Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Уравнение скорости третьего порядка

    Порядок реакции определяется показателем степени при концентрации в дифференциальном уравнении скорости реакции. Если порядок реакции равен единице, то реакция называется реакцией первого порядка, если двум — то второго порядка, если трем — третьего порядка. Различают полный и частный порядки реакции. Показатель степени при концентрации в дифференциальном уравнении скорости реакции выражает частный порядок реакции по данному компоненту. Сумма показателей степеней при концентрациях определяет полный или суммарный порядок реакции. Так, в уравнении (4) т и п — частные порядки реакции по компонентам А к В, т- -п)—суммарный порядок реакции. Если скорость реакции описывается уравнением (4), то для того чтобы найти порядок реакции относительно компонента А, ее проводят в присутствии большого избытка вещества В, а для того чтобы найти порядок реакции относительно компонента В, ее проводят в присутствии избытка компонента А. Тогда изменением концентрации вещества, взятого в избытке, практически можно пренебречь и считать концентрацию этого вещества постоянной величиной. После подстановки значения концентрации в уравнение константы (4) его можно переписать в упрощенном виде [c.68]


    I. Способ подстановки. Подстановка экспериментальных результатов по зависимости концентрации от времени в уравнения скорости реакции первого, второго и третьего порядков. Если использование одного из этих уравнений дает постоянную величину константы скорости, реакция имеет соответствующий порядок. Примеры приведены в табл. 6.2 и 6.3. [c.257]

    Как видно, для образования молекул ЗОз необходимо одновременное столкновение двух молекул ЗО2 с одной молекулой кислорода, т. е. формально реакция имеет третий порядок и ее скорость записывается дифференциальным уравнением [c.90]

    Для определения порядка химической реакции нужно прежде всего установить математическое выражение, с которым согласуются экспериментальные данные о скорости протекания исследуемой реакции. После того как получено такое выражение, порядок реакции считается равным порядку соответствующего математического уравнения. Например, х = у Л- с представляет собой уравнение первого порядка = = у + а является уравнением второго порядка, а уравнение а = х у имеет третий порядок. Если удается определить порядок химической реакции, это открывает возможность установления вероятного механизма реакции. Интересно отметить, что использование довольно простого экспериментального оборудования—часов, термостата с термометром и какого-либо устройства, позволяющего регистрировать изменения концентрации одного из компонентов реакции в процессе ее протекания,—дает возможность судить о том, каким образом осуществляется взаимодействие между индивидуальными молекулами. [c.229]

    Говорят также, что первая из этих реакций имеет третий порядок по веществу А, вторая — второй порядок по А и первый порядок по В, а третья — первый порядок по каждому из трех веществ. Коэффициент пропорциональности к в уравнениях такого типа называют удельной скоростью или константой скорости. Первый термин предпочтительнее и отражает тот факт, что к равна скорости реакции при условии, что все концентрации, входящие в кинетическое уравнение, равны единице. Термин удельная скорость первого порядка следует относить к величине [c.73]

    Реакции с молекулярностью ]> 3 практически не встречаются, так как вероятность одновременного столкновения более трех молекул весьма ничтожна. Очевидно, что молекулярность может выражаться только целыми числами. Порядок же реакции в ряде случаев может быть выше третьего и выражается как целым, так и дробным числом. Более того, далеко не о всех реакциях можно говорить как о реакциях, имеюш их какой-то определенный порядок. Многие уравнения скоростей реакций (см. гл. II) имеют весьма сложный вид, не позволяющий утверждать что-либо определенное о порядке реакции. [c.12]


    Необходимо, чтобы член 1/с имел размерность константы скорости третьего порядка, т.е. произведения константы скорости второго порядка и константы равновесия [ср. с уравнением (3-11)]. Интермедиатами Боденштейна могут быть АА2, АС или А2С. Поскольку реакция имеет первый порядок и по А2, и по С, справедлива схема (З-П)  [c.132]

    Реакция имеет суммарный третий порядок, суммарная скорость процесса прямо пропорциональна [О] и зависит уже не от константы скорости 1, а от константы равновесия К первой стадии и константы скорости кг второй стадии. В этом случае скоростьопределяющей стадией будет вторая. Естественно, что в промежуточной области зависимость скорости процесса от концентрации реагентов становится еще более сложной. Таким образом, установить молекулярность процесса, используя данные по кинетическому порядку реакции, удается только в некоторых благоприятных случаях. В то же время следует иметь в виду, что предлагаемый механизм процесса должен согласовываться с экспериментально полученным видом кинетического уравнения. [c.214]

    Для решения задач математического моделирования на первом, кинетическом, уровне удобно классифицировать процессы по формальному признаку — порядку уравнений скорости элементарных стадий по реакционным компонентам. Рассмотрение кинетики отдельных стадий показало, что скорость их протекания может быть охарактеризована как скорость реакции нулевого, первого или второго порядков по концентрациям участвующих в реакциях веществ. Так, для начальной фазы процесса — инициирования можно выделить следующие случаи нулевой, первый или второй порядок по мономеру первый или дробный порядок по катализатору общий порядок реакции — не выше третьего. Для стадии роста имеем первый порядок по мономеру первый, реже дробный, порядок по активному (юлимеру общий порядок реакции, как правило, второй. Для стадии обрыва первый или второй порядок по активному полимеру нулевой или первый порядок по мономеру, растворителю или другим сопутствующим веществам (в том числе примеси Т или агенты передачи цепи Н) общий порядок — не выше третьего. [c.13]

    При постоянной температуре, как уже отмечалось, скорости реакций зависят от концентраций реагирующих веществ. Эта связь выражается уравнениями, подобными зависимости (Х-1), которые называют кинетическими. Из уравнения (Х-1) видно, что скорость реакции зависит также от величины стехиометрических коэффициентов веществ, участвующих в превращении. Эти величины входят в качестве показателей степени при концентрациях, а их сумма называется порядком реакции. Таким образом, уже приводившаяся реакция между Л (г) и В (г),-протекающая слева направо, имеет третий порядок, а, например, порядок реакции [c.167]

    Метод подстановки заключается в определении, какое уравнение кинетики реакции (нулевого, первого или третьего порядка) при подстановке в него экспериментальных данных дает при решении постоянное значение константы скорости реакции. Именно это уравнение и определяет порядок исследуемой реакции. [c.382]

    Различают также порядок реакции реакции первого порядка, второго порядка и третьего порядка. Порядок определяется уравнением скорости, по которому протекает реакция. Если скорость реакции пропорциональна концентрации в первой степени, то такая реакция называется реакцией первого порядка, хотя в реакции могут участвовать и не одна, а два вида молекул. Например, если одно из веществ находится в очень большом количестве по сравнению с другим, то его концентрация мало будет меняться при реакции. Скорость в этом случае будет зависеть лишь от концентрации второго вещества, которое находится в наименьшем количестве. Такие реакции — реакции первого порядка. Если скорость реакции пропорциональна квадрату концентрации (произведению то такая реакция будет реакцией второго порядка. [c.241]

    В кинетике различают реакции первого, второго, третьего и нулевого или даже дробного порядков. Порядок реакции — это число, равное сумме показателей степени концентраций реагирующих веществ в уравнении скорости. Так, например, если [c.326]

    Основой химической кинетики является кинетический закон, согласно которому скорость реакции пропорциональна концентрации каждой из реагирующих частиц. Порядок реакции — это величина, определяемая числом концентрационных членов уравнения, необходимых для того, чтобы выразить кинетический закон для реакции. Эта величина определяется экспериментально, и она часто служит указанием на сложность механизма реакции. Если для реакции (2А В продукты) уравнение скорости реакции выражается как —dA/di = к [А] [В], то говорят, что реакция имеет третий порядок — первый по отношению к А и второй по отношению к В. Но порядок реакции не обязательно должен быть целочисленным разложение этаналя на СН4 и СО имеет порядок /г, поскольку реакция подчиняется уравнению [c.166]


    Поэтому с ростом концентрации кислоты возрастает роль, третьего члена в уравнении скорости циклизации, и псевдо-первый порядок реакции наблюдается на более ранних стадиях превращения [299]. [c.95]

    Порядок реакции. Порядок химической реакции по данному веществу — частный порядок — это показатель степени, в которой входит концентрация этого вещества в уравнение скорости реакции. Если скорость реакции (I) описывается уравнением V = кс с , то /г и т — частные порядки соответственно по веществу В и О. Сумма показателей (тг+пг) в кинетическом уравнении определяет порядок реакции в целом. Частные порядки и стехиометрические коэффициенты совпадают лишь для некоторых простых реакций. Для реакций с большими стехиометрическими коэффициентами, которые протекают через ряд стадий, частные порядки и стехиометрические коэффициенты, как правило, не совпадают . Реакции могут быть нулевого, первого, второго, третьего и т. д. порядков. Возможен дробный порядок, например /а. [c.197]

    Порядок реакции онределяется величиной показателя степени при концентрации в дифференциальном уравнении скорости, т. е. в выражении закона действия масс. Если порядок равен единице, то реакцию называют реакцией первого порядка, если двум — второго порядка, если трем — третьего порядка. Различают полный и частный порядок реакции. Каждый из показателей степени при концентрациях в дифференциальном уравнении скорости выражает частный порядок реакций. Сумма показателей степени при концентрациях определяет полный порядок реакции. [c.381]

    В первой части книги рассматриваются вопросы формальной кинетики простых реакций (порядок реакции, константа скорости, кинетические уравнения различных порядков), математические характеристики сложных кинетических систем и экспериментальные характеристики простых и сложных кинетических систем. Вторая часть имеет вспомогательный характер — она посвящена статистическим методам, применяемым к системам из большого числа частиц при равновесии. В третьей — рассматриваются вопросы кинетики гомогенных реакций в газах (реакции мономолекулярные, бимолекулярные, тримолекулярные, сложные реакции в газовой фазе взрывные процессы и процессы горения). Четвертая, последняя, часть посвящена реакциям в конденсированной фазе (кислотно-основной катализ, реакции окисления-восстановления, радикальная полимеризация, гетерогенный катализ). [c.4]

    Так, например, были определены порядки различных превращений в ходе гидрокрекинга туймазинской нефти образование кокса описывалось уравнением нулевого порядка, образование продукта, выкипающего в пределах вакуумного дистиллята, — уравнением третьего порядка, а образование моторных топлив — уравнением первого порядка, в то время как общая конверсия — уравнением второго порядка. Второй порядок (кажущийся) был предложен и для процесса Н-ОИ, причем это уравнение хорошо подошло и для описания скоростей гидроочистки (см. стр. 297 сл). Для другого процесса гидрокрекинга — процесса Ну-С найдено, что превращения продуктов, кипящих выше 350 °С, описываются уравнениями нулевого порядка (по сырью), порядок по водороду составил 1,4. В то же время расход водорода на реакцию раскрытия колец был постоянным в равные промежутки времени, т. е. реакция раскрытия колец имела нулевой порядок по водороду [c.318]

    Порядок реакции определяется показателем степени при концентрации в дифференциальном уравнении скорости. Если порядок равен единитте, то реакцию называют реакцией первого порядка, если двум — второго порядка, если трем — третьего порядка. Различают полный и частный гюрядок реакции. Каждый из показателей степени нри концентрациях в дифференциальном уравнении скорости выражает частный порядок реакции. Сумма показателей степени при конттентрациях определяет полный (суммарный) порядок реакции. Уравнение, связывающее скорость реакции с концентрациями реагирующих веи еств, называется кинетическим уравнением реакции. Так, скорость реакции [c.325]

    Лимитирующей стадией процесса является вторая стадия. Если R — атом или простой радикал, то область концентраций М, в которой реакция имеет третий порядок, будет широкой вследствие большой скорости распада R2 или комплекса RM. В области высоких концентраций третьего тела (/JafM] 2> k i) скорость образования продукта рекомбинации будет следовать бимолекулярному закону Шр к = ilR] и лимитирующей стадией окажется первая стадия образования Ri или же комплекса RM. Таким образом, формально оба механизма могут приводить к однотипным кинетическим зависимостям, хотя смысл входящих в уравнения динамических параметров различен, как различно и существо протекающих процессов. [c.116]

    Значение константы скорости и порядок реакции определяют экспериментально следующим образом. Из смеси реагирующих веществ, начальная концентрация которых известна, через неко-торые промежутки времени отбирают пробы и в них определяют концентрацию не вступившего в реакцию вещества. Полученные данные подставляют в уравнение для констант скоростей реакции первого, второго и третьего порядка и устанавливают, в каком из них константа будет иметь постоянное значение. Это постоян-Яое значение и будет константой скорости данной реакции. Знание порядка и константы скорости реакции позволяет определить оптимальное время проведения реакции. [c.89]

    Реакция 2N04-02->-2N02 имеет третий порядок. Вывести кинетическое уравнение, предполагая, что малые количества NO3 находятся в мгновенном равновесии с N0 и О2 и что стадией, определяющей скорость всей реакции, является медленная бимолекулярная реакция N03-f N0-i-2N02. [c.326]

    Вероятно, что при алкилировании первичными галогенидами свободные карбениевые ионы в реакции не участвуют. В таких случаях ионы могут существовать в форме диполярных комплексов (как показано на схеме уравнений 51—55) или в виде тесных ионных пар. Как показало изучение кинетики, некоторые реакции имеют третий порядок, т. е. первый порядок по каждому из компонентов по электрофильному реагенту, ароматическому субстрату и катализатору. Поскольку известно, что свободные карбениевые ионы атакуют арены быстро, то скорость реакции не должна была бы зависеть от концентрации ароматического субстрата, если бы медленной стадией было образование карбениевого иона. Другую возможность представляет собой реакция 8м2 относительно электрофила. Такая возможность исключается во многих случаях, поскольку при использовании соответствующих хиральных электрофилов наблюдается почти полная рацемизация. Заслуживает внимание одно исключение в случае оптически активного метилоксирана [37], которое объясняется, по-видимому, полной инверсией. [c.351]

    Более строго и систематически реакции гидролиза фторфосфатов были изучены в последующих работах Мартелла и сотр. [31—39]. Они изучили влияние этилендиамина и его производных на скорость реакции гидролиза ОРР и зарина, катализируемых медью(П), и также обнаружили исключительно высокую активность комплексов меди(П) с дипиридилом и фенантролином. Полученные ими данные [34, 36, 38] приведены в табл. 7. В ней константы скорости к при 25 °С имеют третий порядок, так как в кинетическое уравнение входят концентрации субстрата, комплекса катализатора с активатором (состава 1 1) и гидроксильных ионов. [c.118]

    Согласно кинетическим данным реакции гидролиза обычно имеют общий третий порядок первый — по концентрации фосфониевой соли и второй — по концентрации гидроксид-ионов 124]. На основании этих данных Мак-Ивен предложил механизм реакции (схема 139), который принят в настоящее время в качестве рабочей гипотезы. Общее дифференциальное уравнение для скорости реакции представлено уравнением 140. В том случае, если реакция, характеризуемая йз, является лимитирующей, суммарная скорость процесса будет в значительной мере определяться способностью группы Н к отщеплению в виде аниона. Если уходящая группа, например п-нитробензил или 1,4-дифенилбута-диен-1,3-ил, образует очень стабильный анион, как, например, в случае солей (79) и (80), наблюдается общий второй порядок реакции (первый — по фосфониевой соли и первый — по гидроксид-иону).  [c.644]

    Важным понятием в химической кинетике является порядок реакций. Он характеризуется суммой показателей степеней концентраций отдельных реагентов в выражении закона действия масс. Различают реакции первого, второго, третьего порядка. Порядок реакции не всегда совпадает с ее молекуляриостью. Большинство химических реакций протекает в несколько стадий я скорость реакции характеризуется скоростью наиболее медленно протекающей стадии. Порядок реакции будет выражаться молекуляриостью этой стадии и, как правило, отличаться от суммы коэффициентов реакции в целом. Так, в реакциях гидролиза солей в разбавленных водных растворах концентрация воды изменяется так незначительно, что в уравнение скорости реакции она не входит, и кинетика таких реакций будет описываться уравнениями кинетики реакций первого порядка. Реакции разложения молекул, внутримолекулярных группировок (например, диссоциация молекулы хлора на атомы) являются одномолекулярными и относятся к реакциям первого порядка. Скорость одномолекулярной реакции выражается уравнением [c.28]

    В растворе этилата натрия в смеси диоксан-—этанол скорости изомеризации, рацемизации и поглощения дейтерия одинаковы, и это интерпретировано как признак того, что реакция протекает по согласованному механизму, без образования свободного аниона [25]. Однакр более поздняя работа по изучению реакции такого же типа [26] показала, что скорости изомеризации и протонного обмена могут значительно-отличаться, и дала альтернативное объяснение первоначальным наблюдениям. В растворителях с низкой Диэлектрической постоянной образование свободных ионов становится менее вероятным, и согласованный механизм может оказаться предпочтительным даже для реакций, которые не идут поэтому механизму в воде или сходных растворителях. Действительно, согласованный механизм был предложен впервые Лоури [27] на основании исследований мутаротации тетра-метилглюкозы в среде с низкой диэлектрической постоянной. Реакция была очень медленной в безводном пиридине (не обладающем кислыми свойствами) и в безводном крезоле (едва ли обладающем какими-либо основными свойствами),, но ускорялась в смеси двух растворителей либо в одном из них при наличии влаги. Ускорение свидетельствует о том, что в реакции должны принимать участие и кислота и основание [28] . Эти результаты трудно оценить количественно, если учесть, что здесь происходит существенное изменение среды. Однако к таким же выводам, но более обоснованно, пришли Свейн и Браун [29], которые изучали эту реакцию в разбавленных бензольных растворах аминов и фенолов. Они нашли, что реакция имеет третий порядок — скорость пропорциональна произведению концентраций фенола, амина и тетра-метилглюкозы, как и должно быть по уравнению (73). Интересно отметить, что 2-оксипиридин является активным специфическим катализатором мутаротации при концентрации 0,001 М он в 7000 раз активнее смеси 0,001 М пиридина и 0,001 М фенола, несмотря на то что основность его составляет- [c.185]

    На основании уравнения (8) можно ожидать следующие новые и еще не подтвержденные экспериментом результаты а) зависимость константы скорости от концентрации обоих типов противоионов (реагирующего и нереагируюшего) будет иметь второй порядок 6) если = О и связаны все молекулы органического субстрата, следует ожидать появления плато на графике зависимости константы скорости первого порядка от концентрации ПАВ и в) если поддерживать постоянным отношение концентраций реапфующего и нереагирующего противоионов, следует ожидать пожления плато на графике зависимости константы скорости третьего порядка от концентрации ПАВ при его достаточно высоком содержании. [c.264]

    КИСЛОТЫ кинетическое уравнение в точности соответствует уравнению, описанному более полно в гл. VIII для диазотирования и некоторых других реакций азотистой кислоты при низкой кислотности, например при [Н" ] = =0,002 моль/л, скорость не зависит от концентрации субстрата и реакция имеет второй порядок [уравнение (1)] при более высокой кислотности, например при [Н+] = 0,075 моль/л, в кинетическое выражение начинает входить концентрация субстрата и реакция имеет общий третий порядок [уравнение (2)]  [c.314]

    Опытные данные по абсорбции Og диэтаноламином [207] удовлетворительно описываются уравнением для абсорбции, сопровождающейся химической реакцией (см. стр. 140—144) по этим данным вычислена [251, 253] константа скорости реакции kiii = 260 м /кг-мол сек. Эта константа не зависит от температуры (в пределах 20—50°), а поэтому можно предположить, что третий порядок реакции лишь кажущийся и реакция протекает в две стадии  [c.287]

    Формальный порядок реакции определяется величиной показателя степени при концентрации в дифференциальном уравнении скорости, т. е. в выражении закона действующих масс. Если формальный порядок равен единице, то реакцию называют реакцией 1-гопорядка, если двум—то второгопорядка, если трем — третьего порядка. [c.439]

    Исследуя влияние давления на скорость реакции, нужно помнить о том, что стехиометрические уравнения большинства химических реакций не отражают их механизма и в действительности превращение проходит как несколько следующих одна за другой простых реакций разного порядка. В качестве примера можно использовать реакцию синтеза метанола СО + 2Нг = СН3ОН, которая протекает не как реакция третьего порядка, а, вероятно, как две последовательные реакции второго порядка. Поскольку влияние давления на скорость реакции меньше в случае реакций более низкого порядка, теоретическое предвидение такого влияния не может быть основано на стехиометрическом уравнении реакции. Если механизм процесса неизвестен, то обязательно нужно определить порядок кинетического уравнения экспериментальным путем. [c.235]


Смотреть страницы где упоминается термин Уравнение скорости третьего порядка: [c.275]    [c.559]    [c.273]    [c.330]    [c.236]    [c.138]    [c.320]    [c.134]    [c.211]    [c.326]    [c.153]    [c.459]    [c.19]   
Смотреть главы в:

Физическая химия для биологов -> Уравнение скорости третьего порядка




ПОИСК





Смотрите так же термины и статьи:

Порядок третий

Третий

Уравнение скорости



© 2025 chem21.info Реклама на сайте