [c.215]    [c.183]    [c.786]    [c.284]    [c.197]    [c.146]    [c.315]    [c.197]    [c.13]    [c.295]    [c.588]    [c.162]    [c.194]    [c.192]   
Смотреть главы в:

Полимеризация на комплексных металлоорганических катализаторах -> Стереорегулярность и кристалличность




ПОИСК





Смотрите так же термины и статьи:

Кристалличности



© 2024 chem21.info Реклама на сайте