Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Производство и применение фенола и ацетона

    Адсорбционные методы очистки применяют для удаления истинно растворимых органических соединений из сточных вод. Широкое применение нашел адсорбционный метод очистки с использованием обычных активных углей и некоторых других сорбентов, в частности активных углей, получаемых из отходов производства феноло-формальдегидной смолы, торфа, а также синтетических высокопористых полимерных адсорбентов. Активные угли высокопористые адсорбенты с удельной поверхностью от 800 до 1500 м2/г. Адсорбционное поглощение растворимых органических загрязнений активным углем происходит в результате дисперсионных взаимодействий между молекулами органических веществ и адсорбентом. Активный уголь гидрофобный адсорбент, т. е. обладает сродством к гидрофобным молекулам органических веществ. Чем выше энергия гидратации адсорбата, тем хуже он извлекается из воды адсорбентом. Сказанное, в частности, подтверждается тем, что активные угли хорошо сорбируют такие гидрофобные соединения, как алифатические и ароматические углеводороды, их галоген- и нитрозамещенные соединения и другие и значительно хуже гидрофильные соединения, например низшие спирты, гликоли, глицерин, ацетон, низшие карбоновые кислоты и некоторые другие вещества. [c.95]


    Некоторые наиболее важные процессы алкилирования ароматики практикуются в промышленности реакция бензола с этиленом с образованием этилбензола, который затем дегидрируется в стирол алкилирование моноядерной ароматики с пропиленом, что дает соответствующие изопропил-производные, которые в свою очередь превращаются в фенол, крезол и т. д. через промежуточные гидроперекиси (т. е. фенол и ацетон от гидроперекиси цимола) алкилирование бензола и нафталина с алкил-хлоридами с длинными цепочками для производства соответствующей алкилароматики, которая сульфируется в ядре серной кислотой (натриевой солью) для применения в очистке и, наконец, алкилирование фенолов с олефинами или алкильными галогенидами с целью получения алкилированных фенолов, использующихся как присадки (или как промежуточные продукты в производстве присадок) к топливам и маслам. Первый и третий процессы проходят в присутствии хлористого алюминия, который наряду с другими галогенидами металлов является наиболее важным [c.133]

    ПРОИЗВОДСТВО И ПРИМЕНЕНИЕ ФЕНОЛА И АЦЕТОНА МАСШТАБЫ ПРОИЗВОДСТВА ФЕНОЛА И ЕГО ПРИМЕНЕНИЕ [c.9]

    Промышленное производство этилбензола было организовано в 1936 г. В период Второй мировой войны в ряде стран широкое применение в качестве высокооктановой добавки для карбюраторных авиационных двигателей нашел кумол (изопропилбензол). С переходом авиации на реактивное топливо интерес к производству алкилбензолов продолжал возрастать. Это объясняется тем, что резко возросла потребность в ряде сырьевых источников, получение которых связано с алкилированием бензола и его гомологов. Например, из этилбензола получают стирол, который нашел широкое практическое применение, из кумо-ла—фенол, ацетон, а-метилстирол. Из диалкилбензолов синтезируют терефталевую кислоту и фталевый ангидрид. Сульфированием нонил- и додецилбензола производят сульфонаты — высокоэффективные поверхностно-активные вещества. Моно- и полиалкилнафталины —великолепные теплоносители, а их сульфонаты — эмульгаторы в производстве синтетического каучука. В широком масштабе проводится алкилирование бензола и нафталина тримерами и тетрамерами пропилена, димерами и три-мерами бутенов и пентенов, а также высшими олефинами. Алкилирование является перспективным процессом в связи с необходимостью разработки новых видов сырья для производства полимеров, синтетического каучука, новых компонентов топлив, присадок и масел. [c.6]

    На разных предприятиях применяются различные методы очистки сточных вод. На нефтехимических комбинатах (при производстве синтетического спирта, фенола, ацетона, синтетических жирных кислот, каучука и др.) основными местами образования загрязненных сточных вод являются цехи пиролиза углеводородов, гидратации этилена и ректификации спирта. Сточные воды цеха пиролиза углеводородов содержат этилен, пропилен, бутан, изобутан, бензол, толуол, ксилол, нафталин. В сточных водах цеха гидратации этилена и ректификации спирта присутствуют спирты, ацетальдегид, продукты полимеризации, смола. При применении биологических методов очистки содержание органических веществ (бензола, толуола, ксилола, нафталина и др.) в сточных водах значительно снижается. [c.16]


    Из перечисленных методов в промышленности используются четыре каталитическое окисление толуола, прямое окисление бензола, метод Рашига и кумольный метод. Основное количество фенола (более 90 %) получают кумольным методом. Суммарная мощность установок, производящих фенол кумольным методом, составляет около 5 млн т в год. Доля кумольного метода в общем производстве фенола составляет в США 98 %, в ФРГ- 95,3 %, в Японии - 100 %. Особенно привлекателен кумольный метод производства фенола тем, что одновременно позволяет получать другой ценный продукт - ацетон. Кумольный способ производства фенола и ацетона является ярким примером реализации химического принципа применения сопряженных методов в технологии органического синтеза (см. гл. 6). [c.335]

    Применение на установках производства масел газов — пропана, этана, водородсодержащего газа обусловливает высокое давление в аппаратуре, предъявляет особенно жесткие требования к герметичности сосудов и трубопроводов. Пары ацетона, бензола, фенола, толуола, пропана и других реагентов, применяемых на маслоблоках, могут образовывать с воздухом взрывопожароопасные смеси. Пары растворителей и реагентов при превышении их предельно допустимых концентраций могут вызвать как острые, так и хронические отравления персонала установок. Применение фенола и крезолов в качестве растворителей, аммиака в качестве хладоагента, соды для очистки и защелачивания газообразного пропана связано с возможностью ожогов персонала при нарушении герметичности системы или разливах, а также при нарушении правил работы с этими продуктами. Наличие на установках гудрона, асфальта, экстрактов и других продуктов и реагентов с высокими температурами (до 350—400 °С) делает возможным возникновение пожара аппаратуры и оборудования при нарушении герметичности системы и правил эксплуатации. Применение трубчатых печей создает опасность взрыва в случае попадания пропана, этана, водорода в печи при нарушениях герметичности сосудов и трубопроводов. [c.186]

    Применение сопряженных методов. Наиболее ярким примером такого производства является кумольный метод получения фенола и ацетона. По данному методу из изопропилбензола одновременно получают два ценных продукта фенол и ацетон. В этом случае себестоимость фенола значительно ниже, чем себестоимость фенола, получаемого другими методами (из каменноугольной смолы - в 1,8-3,0, из сланцев - в 4,5, из торфа - в 1,1, из продуктов лесохимии - в 1,05 раза). Отметим, что качество фенолов, полученных из природного сырья, значительно ниже, чем синтетических. [c.238]

    Обзор известных способов переработки побочных продуктов производства фенола-ацетона показал, что в России фенольная смола не находит практического применения и подвергается переработке только с целью извлечения содержащегося в ней фенола. Фенол извлекается из предварительно обессоленной фенольной смолы в составе фенольной фракции (рис 2.3, с. 13) экстрактивной ректификацией с использованием в качестве экстрактивного [c.6]

    Основной тенденцией развития современной химической промышленности является преимущественный рост отраслей органического синтеза и производств, основанных на применении синтетических материалов. В нашей стране в крупном промышленном масштабе организовано производство синтетического фенола и ацетона, синтетического этилового и изопропилового спирта, капролактама, синтетических и искусственных волокон, пластических масс, синтетического каучука и многих других продуктов. Значительно увеличилось производство ацетальдегида, синтетической уксусной кислоты, фталевого ангидрида, органических красителей и ядохимикатов. Сейчас ставится одна из важнейших и неотложных задач — в короткие сроки обеспечить ускоренное развитие химической промышленности и создать мощную промышленность по производству полимеров. [c.185]

    Развивается применение огневого обогрева и в химической промышленности. Все шире применяются печи с заполненными катализатором трубами для процессов пиролиза и других каталитических превращений. Разработка более точных методов расчета и всестороннее изучение проблем, связанных с эксплуатацией таких установок, позволили использовать трубчатые печи в ряде областей, где ранее ограничивались обогревом паром или другими теплоносителями. Далеко не полный перечень современных областей использования заводских печей включает производство дихлорэтилена, фенола, ацетона, спирта, аммиака, диэтиленгликоля, ацетилена, трикрезола, бензола, нитробензола, смол, нафталина, толуола и ксилола, плавление солей и серы. [c.72]


    Явление аутоокислення имеет большое значение как в биохи мни, так и в органической химии. В биохимических процессах кислород играет большую роль в поддержании жизни, причем его поглощение п утилизация живыми организмами происходит благодаря катализу энзимами. Принято считать, что ассимиляция жирных кислот протекает через промежуточное образование р-кетокислот и их декарбоксилирование. В связи с реакциями фотосинтеза в растительном мире, происходящими в присутствии хлорофилла, следует напомнить о ранее рассмотренных работах Шенка с применением фотосинсибилизаторов для катализа окисления органических соединений при относительно низких температурах. Давно известно, что хранение различных соединений в контакте с воздухом приводит к образованию нежелательных продуктов окисления в результате этих процессов из нефтяных углеводородов образуются продукты окисления и смолы, а пз эфиров ациклических и циклических — взрывчатые вещества. Аутоокисление, часто катализированное, нашло практическое применение в различных промышленных процессах, например, для получения терефталевой кислоты из ксилолов, малеиновой кислоты из бензола и кумилгидроперекиси из кумола в производстве фенола и ацетона. В будущем можно ожидать значительного увеличения числа таких процессов. [c.456]

    Различные производства применяют разные методы очистки сточных вод. На нефтехимических производствах (синтетического спирта, фенола, ацетона, синтетических жирных кислот, синтетического каучука и др.) используется биологическая очистка в аэротенках стоков, загрязненных органическими веществами [44]. Основными местами загрязнения являются цехи пиролиза углеводородов, гидратации этилена и ректификации спирта. В цехе пиролиза углеводородов сточные воды содержат этилен, пропилен, бутан, изобутан, бензол, толуол, ксилол, нафталин. В цехе гидратации этилена и ректификации спирта стоки содержат диэтиловый эфир, этиловый и изопропиловый спирты, ацетальдегид, продукты полимеризации, смолу. Применяемая на этих производствах биологическая очистка значительно снижает содержание в сточных водах бензола, толуола, ксилола, нафталина, ослабляет запах. По данным [0-27], на нефтеперерабатывающем заводе биохимическая очистка стоков снижает содержание нефтепродуктов на 40%, нерастворенных веществ на 96%, уменьшает БПКб на 50% и ХПК на 70%. По данным [45], на нефтеперерабатывающем заводе в результате применения новейшей конструкции деэмульгаторов содержание нефти в сточны.х водах уменьшилось в 4—5 раз. На заводе химического волокна флотационная очистка снижает содержание нерастворенных веществ на 70—80% [0-27]. [c.8]

    Применение газовой адсорбционной хроматографии для анализа газов в производстве фенола, ацетона и синтетического спирта. [c.196]

    Другие методы получения синтетического фенола не получили в нашей стране значительного развития. На долю сульфурационного и хлорбензольного методов приходится менее 10% вырабатываемого фенола. Однако широкое внедрение кумольного метода не исключает в дальнейшем применение других процессов. Аналогично зарубежным странам, для Советского Союза значительный интерес представляют циклогексановый и толуольный процессы. С удовлетворением потребностей в ацетоне они будут дополнять кумольный метод и регулировать производство фенола. Согласно расчетам [26] , себестоимость фенола в толуольном процессе может оказаться на уровне кумольного при установлении дифференцированных цен на бензол и толуол. [c.310]

    Более полное удовлетворение потребностей народного хозяйства в феноле может быть осуществлено не только в результате увеличения объема его производства, но и путем снижения расхода фенола при производстве из него таких важных продуктов нефтехимического синтеза, как дифенилолпропан и /г-трет.бутилфенол [9]. При синтезе этих продуктов образуются не находящие применения фенольные смолы, которые получаются в результате взаимодействия фенола с ацетоном или изобутиловым спиртом и состоят из высококипящих алкилиро-ванных фенолов. [c.108]

    Второе место по объему потребления бензола занимает синтез фенола. Фенол является одним из старейших производных бензола. Известно не-ско.лько методов получения фенола пз бензола. Новейший пз них — производство фенола через кумол и гидроперекись кумола. Дальнейший рост мощностей по синтезу фенола происходит только за счет применения этого процесса. При этом процессе бензол сначала алкилируют пропиленом для получения кумола. Затем кумол окисляют в гидроперекись, разложением которой получают фенол в качестве побочного продукта образуется ацетон. Крупнейшим потребителем фенола является производство термореактивных смол, перерабатываемых главным образом на формовочные композиции п прессиорошки. Фенольные пластмассы представляют собой один из старейших видов пластмасс. Они находят широкий сбыт, но им присущи и некоторые недостатки, в частности невозможность производства формованных изделий свет.лых тонов п высокая стоимость формования. Из нанбо.лее перспективных областей применения фенольных смол следует отметить производство фенольных клеев, потребление которых в фанерной промышленности неуклонно растет. [c.249]

    Конечно, другие способы получения фенола (путем сульфирования или хлорирования бензола) продолжают сохранять свое значение и установки для осуществления этих способов строятся и после 1953 г., когда впервые получил промышленное применение процесс на базе перекиси кумола. Однако новый процесс, несомненно, способствовал росту производства фенола за последние годы и, вероятно, в будущем предпочтение также будет отдаваться этому способу, если только не произойдет непредвиденного резкого ухудшения конъюнктуры рынка сбыта ацетона. [c.408]

    В результате кроме нерационального удлинения коммуникаций, осложнения взаимосвязи между производствами ацетилена и акрилонитрила последующее строительство нового производства фенола и ацетона значительно усложнилось из-за ограничения оперативного простора, необходимого для применения строительной техники, и повысилась опасность при проведении работ Территория новой строительной площадки была зажата между действующими производствами и пересечена подземными коммуникациями канализационных систем водопрово оз, кабельных каналов и надземными трассами общезаводских и межпроизводственных эстака/1 с материалопроводами. [c.42]

    Иногда вопросы материального оформления процесса удается решать оригинально. Имея данные по коррозионной стойкости-и зная технологический процесс, можно подбирать условия для снижения коррозии, например исключить защелачивание реакционной массы в процессе получения фенола и ацетона. Иногда в результате работы по определению коррозионной стойкости материалов создаются новые материалы, находящие применение не только в данном технологическом процессе, но и в других производствах. Примером может служить процесс получения нафталина и бензола из нефтяного сырья, в котором самым напряженным по материальному оформлению оборудования является реакторный узел. Реакция гидродеалкилирования протекает при температуре 750°С п парциальном давлении водорода 60 атм. [c.20]

    Успехи в области синтеза перекисных соединений, а также легкость их химических превращений обусловили широкое применение органических перекисей в различных отраслях химической промышленности. Они применяются в процессах полимеризации, теломеризации, вулканизации, отверждения полимеров, образуются в качестве промежуточных продуктов при производстве кислородсодержащих соединений (особенно фенола и ацетона), используются как добавки к моторному топливу. Расширенное практическое использование в свою очередь способствовало развитию исследований теоретического характера по синтезу и химическим реакциям органических перекисей..  [c.9]

    Конъюгированные диолефины, в особенности бутадиен, изопрен и 2,3-диметилбутадиен, давно являются предметом тщательных исследований, однако — почти целиком лишь с точки зрения получения синтетического каучука. До настоящего времени разработано весьма много различных методов синтеза и производства этих углеводородов из таких широко доступных сырых материалов, как этиловый спирт, ацетон, бутиловый спирт, сивушное масло и фенол. Указание на то, ЧТО простые диолефины (бутадиен w изопрен), присутствуют в относительно значительных количествах в продуктах пиролиза нефти и нефтяных газах, снова стимулировало интерес к этим веществам. Применение диолефиновых углетодародов в недалеко-м будущем очевидно будет направлено также по линигг превращения их в различные химические продукты типа растворителей и душистых веществ. [c.694]

    Применение. В производстве фенола и ацетона в промышленном оргсинтезе, в текстильной промышленности, полиграфии. [c.167]

    Значительное увеличение производства олефинов вызвано не только ростом их использования традиционными потребителями (этиловый спирт, фенол, ацетон, изопропиловый спирт, полиоле-фины), но и появлением новых областей применения этилена и пропилена, в том числе для производства хлорида, винилацетата, нормальных высших спиртов, сополимерных этилен-пропиленовых кау-чуков, ацетальдегида, акрилонитрила (НАК) и т. д. [c.4]

    Кроме того, следует учитывать возможность размещения на нефтеперерабатывающих заводах производств фенола и ацетона, сульфанола, диэтиленгликоля и других веществ, которые могут повышать биохимическую потребность в кислороде сточных вод от этих производств. Для этих сточных вод необходимо применение биологической очистки. [c.104]

    Недостатки кумольного метода производства фенола и ацетона стадии алкилирования бензола и разложения кумилгидропероксида проводятся в жидкой фазе с применением кислотных катализаторов - AI I3 и H2SO4. Это связано с проблемами коррозии аппаратуры и отрицательными экологическими последствиями. Кроме того, получающийся наряду с фенолом ацетон не всегда находит эквивалентный рынок сбыта. [c.113]

    Если неразветвленные предельные углеводороды реагируют с кислородом только в жестких условиях (энергия связи С—Н в этане равна 98 ккал/моль), то уже изобутан дает гидроперекись сравнительно легко (энергия третичной связи С—Н равна 90 ккал/моль). Реакция аутоокисления кумола получила даже практическое применение в производстве фенола и ацетона [c.262]

    Нефтехимический (комплексный) вариант переработки нефти по сравнению с предыдущими вариантами отличается большим ассор-тилюнтом нефтехимических продуктов и в связи с этим наибольшим числом технологических установок и высокими капиталовложениями. В последние годы наблюдается тенденция к строительству крупных нефтеперерабатывающих комбинатов с весьма широким применением процессов нефтехимии. Нефтехимический вариант переработки нефти представляет собой сложное сочетание предприятий, на которых помимо выработки высококачественных моторных топлив и масел не только проводится подготовка сырья (олефинов, ароматических, нормальных и изопарафиновых углеводородов и др.) для тяжелого органического синтеза, но и осуществляются сложнейшие физикохимические процессы, связанные с многотоннажным производством азотных удобрений, синтетического каучука, пластмасс, синтетических волокон, моющих веществ, жирных кислот, фенола, ацетона, спиртов, эфиров и многих других химикалий. [c.152]

    Расширение производства уксусного а. .ьдегида и ацетона на основе этилового и изопропилового спиртов сомнительно, так как су-щестуют процессы с применением других видов сырья. Так, уксусный альдегид получают гидратацией ацетилена, а ацетон (вместе с фенолом) — окислением изопропилбензола (и другими методами). Заслуживает внимания и тот факт, что неполное окисление низших парафиновых углеводородов под давлением позволяет получать спирты, альдегиды, кетоны и низшие кислоты одновременно. [c.209]

    Для современной нефтепереработки и нефтехимии характерно образование мало- и многотоннажных относительно высокоароматичных продуктов, состоящих из углеводородов и гетероорганических соединений гудронов, крекинг-остатков, асфальтов, тяжёлых смол пиролиза, смолистых кубовых отходов производств фенола, ацетона, алкилбензолов и т.д. Эффективное использование этих побочных продуктов, в частности, путём переработки в ценные, экологически безвредные материалы, продукты и изделия, до сих пор остаётся одной из актуальных проблем. Существенно, что при выборе направлений и технологий использования остаточных гфодуктов часто упускается из виду или игнорируется экологическая опасность, которую представляют, с одной стороны, вновь создаваемые технологии, а с другой стороны - токсичность, канцерогенность и другие отрицательные свойства остатков и продуктов, образующихся в процессе их применения. В этом аспекте одним из эффективных направлений использования нефтяных остатков и смолистых отходов нефтехимии является производство традиционных и новых углеродных материалов ( прокаленные нефтяные коксы, углеродные волокна и микросферы, графит и т.д.), прак- [c.114]

    Впервые дифенилолпропан был синтезирован русским ученым А. П. Дианиным конденсацией фенола с ацетоном в присутствии кислотного катализатора . В промышленности дифенилолпропан начала выпускать в 1923 г. германская фирма Kurt Albert он использовался для получения синтетических лаковых смол альберто-лей и дюрофеноБ . Однако значительный рост его производства относится только к 50-м годам, когда большое распространение в различных областях промышленности получили эпоксидные полимеры, сырьем для синтеза которых явились дифенилолпропан и эпихлоргидрин. С тех пор дифенилолпропан находит все более широкое применение в химической промышленности в качестве сырья, для производства ряда ценнейших химических продуктов 1 В ближайшие годы производство его должно значительно возрасти это видно из следующих данных (в тыс. т в год)  [c.5]

    Кумольный процесс получения фенола — ацетона (ФА) является одним из yHHKaTVbHbix крупнотоннажных процессов нефтехимии — из одного исходного вещества (кумола) получаются одновременно два полезных и нужных продукта - фенол и ацетон. Каждый из указанных продуктов в отдельности находит полезное применение, но самое главное — их использование в совместном синтезе приводит к получению бисфенола, а на его основе базируется крупномасштабное производство уникальных по своим потребительским качествам карбонатных пластиков. [c.25]

    Этот метод является в настоящее время основным промышленным методом производства фенола (вместе с ацетоном). Метод начинает использоваться в крупном промышленном масштабе для синтеза дикрезольной смеси (через изопропилтолуолы) и двухатомных фенолов — резорцина и гидрохинона (через дигидроперекиси соответствующих диизопропилбензолов). Являясь универсальным способом синтеза фенолов, гидроперекисный метод после соответствующей доработки может быть применен для синтеза ксиленолов (через гидроперекиси соответствующих изопропилксилолов) и р-нафтола (через гидроперекись -изопропилнафталина). [c.108]

    Этим же путем можно из гомологов этилена вырабатывать кетоны (ацетон, метилэтилкетон), но их синтез не нашел большого применения из-за наличия других экономичных способов получения (например, получение ацетона при кумольном способе производства фенола) и пониженного выхода кетонов (85—90%) с одновременным образованием малоценных хлор-кетснов. [c.433]

    В свою очередь, следствием многотоннажности является, во-первых, применение в технологии аппаратов большой единичной мощности и, во-вторых, непрерывность производства. Так, например, единичная мощность агрегатов синтеза метанола уже достигает 300 тыс. т в год, а в перспективе не исключена возможность создания установок синтеза метанола с единичной мощностью 500 и даже 1 ООО тыс. т в год. В странах СНГ единичная мощность агрегатов производства этанола достигает 140, изопропанола - 100, агрегатов оксосинтеза — 120—150 тыс. т в год. Действующие установки дальнего зарубежья по производству фенола имеют производительность 120—150, а по ацетону - 75—90 тыс. т в год. [c.17]

    Рассматриваемая технология относится к малостадийным и включает два химических процесса, протекающих с высокой селективностью, - окисление изопропилбензола с выходом гидропероксида 91—95 % и разложение гидропероксида с выходом целевых продуктов 99 %. Высокая эффективность обеспечивается не только выбором оптимальных параметров протекания химических реакций (температура, давление, кислотность среды), но и использованием катализаторов и инициаторов процесса. В производстве используется доступное и относительно дещевое сырье — изопропилбензол, вырабатываемое процессами алкилирования. Данная технология является ярчайшим примером применения сопряженных технологических процессов, позволяя одновременно получать фенол и ацетон как два целевых продукта. Кроме того, использование при разработке принципа полноты выделения продуктов из реакционной смеси дает возможность получать в качестве товарного продукта а-метилстирол, который как мономер по некоторым показателям превосходит широко используемый стирол. [c.348]

    Крупным практическим применением исследований в этой области явилось промышленное производство фенола и ацетона через гидроперекись изопропилбензола на основе работ отечественных химиков П. Г. Сергеева, Р. Ю. Удриса, Б. Д. Кружалова и [c.22]

    Антропогенные источники поступления в окружающую среду. Сточные воды текстильной промышленности, производств фенола и ацетона. П. идентифицирован в качестве одного из летучих компонентов, мигрирующих из обуви, изготовленной с применением микропоры стирольной ВШ-9, натуральной кожи, бутадиен-стирольной и наиритовой клеевых основ. Динамика миграции П. из обувных изделий при 25 С и насыщенности 0,1 м7м (в мкг с 1 м ) в первые сутки 9,0 0,5 в шестые 5,8 0,5 в десятые 3,3 0,4. Через 20 суток миграция П. не выявлена (Чекаль и др.). [c.167]


Смотреть страницы где упоминается термин Производство и применение фенола и ацетона: [c.39]    [c.39]    [c.189]    [c.260]    [c.18]    [c.209]    [c.509]   
Смотреть главы в:

Совместное производство фенола и ацетона -> Производство и применение фенола и ацетона




ПОИСК





Смотрите так же термины и статьи:

Фенол производство

Фенолы применение



© 2025 chem21.info Реклама на сайте