Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Физические свойства некоторых органических соединений

    ФИЗИЧЕСКИЕ СВОЙСТВА НЕКОТОРЫХ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ [c.221]

    Нейтральные фосфорорганические экстрагенты обладают характерными для полярных органических соединений физическими свойствами. Растворимости в воде не превышают 0,1%, если число атомов углерода в алкильных цепочках не менее 4—5. В табл. 2.29 приведены некоторые физические свойства различных фосфорорганических, соединений, использующихся в экстракционных процессах [228, 229]. [c.105]


    В данном разделе приведены плотности твердых материалов (табл. 6.1), жидких веществ и водных растворов (табл. 6.2), температуры кипения органических соединений (табл. 6.3, 6.4), свойства насыщенного водяного пара (табл. 6.5), параметры критического состояния некоторых веществ (табл. 6.6), удельные теплоемкости твердых и жидких веществ (табл. 6.7, 6.8), мольные теплоемкости газов (табл. 6.9), теплоты сгорания и теплоемкости некоторых органических соединений (табл. 6.10), физические свойства воздуха и его состав (табл. 6.11, 6.12), теплопроводности (табл. 6.13, 6.14), удельные теплоты парообразования (табл. 6.15), динамические вязкости воды, жидких веществ и водных растворов (табл. 6.16, 6.17), диэлектрические проницаемости (табл. 6.18). [c.110]

    Если в органическом соединении имеется асимметрический атом углерода, то его молекулы могут быть в двух энантиомерных формах, из которых одна является зеркальным отображением другой. Вещество оптически активно, т. е. вращает плоскость поляризованного света, если в нем преобладает одна из энантиомерных форм. По своим физическим и химическим свойствам, в частности реакционной способности, энантиомерные формы идентичны. Изучение продуктов превращения энантиомеров, в частности их оптической активности, в некоторых случаях помогает выяснить механизм химического превращения. Когда в реакцию вступает оптически активный реагент (энантиомер), то возможны 3 случая инверсия конфигурации, сохранение конфигурации и рацемизация. [c.318]

    По предложению шведского ученого Берцелиуса явление это было названо изомерией. Два или больше соединений, которые имеют одну и ту же эмпирическую, или молекулярную, формулу, но совершенно различны по своим химическим или физическим свойствам, стали называть изомерами. Число изомеров для некоторых органических соединений достигает нескольких десятков, сотен и даже тысяч..  [c.32]

    Разработанные многочисленными авторами методы разделения тория и р. 3. э. основываются на некотором имеющемся различии их химических и физических свойств основности, растворимости соединений, отношении к органическим растворителям и, наконец, летучести соединений. [c.94]

    Термин идентификация в том смысле, в каком он употребляется в органической химии, относится к установлению того, что неизвестное соединение имеет физические и химические свойства, идентичные свойствам одного из многочисленных органических соединений, описанных в литературе. Абсолютное доказательство идентичности всех молекул веществ А и Б, очевидно, невозможно независимо от того, какие константы были определены и совпали в пределах ошибки опыта. Практически необходимо, чтобы вещества А и Б, очищенные эффективной разгонкой, имели в основном одинаковые химические и физические свойства. Некоторые доказательства идентичности являются более строгими, другие—менее строгими в зависимости от числа и рода свойств, которые определяли и сравнивали. Например, заключение об идентичности веществ А и Б, основанное на сходстве окрашенных комплексов, образующихся ири реакции каждого из них с реагентом В, следует рассматривать как более или менее предположительное. Если, кроме сходства цветной реакции с одним и тем же реагентом, оба вещества обнаружат аналогичное физиологическое действие, то этот критерий идентичности, хотя и допустимый для некоторых целей, также нельзя рассматривать как строгое доказательство. Однако если вещества А и Б имеют в основном одинаковые точки плавления, плотности и показатели преломления и если точки плавления их производных также совпадут, то такое доказательство идентичности является настолько строгим, насколько это возможно при фактических условиях работы. [c.351]


    В отличие от закономерностей в изменениях химических свойств, изменения физических свойств могут быть выражены точным цифровыми величинами. Изучение физических свойств различных органических соединений во многих случаях привело к нахождению закономерностей их изменения в зависимости от строения, выражаемых более или менее точными математическими формулами. Эти закономерности излагаются в курсах физической химии. Здесь мы дадим лишь весьма краткие представления о некоторых из них, чтобы показать важность изучения физических свойств органических веществ для установления их строения. [c.534]

    У же В конце прошлого столетия было отмечено, что органические соедине ния, имеющие в своем составе гидроксильные или аминогруппы, характеризуются аномальными физическими и химическими свойствами. Обширные исследования по определению молекулярных весов в различных растворителях показали, что для некоторых органических соединений получаются различные молекулярные веса в зависимости от концентрации растворов и от природы растворителя при этом в некоторых случаях найденный молекулярный вес оказывается в несколько раз больше вычисленного и возрастает по мере увеличения концентрации раствора. Для таких соединений истинные значения молекулярного веса можно получить только проводя определение в очень разбавленных растворах. Очевидно, что при недостаточном разбавлении происходит образование ассоциированных комплексов , и отношение кажущегося молекулярного веса к истинному—степень ассоциации а—возрастает при увеличении концентрации. На рис. 13 даны кривые, иллюстрирующие зависимость между степенью ассоциации молекул и концентрацией раствора [7]. [c.173]

    Гипотеза Вант-Гоффа послужила основой для развития важного направления химической науки — стереохимии, изучающей пространственное строение молекул и влияние его на физические и химические свойства вещества. В частности, получили объяснение рассматриваемые далее оптическая и геометрическая изомерия, наблюдаемые у некоторых органических соединений. Открылся путь к познанию не только химического строения (порядка связи атомов), но и реального расположения атомов в молекуле. [c.28]

    Для жестких кислот и оснований о положителен, для мягких — отрицателен. Комбинация жесткий — жесткий и мягкий — мягкий дает положительный вклад в константу равновесия и энергию стабилизации комплекса. Это эмпирическое уравнение (У.1) содержит четыре неизвестных параметра, и практически его трудно использовать для количественной характеристики силы кислот и оснований. Тем не менее чисто феноменологический в своей основе принцип ЖМКО оказался полезным как при качественной оценке стабильности молекулярных комплексов, так и при объяснении ряда органических реакций, поскольку свойства многих органических соединений можно рассматривать с позиций кислотно-основного взаимодействия [195]. Предложены различные критерии отнесения кислот и оснований к жестким и мягким [82, 191, 196]. Выявлены некоторые предсказательные возможности принципа ЖМКО [197—199]. Однако предсказания оставались лишь качественными, общей концепции недоставало физического обоснования, представления о жесткости и мягкости в значительной мере зависели от [c.370]

    С осаждаемыми элементами таннин не образует соединений определенного состава, и часто его применение основано на способности усиливать действие других реагентов. В некоторых случаях он придает осадкам требуемые физические свойства, иногда способствует осаждению, коагулируя коллоидные соединения, и, наконец, по причинам, пока еще не выясненным, вызывает выделение осадков в тех случаях, когда в его отсутствие они не образуются. Таннин применяется в присутствии таких различных но характеру реагентов, как аммиак, соляная кислота и некоторые органические соединения, например уксусная, винная, салициловая и щавелевая кислоты или их соли. При осаждении таннином обычно требуется более или менее тщательное регулирование концентрации ионов водорода в растворе. Это осаждение всегда проводят из содержащих электролит горячих растворов. При действии таннина выделяются объемистые хлопьевидные осадки, отфильтровывание которых не вызывает затруднений, особенно если вводить мацерированную бумагу и применять умеренное отсасывание. Если для дальнейшей работы используют фильтрат, таннин в нем можно легко разрушить обработкой дымящей азотной кислотой. [c.140]

    Составители стремились к тому, чтобы максимальное количество сведений о каждом соединении было сконцентрировано в одном месте. В связи с этим в отдельные таблицы выделены лишь величины электрических моментов диполя и кислотно-ос-новные характеристики органических соединений. Вместе с тем справочник не является всеобъемлющим, и некоторые свойства органических соединений (например, их термодинамические характеристики) в него не включены в связи с наличием современных специализированных изданий справочного характера. Чтобы облегчить читателю поиск других сведений, в основной таблице справочника для каждого конкретного соединения приведена ссылка на фундаментальный справочник Бейль-штейна, где можно найти исчерпывающую библиографию, посвященную физическим, химическим и другим свойствам этого соединения. [c.4]


    Отсутствие в справочнике некоторых данных о физических свойствах макромолекулярных соединений и поверхностноактивных веществ объясняется тем, что свойства ряда веществ еще недостаточно изучены либо имеющиеся сведения не опубликованы. Поэтому для Придания справочнику единообразия и компактности, сведения по этим классам веществ даны в виде сокращенных таблиц по сравнению с органическими и неорганическими соединениями. [c.6]

    Теория строения А. М. Бутлерова объяснила открытое еще в 1823 г. немецким химиком Ю. Либихом явление изомерии, которое, как оказалось впоследствии, особенно распространено среди органических соединений. Сущность этого явления заключается в том, что некоторые вещества, различные по физическим, а очень часто и по химическим свойствам, имеют совершенно одинаковый качественный и количественный состав, одинаковую молекулярную массу. Такие вещества были названы изомерами. До создания теории строения существование изомеров и причины различия их свойств казались совершенно необъяснимыми. Только на основании этой теории Бутлеров пришел к выводу, что различие изомеров заключается в различии химического строения их молекул. Этот вывод Бутлеров блестяще доказал, предсказав возможность существования изомеров ряда органических соединений и получив эти изомеры синтетическим путем. Более подробно с явлением изомерии мы ознакомимся при изложении курса. [c.21]

    В зависимости от профиля и объема времени, отводимого учебным планом, в некоторых вузах имеется малый и большой практикум, в других — лишь малый, иногда — лишь большой. Малый практикум дает первоначальное знакомство с органическими веществами, их свойствами и реакциями, проводимыми качественно особенно большое значение имеют реакции, характеризующие классы соединений по их функциональным группам, а также реакции на некоторые важнейшие представители. Основу большого практикума составляют синтезы органических веществ и их исследования, включая применение физических методов, что, естественно, дает более глубокое знакомство с органическими соединениями. [c.3]

    За 20 лет, прошедших со времени выхода первого издания, было разработано много новых методов получения, очистки и спецификации органических растворителей, а также вновь определено и исправлено большое число физических констант. По сравнению с первым изданием авторами добавлен материал по многим новым растворителям, тогда как описания некоторых смешанных жидкостей, не являющихся индивидуальными веществами (например, бензина и скипидара), исключены из книги. Значительно увеличено число приведенных в таблицах физических свойств, причем для наиболее важных констант (плотность, показатель преломления и др.) дана температурная зависимость. В книге собран и систематизирован обширный материал по физическим свойствам и способам очистки практически всех органических веществ, используемых в настоящее время в качестве растворителей (254 соединения). [c.5]

    Значительное внимание уделено теоретическим темам строению атома, учению о химической связи, свойствам растворов, электрохимии, строению органических соединений. В книге дан весь материал, необходимый для подготовки учащихся к изучению предметов Физическая химия , Аналитическая химия и некоторых специальных. [c.8]

    В течение последних лет появилась обширная литература, посвященная новым органическим соединениям фтора. Фторорганические соединения нашли многочисленные применения в различных областях техники, что достаточно подробно уже отмечалось в предисловии к сборнику Химия фтора № 1. Возникла необходимость надлежащей систематизации накопившегося нового материала. Из большого числа статей и патентов в области фторорганических соединений нами для сборника Химия фтора К 2 выбраны работы, относящиеся специально к химии фторолефинов. В приводимых ниже таблицах перечислены данные, взятые из этих статей и патентных описаний. В этих данных содержатся краткие сведения о получении и свойствах важнейших фторолефинов, описанных в иностранной литературе по 1948 г. включительно табличные данные сопровождаются библио-, графией. Наиболее важный материал в таблицах и библиографии отмечен звездочкой в настоящем сборнике дан полный перевод именно этого материала. Этот сборник является естественным продолжением сборника № 1, в котором также содержится некоторое количество данных, относящихся к фторолефинам. Основное содержание сборника № 2 составляют оригинальные статьи крупнейших американских исследователей, освещающих физические и химические свойства фторолефинов и методы их получения. Соединения этого класса в настоящее время применяются в качестве исходного сырья в производстве высокоустойчивых смазочных масел, хладоносителей, пластических масс и имеют широкие перспективы дальнейшего использования в целях получения новых технически важных продуктов. Из фторолефинов наибольший [c.9]

    Выводы, Которые были сделаны на основании изучения химических свойств фурановых веществ, находят известное подтверждение и при исследовании их с помощью физических методов. Последние, как известно, дают возможность получить важнейшие количественные характеристики молекул. В сочетании с данными чисто химического характера все это позволяет глубже познать строение органических соединений и тонкие особенности взаимного влияния атомов. Весьма ценный материал такого рода дают оптические методы, прежде всего спектроскопия и рефрактометрия. Фурановые соединения изучены в этом отношении еше недостаточно. Тем не менее, имеется ряд исследований, результаты которых позволяют сделать новые и важные выводы относительно некоторых структурных особенностей фурана и его производных. [c.24]

    Начало данной главы мы посвятим физическим свойствам спиртов. Это поможет нам понять влияние гидроксильных групп в целом на физические свойства органических соединений. После рассмотрения номенклатуры спиртов мы остановимся на одном из важных вопросов — на синтезе спиртов. Далее мы сосредоточим внимание на химических реакциях, характерных для спиртов. В заключение будут показаны некоторые методы распознавания спиртов. [c.384]

    Оптические изомеры отличаются друг от друга одним важным физическим свойством — они вращают плоскость поляризации падающего на них света в противоположных направлениях. Один из оптических изомеров вращает плоскость поляризации света в правую сторону, другой—в левую. Не считая указанного оптического свойства, такие изомеры очень похожи друг на друга по всем остальным физическим и химическим свойствам. Однако в некоторых случаях они образуют две слегка отличающиеся кристаллические формы, которые можно отделить друг от друга даже вручную. В других случаях для их разделения удается использовать химические методы, если оптические изомеры преобразуются в новые соединения с неодинаковыми свойствами. Иногда удается получить чистый оптический изомер органического соединения, если находится какой-нибудь микроорганизм, поглощающий другой изомер. Этот способ основан на большом отличии физиологического действия оптических изомеров (подробнее см. в гл. 28). [c.410]

    В общих чертах такая картина процесса сохраняется до настоящего времени. В современных воззрениях энергетические переходы возбуждаемой системы ограничены только определёнными правилами, которые налагает квантовомеханическое толкование атомных процессов. Более глубокой переработке подверглись воззрения школы Ле-нарда на природу центров люминесценции как сложных химических комплексов излучающего атома с молекулами основного кристалла. Такая концепция, естественно, не пригодна для соединений, люминесцентная способность которых является индивидуальным свойством самой молекулы (некоторые органические соединения, соли уранила и т. д.). Комплексы активатора с трегером действительно существуют в некоторых люминофорах из класса щёлочно-галоидных солей. Для большинства остальных люминес-цирующих соединений (сульфиды, силикаты и т. д.) понятие о центрах претерпело значительное изменение. Оно отнюдь не стало одиозным, но в свете современных представлений о строении твёрдого тела утратило свой подчёркнуто химический характер в пользу чисто физического истолкования существующих в кристалле связей. [c.18]

    Наибольшая трудность возникает при отделении тория от р. з.э. и и т-т р и я, обладающих близкими с Topneivi химическими свойствами. Во всех случаях следует помнить, что поведение Се (IV) ана югично торию, поэтому необходимо его предварительно восстанавливать до Се (П1). Разработанные многочисленными авторами методы разделения тория и р.з.э. основываются на некотором имеющемся различии их химических и физических свойств основности, растворимости соединений, отношении к органическим растворителям, сорбции и летучести соединений. [c.377]

    Как правило, они являются стабильными соединениями, которые медленно разлагаются на свету или в водных растворах кислот. Физические свойства N-нитрозаминов зависят от природы замещакющх групп. Некоторые подобно К-нитрозодиметиламину представляют собой маслянистые жидкости, хорошо растворяющиеся в органических растворителях, другие, например Н-нитрозодифениламин, - твердые вещества, практически не растворимые в воде. Значительно различаются и коэффшшен-ты распределения этих веществ в системе липид/вода. Максимумы УФ-поглощения нитрозаминов в воде лежат в области 230-240 и 330- 350 нм. [c.91]

    Для решения задач по яеорганической хим-ии -необходимо зна(ние не только химических, о и физических свойств веществ качественных реакций на катионы и анионы способов разделения смесей веществ,-окислительно-восстанов ительных реакций. Чтобы решить задачи по органической химии, нужно знать теорию химического строения органических соединений, генетическую связь между различными классами органических соединений, установление строения веществ по их свойствам, возможные, наиболее рациональные пути синтеза некоторых органических веществ, механизм и условия осуществления тех или иных химических реакций. Задачи в сборнике составлены таким образом, что для успешного решения каждой из них долгйны быть использованы знания нескольких разделов химии. Во всех задачах числовые значения подобраны так, чтобы они составляли кратные доли моля, не требуя длительных арифметических операций и фиксируя основное внимание на химических превращениях. Решения задач вынесены в самостоятельный раздел сборника с тем, чтобы читатель, ознакомившись с содержанием задачи, мог попытаться самостоятельно наметить пути ее решения, а затем воспользоваться готовым решением для самоконтроля. [c.4]

    Каучуки, вулканизованные только в смеси с вулканизующими агентами, не обладают необходимыми для различных целей жесткостью, сопротивлением растяжению, истиранию и надрыву. Эти свойства можно придать каучуку, добавляя в резиновую смесь так называемые наполнители. Они обычно бывают двух типов инертные наполнители (глина, мел и др.), которые почти не оказывают влияния на физические свойства резины, но облегчают переработку резиновой смеси, цусиливающие наполнители (обычно сажа), которые улучшают перечисленные выше свойства вулканизованного каучука. С целью предупреждения старения каучука, т. е. потери каучуком эластичности и других ценных свойств, в резиновую смесь вводят различные стабилизаторы — антиокислители (например, фенил-(5-нафтил-амин). Чтобы ускорить процесс вулканизации, в резиновую смесь вводят небольшие количества органических соединений, которые называют ускорителями (меркап-тобензтиазол, дифеинлгуанидин и др.). Оказалось, что для наиболее эффективного использования ускорителей вулканизации необходимо присутствие некоторых других химических веществ (обычно окисей металлов), называемых активаторами. В свою очередь действие активаторов наиболее эффективно в присутствии растворимых в каучуке мыл (солей жирных кислот), которые могут образовываться в процессе вулканизации. [c.422]

    В настоящее время в продаже имеется большое число частично или полностью дейтерированных соединений. В табл. 3.1 приведены некоторые физические свойства наиболее широко используемьк в ЯМР растворителей. Самые дешевые из них вода и хлороформ, причем свойства хлороформа значительно больше подходят для использования в ЯМР. Стоимость других растворителей растет пропорционально трудности получения их в дейтерировапной форме. Так, стоимость наиболее распространенных в органических синтезах растворителей, таких, как бензол, толуол, диметилсульфоксид (ДМСО), ацетон, ацетонитрил, метанол, хлористый мегилеи, диметилформамид (ДМФ) и пиридин, оказалась приблизительно одинаковой. В то же время тетрагидрофуран (ТГФ) и циклогексан стоят значительно дороже. [c.55]

    Изучение электрохимических свойств органических соединений не ставит своей единственной целью разработку новых синтезов. Помимо проблемы синтеза, которому посвящена значительная часть этой книги, органическая электрохимия имеет также большое значение для физической химии. Мы приведем здесь некоторые соотиошення, которые существуют между строением соединений и их электрохимическими свойствами [c.79]

    Органические хлорпроизводные. Некоторые хлорсодержащие соединения представляют собой вязкие, маслянистые жидкости, используемые в отдельных случаях в качестве смазочных веществ в чистом виде или в смеси с нефтяными маслами. Типичными материалами этого вида являются хлордифенилы, хлорнафталин, хлордифенилоксиды и хлорированный парафин. В табл. 66 содержатся данные о физических свойствах серии хлорированных дифенилов (известных под торговым названием Арохлор ), которые можно рассматривать как. типичные для класса хлорорга-нических масел. Наиболее примечательной характеристикой этих масел является исключительно низкий индекс вязкости, составляющий от —250 до —2300. Хотя данные о вязкостно-температурных свойствах хлорпроизводных очень ограничены, известно, что они не укладываются в прямую линию на номограмме ASTM. Исключительная чувствительность вязкости к изменению [c.241]

    За последние несколько лет все большее вниманае ученых и производственников привлекают к себе некоторые простые органические вещества — мономеры, из которых поликонденсацией или полимеризацией могут быть синтезированы макромолекулы. Многие из этих простых органических соединений известны уже давно, но только в последнее время их способность к образованию полимерных молекул получила долндаую оценку и практическое применение. Описание большинства физических и химических свойств многих мономеров может быть найдено в обычных руководствах и справочниках по органической химии, и подбор всех необходимых сведений о таких веществах, как этилен, фенол, мочевина, форма.пьдегид, глицерин, фталевый ангидрид, адипи-новая кислота и малеиновый ангидрид, не составит затруднений. [c.7]

    Определение положения фтора в молекулах некоторых органических полифторидов иногда в той или иной степени основывается на сравнении их физических свойств По одной из наиболее часто применяемых аналогий следует, что если два полифторида полностью галоидированы, то их точки кипения отличаются друг от друга всего лишь на один или два градуса, точки же замерзания различаются значительно больше. Несимметричное соединение замерзает более высоко и кипит более низко, чем симметричный изомер. [c.168]


Библиография для Физические свойства некоторых органических соединений: [c.225]    [c.242]    [c.224]    [c.368]   
Смотреть страницы где упоминается термин Физические свойства некоторых органических соединений: [c.78]    [c.7]    [c.263]    [c.159]    [c.78]    [c.72]    [c.176]    [c.268]    [c.57]    [c.194]    [c.268]   
Смотреть главы в:

Масла и консистентные смазки -> Физические свойства некоторых органических соединений




ПОИСК





Смотрите так же термины и статьи:

Некоторые из 800000 соединений

Некоторые физические свойства



© 2025 chem21.info Реклама на сайте