Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Получение сплавов и интерметаллических соединений

    Сплавили свинец массой 62,1 г и магний массой 36 г. В сплаве образовалось интерметаллическое соединение, массовая доля магния в котором равна 18,8%. Чему равна масса полученного соединения  [c.130]

    Жидкие металлы способны растворять металл, из которого изготовлена аппаратура, и переносить компоненты сплава из горячих зон Б холодные. В такой среде осуществляется химическое взаимодействие между жидким и твердым материалом, в результате которого образуются химические соединения — окислы, нитриды, карбиды и интерметаллические соединения жидкий металл диффундирует в поверхностные слои твердого тела, образуя новый сплав или соединения. Скорость растворения основного металла определяется скоростью отдельных стадий этого процесса, в том числе и скоростью растворения металла в горячих зонах и его отложения в холодных. Скорость коррозии зависит также от температуры, давления и скорости циркуляции жидкого металла. Иногда наблюдается избирательное растворение в жидком металле одного или двух компонентов сплава, сопровождаемое образованием язв или появлением межкристаллитной коррозии. Присутствие в жидком металле окислов и нитридов, полученных при соприкосновении его с воздухом или другими веществами, оказывает отрицательное влияние на коррозионную устойчивость металлической конструкции. [c.89]


    Серебристо-белый металл, жидкий при комнатной температуре в твердом состоянии ковкий. Не окисляется в сухом воздухе, покрывается серой оксидной пленкой вс влажном воздухе. Благородный металл не реагирует с водой, кислотами-неокислителями, щелочами, гидратом аммиака. Переводится в раствор иодоводородной кислотой за счет комплексообразования. Слабый восстановитель реагирует с концентрированными серной и азотной кислотами, царской водкой , галогенами, халькогенами. Со многими металлами (Na, К, Са, Ва, Си, Ag, Ли, Zn, d, E b и др.) образует амальгамы (жидкие или твердые) — интерметаллические соединения или сплавы. В природе встречается в самородном виде. Получение см. 595, 59б , 597, 598 599 , 602 . [c.309]

    Таким образом, в результате термообработки сплавов N1—5, полученных из сульфаминовокислых электролитов, происходит распад твердого раствора серы в никеле. Сера мигрирует на границы зерен образуется интерметаллическое соединение и происходит рекристаллизация с укрупнением зерен. В соответствии с этими структурно-фазовыми превращениями изменяются свой- [c.111]

    При больших различиях в плотности между отдельными компонентами или между исходными веществами и конечным продуктом может произойти ухудшение гомогенности вследствие разделения по плотности до или после реакции взаимодействия. По сравнению с методом сплавления остальные способы получения сплавов имеют в лаборатории меньшее значение. Однако в отдельных случаях может оказаться целесообразным получать сплав путем-восстановления (химического или электрохимического) соединений металлов. Некоторые интерметаллические соединения могут быть выделены в виде остатков от растворения соответствующих сплавов. Важное значение для успеха синтеза имеет знание фазовой диаграммы данной металлической системы. Пр наличии этих сведений в литературе (см. ниже) их следует привлекать для решения синтетической задачи. [c.2142]

    Из-за чрезвычайно большого разнообразия известных к настоящему времени сплавов и интерметаллических соединений не может быть дано описание всех методов получения. Еще менее приемлемо было бы приводить отдельные описания синтезов важнейших из этих веществ. Поэтому в данной главе рассмотрены типичные лабораторные методы, которые, как мы надеемся, могут [c.2142]

    Возможно получение ряда сплавов и полиметаллов с плавным изменением свойств или с очень сильным изменением селективности. Некоторые интерметаллические соединения проявляют высокую термическую стабильность. Сплавы, по-видимому, стойки к сероводороду при его низких концентрациях. [c.114]


    Способ получения калия путем электролиза расплавов с жидким свинцовым катодом и последующей отгонкой калия из сплава разработан и применяется только в СССР. Диаграмма состояния системы К—РЬ характеризуется наличием ряда интерметаллических соединений, что ведет для жидких сплавов этой системы к отрицательным отклонениям от идеального поведения. Тем не менее давление пара калия над сплавами оказывается достаточным, как это, видно из табл. 13.32, для осуществления отгонки калия из сплава. [c.479]

    Данные об энтропиях сплавов и интерметаллических соединениях в твердом состоянии очень немногочисленны. Поэтому для приближенной оценки энтропии упорядоченных сплавов и соединений можно пользоваться суммированием энтропий составляющих их элементов. Для неупорядоченных сплавов производят такое же вычисление, но в полученный результат вносят поправку, наибольщее значение которой не превыщает величины 1,4 кал г-атом- град. [c.161]

    Возможность получения монокристаллических пленок при эпитаксической кристаллизации исследована не только у чистых металлов, но и у некоторых двухкомпонентных систем твердых растворов и интерметаллических соединений. Разработка методик получения монокристаллических пленок сплавов представляет большое значение не только для научных, но и многих практических целей. В качестве примеров можно указать, что монокристаллические пленки, полученные при эпитаксии, использовались для изучения избирательного окисления [118], исследования. магнитной анизотропии [119], изучения фазовых превращений и упорядочения [59, 120]. [c.127]

    В последние годы проведены многочисленные исследования с целью получения алюминиевых материалов, которые можно было бы использовать для водоохлаждаемых реакторов. Особое внимание уделялось добавкам никеля и железа, а также меди. Добавки этих металлов образуют фазы, являющиеся катодами по отношению к основной массе алюминия. Обычно происходящая без этих добавок местная или межкристаллитная коррозия переходит при этом в равномерную. На основании более поздних исследований [63—66] сделано заключение, что в воде при повышенных температурах алюминиевые сплавы с никелем показывают достаточную стойкость только при одновременном присутствии железа. Это, вероятно, обусловлено содержащимся в этом сплаве интерметаллическим соединением РеЫ1А19. [c.526]

    Вырисовывается своеобразная триада, характеризующая производство чистых веществ за1Т)язненное сырье — чистое вещество— чистое вещество, заведомо и дозированно загрязненное в целях получения материала, обладающего заданными параметрами. Схема эта на практике выглядит не как исключение, а как все более утверждающееся правило. В согласии с ней производят различные сплавы, интерметаллические соединения, высоко-полимеры, люминофоры, сверхпроводящие и сверхдиэлектричес-кие составы. [c.35]

    Получение цинковых покрытий, как погружением в расплав, так и электроосаждением, называется цинкованием. Электроосаж-денные покрытия несколько более пластичны, чем полученные из расплава последние образуют на поверхности раздела с основным металлом хрупкие интерметаллические соединения железа с цинком (слой сплава). Скорости коррозии обоих покрытий сопоставимы, и только в горячей или холодной воде [7], а также в почвах [81 покрытия, полученные из расплава, имеют меньшую склонность к образованию питтингов по сравнению с катаным цинком (и, вероятно, также с электроосажденным). о различие либо обусловлено значениями потенциалов образующихся интерметаллических соединений, которые способствуют протеканию равно- [c.235]

    Как известно, изоморфные вещества образуют друг с другом твердые растворы — гомогенные твердые вещества сложного состава, в структуре которых атомы распределены статистически. В твердых растворах ионных соединений, металлов, полимеров атомы соединены межатомными связями. Поэтому подобные вещества являются твердыми атомными соединениями. Каждому непрерывному твердому раствору соответствует ряд однотипных твердых химических соединений, в том числе соединений, обладающих равноценными статистическими структурами, и в ряде случаев интерметаллических соединений. Например, медь и золото образуют непрерывный ряд твердых растворов, но при концентрациях золота от 20 до 70 ат. % в сплавах, полученных отжигом (т. е. выдерживанием сплава при высокой температуре), проявляются интерметаллические соединения СизАи и СиАи, имеющие строго закономерную структуру. Следовательно, твердые растворы не всегда имеют неупорядоченное строение. Эта неупорядоченность — во многих случаях результат закрепления атомов при [c.44]

    Ga (ОН)э амфотерный. Важнейшие соли хлорид и сульфат Г. Основным источником для получения Г. служат отходы алюминиевой и цинковой промышленности. Металлический Г.выделяют из водных растворов его солен электролизом. Используют Г. для изготовления высокотемпературных термометров, Г. может заменять ртуть в вакуумных насосах и выпрямителях. Галлиевые зеркала имеют высокую отражательную способность, они устойчивы при высоких температурах. Применяют Г. в полупроводниковой технике в качестве присадки к германию и в форме интерметаллических соединений (GaAs, GaSb). Легкоплавкие сплавы с цинком, висмутом, кадмием, свинцом и ртутью используют в сигнальных устройствах. Г. и его соединения токсичны подобно ртути. [c.64]


    ПЛУТОНИЙ (Plutonium, от названия планеты Плутон) Ри — радиоактивный химический элемент семейства актиноидов 1П группы 7-го периода периодической системы элементов Д. Н. Менделеева, п. н. 94, массовое число наиболее долгоживущего изотопа 244, стабильных изотопов не имеет. Впервые П. получен в 1940 г. Г. Сиборгом с сотрудниками. Наиболее важен изотоп зврц = 24 ООО лет), который может использоваться для получения ядерной энергии и в атомных бомбах как взрывчатое вещество. П.— первый искусственный элемент, который начали получать в промышленных масштабах. Известно несколько оксидов П., а также большое количество интерметаллических соединений, сплавов. Элементарный П.— металл серебристо-белого цвета, т. пл. 637° С. П. весьма токсичен. При попадании в организм П. задерживается в нем, концентрируясь в костях, вызывает тяжелые нарушения деятельности организма. [c.194]

    Анодное растЕоренне компонентов сплава, представляющего собой твердый раствор или интерметаллическое соединение, может происходить с большей или меньшей скоростью по сравнению со скоростью растворения из собстЕеинон фазы (чистый металл). Экспериментально получение анодных парциальных поляризационных кривых представляет сложную задачу, точное решение которой пока неизвестно. Однако, введя некоторые упрощения, удается для ряда случаев из общей анодной поляризационной кривой сплава рассчитать парциальную кривую одного или обоих компонентов. Одна из основных трудностей, которые возникают при расчете парциальных анодных кривых, состоит в том, что нам неизвестна доля поверхности интерметаллической фазы, на которой происходит ионизация данного компонента. Если считать, что растворение одного и другого компонента равновероятно, то доля атомов этих компонентов на поверхности интерметаллической фазы во времени пе изменяется, причем каждую из этих долей с определенным приближением можно считать пропорциональной объемным процентам компонентов. Если представить себе твердый раствор в виде прямоугольной призмы, то при равномерном распределении компонентов в сплаве на любом сечении отношение площадей, занимаемых компонентами, будет постоянным. В бесконечно тонком слое поперечного сечения площадь, относящаяся к компоненту А, будет 5а, а к компоненту В — 5в. Интегрируя объемы элементарных слоев по выссже призмы к, получим объем первого компонента 5д/1, а второго 8ф. Отсюда [c.224]

    Получение метилхлорсиланов. Механизм этого процесса в настоящее время окончательно не установлен. Однако наиболее вероятным представляется следующий путь образования метилхлорсиланов при каталитическом действии меди на реакцию хлористого метила с кремнием. Предполагается, что кремне-медный сплав состоит либо из двух фаз — свободного кремния и интерметаллического соединения ugSi (т]-фаза), либо из ассоциата кремния с медью. В начальной стадии процесса при температуре синтеза хлористый метил взаимодействует с атомом кремния из интерметаллического соединения (или из ассоциата)  [c.44]

    Получение этилхлорсиланов. Процесс получения этилхлорсиланов по реакции хлористого этила с кремнием при каталитическом действии меди протекает очень сложно, и механизм этого процесса тоже окончательно не установлен. Однако, как и в случае синтеза метилхлорсиланов, наиболее вероятным для образования этилхлорсиланов является механизм, в котором ответственным за реакцию прямого синтеза этилхлорсиланов является либо интерметаллическое соединение СидЗ , либо ассоциат кремния с медью, содержащийся в кремне-медном сплаве. На первой стадии при температуре синтеза СизЗ вступает в реакцию с хлористым этилом [c.55]

    Наилучшие результаты по электроосаждению галлия достигнуты в глицериновых электролитах [641, 585, 580—583]. Изучено катодное выделение галлия в чистом виде и совместно с отдельными металлами (Сс1, Си, 2п, 5Ь). Процесс сопровождается концентрационной поляризацией и наиболее успешно протекает на гетерогенной поверхности (например, меди). Рекомендуемый температурный интервал — от комнатной до 60 °С. При соосаждении увеличение плотности тока и уменьшение суммарной и относительной концентрации совместно разряжающихся ионов приводит к снижению процентного содержания галлия в сплаве и ухудшению качества последнего. Полученные электролитические сплавы представляют собой твердые растворы с интерметаллическими соединениями типа ОаСи4, Оаг2п5, ОагСс15. Удовлетворительного качества осадки толщиной 10—15 мкм получаются при низкой катодной плотности тока (до 10 мА/см ). Так, плотные, мелкозернистые, хорошо сцепленные с основой светло-серые сплавы Оа—Сс1, содержащие 4—40 % Оа, получены при к = 0,25- 5,0 мА/см , температуре 60°С и перемешивании [585]. В глицериновых и этиленгликолевых электролитах возможно также совместное осаждение галлия и фосфора [580]. [c.154]

    Корреляция Энгела — Бруера дает также средство определения термодинамических свойств при условии, что известна. электронная конфигурация газообразных элементов. Данное соотношение предсказывает существование так называемых Бруеровских соединений [20—22], экстраординарные термические и химические стабильности которых подтверждены экспериментом [21, 28]. Так, применение корреляций Энгела — Бруера к сплавам переходных металлов предсказывает необычную стабильность интерметаллических соединений, полученных путем комбинирования переходных металлов крайних групп периодической системы элементов. [c.136]

    Наши исследования выш елоченного uAla—медного катализатора, никелевого катализатора, полученного при выщелачивании NigAls. и целого ряда других интерметаллических соединений покезали, что происходит со сплавом в результате селективного удаления одного из компонентов и за счет чего создается активность катализатора. [c.213]

    Основные научные работы посвящены изучению комплексных и интерметаллических соединений и солевых систем. Своими исследованиями (1893—1902) в области металлографии и термографического анализа положил начало новому разделу химии — физико-химическому анализу, впервые открывще-му возможности систематического изз/чения сложных многокомпонентных систем — металлических сплавов, силикатов, соляных растворов. Изучая взаимодействие компонентов в процессе получения сплавов, установил (1900—1903) образование фаз (или соединений) переменного состава, существование которых допускал К. Л. Бертолле. Эти соединения предложил [c.274]

    При плавлении В. восприимчивость уменьшается в 12,5 раза. Поперечное сечение захвата тепловых нейтропон у В. невелико — 0,034 барна. При обычных т-рах В. устойчив в сухом и влажном воздухе. При нагревании выше т-ры 1000° С сгорает голубым пламенем с образованием окиси В1зОз, к-рую применяют для получения висмутовых солей. В разбавленных растворах солн трехвалентного В. легко гидролизуются. Соли пятивалентного В.— сильные окислители. В. реагирует при нагревании с парами фосфора, легко соединяется с галогенами и халькогенами. Со мн. металлами (натрием, калием, рубидием, цезием, магнием, кальцием и др.) образует тугоплавкие интерметаллические соединения — вис-мутиды. С легкоплавкими тяжелыми металлами (свинцом, оловом, кадмием, индием, ртутью) образует сплавы с от 33 до 156° С. Растворяется в азотной к-те, царской водке , горячей концентрированной серной к-те, слабо растворим в соляной к-те. В разбавленной серной и соляной к-тах не растворяется. Растворы щелочей без доступа кислорода хим. на В. не действуют. Висмутовые руды почти всегда со- [c.188]

    В этой области опубликован ряд натентов. Приведем описание одного из них, наиболее характерного [Пат. США № 3793435 от 10.05.1972 г.]. Извлечение На из газовых смесей, содержащих СОа, путем адсорбции Нг сплавами Ni с элементами редкоземельной группы, например лантаном (LaNis), празеодимом или цезием. Слиток сплава LaNis дегазируют, а-греванием в герметическом вакуумированном сосуде и затем контактируют с газом, содержащим На. Эффективное поглощение водорода этим сплавом происходит практически при любом содержании СОа в газовой смеси. Если в газовой смеси содержится 0,05 % СО, то используют сплав, в котором некоторое количество Ni заменено, например, на сплав типа LaNly us-i/ и процесс поглощения водорода ведут при повышенных температурах и давлениях [Пат. США № 3793435, 10.05.1972 г.]. Возможным сплавом для получения гидридов является интерметаллическое соединение железо-титан, следует изучать также гидриды алюминия. [c.483]

    Компактный металлический торий быстро тускнеет на воздухе, а порошок металла пирофорен. Взаимодействие металлического тория с кислородом протекает с заметной скоростью при 250° С и быстро при 450° С. Кипящая вода превращает металл в ТЬОг с выделением водорода. Со многими металлами торий образует интерметаллические соединения. Сплавы тория обычно более реакционноспособны, чем чистый торий исключение составляют лишь сплавы с цирконием. Прочность магния при высоких температурах возрастает при сплавлении его с 1—3% ТЬ. Торий реагирует с водородом при 200— 300° С, образуя ТЬНг и ТЬ4Н15. Эти гидриды разлагаются при 900 С, давая очень реакционноспособный порошок металлического тория, применяющийся для получения [c.91]

    Следует особо отметить исследования, направленные на получение электролитическим способом антимонида индия. Получение интерметаллического соединения на катоде представляет не только практический, но и теоретический интерес, так как большинство сплавов, полученных электролизом, является твердыми растворами и лишь немногие сплавы имеют структуру химических соединений [106]. Получение интерметаллических соединений сурьмы электролизом [c.255]

    Такое, с первого взгляда аномальное , поведение сплавов становится понятным, если принять во внимание существование интерметаллического соединения NiзFe, которое образуется в никелевых сплавах, содержащих 15—35 ат. % железа и образует твердый раствор с избытком никеля [9]. Соединение Н1зРе, обладающее упорядоченной структурой, по-видимому, имеет потенциал пассивации, близкой по значению к потенциалу пассивации никеля. Поэтому по мере накопления К1зГе потенциал пассивации сплава сдвигается в сторону потенциала пассивации никеля. Это хорошо видно на рис. 5, где изображена зависимость потенциала пассивации от состава сплава по данным для исследуемых сплавов и результатам, полученным для сплавов с большим содержанием железа [2, 3]. При [c.83]

    Пример 2. При сплавлении олова с магнием образуется интерметаллическое соединение Mg2Sn. В какой пропорции нужно сплавить указанные металлы, чтобы полученный сплав содержал 20 % (масс.) свободного магния  [c.215]

    Дешевый восстановитель — алюминий, но он образует с титаном интерметаллические соединения. Процесс алюмотермического восстановления TiOg освоен в промышленности с целью получения титано-алюминиевого сплава, содержащего 25—27% титана. [c.415]

    Гидрид урана используется для получения различных соединений урана и прежде всего для приготовления из него чистого, тонкодиснерс-ного металлического урана. При гидрировании металл полностью превращается в микрокристаллический порошок, из которого водород может быть удален нагреванием до 350—400° С в вакууме. Так как интерметаллические соединения урана не реагируют с водородом, то металлический уран можно отделить от посторонних включений гидрированием и просеиванием. В частности, этот метод может быть применен к урано-алюминиевым сплавам. [c.265]

    Из табл. 1 следует, что при малых содержаниях платины в сплаве, соответствующих а-тверцым растворам, и низких температурах (—30°) выход надсерной кислоты достаточно высок и приближается к значениям, полученным на платиновых анодах. Это объясняется, возможно, наличием на поверхности анодов, содержащих малые количества платины, индивидуальных окислов [167]. При повышении содержания платины в сплаве и переходе к интерметаллическим соединениям ее с титаном окисная пленка, покрывающая анод, состоит из смешанных окислов платины и титана, на которых затруднена адсорбция анион-радикалов, участвующих в образовании надсерной кислоты [167]. [c.179]

    При стехиометрическом составе сплава А1,2М д реакция идет при 100—120°. Она протекает вяло и требуется подача тепла. Для проведения реакции достаточно одного моля эфира на моль алюминийтриалкила, однако чтобы получить жидкую реакционную массу, приходится брать избыток эфира. Если работать со сплавом, содержащим больше магния, то реакция идет тем лучше, чем больше состав сплава удаляется от стехиометрического отношения А1 М =2 3. В этом случае необходимо хорошее охлаждение. Еще сильнее саморазогрев при употреблении смеси металлов. Такое различие в поведении сплава и смеси металлов объясняется тем, что образование интерметаллического соединения А1 2М 17 (близкого к А)2М д) сопровождается выделением значительного количества тепла [61]. Смесь диэтилалюминийхлорида и этилалюминийдихлорида, содержащая также небольшое количество триэтилалюминия, получается при взаимодействии этилена с хлористым алюминием, под давлением, в присутствии металлического алюминия. Образование такой смеси наблюдалось в процессе полимеризации этилена под действием хлористого алюминия [79, 425]. Как полагают А. Н. Несмеянов и К- А. Кочешков [1], в данном случае имеет место получение алюминийорганических соединений из металла и хлористого этила, образующегося из этилена и хлористого водорода (за счет взаимодействия хлористого алюминия с углеводородами), что, как известно, облегчается каталдтическим действием хлористого алюминия. Улучшение выхода может [311, 426] быть достигнуто, если процесс вести в присутствии водорода. Рекомендуемые условия для процесса температура 100—200°, давление 35—105 атм. [c.267]

    Для получения некоторых металлов и их сплавов в патентной литературе предложено применять комбинированные восстановительные процессы. Этот метод, в частности, предложен для получения металлического урана из иСЬ [32]. По предлагаемому методу это галогенпроизводное восстанавливается в первой стадии натрием при 750° С. Берется примерно 50% натрия, требуемого для общего восстановления всего уранового соединения и кроме того в реактор добавляется цинк, так что на первой стадии восстановление осуществляется, по существу, иатрий-цинковым сплавом. Последнее обеспечивает ряд преимуществ и, в частности, облегчает отделение хлорида натрия от металлов. Для второй стадии восстановления добавляется амальгама кальция и дальнейшее восстановление ведут при 600° С и давлении 15ат. В качестве побочного продукта образуется солевая эвтектика СаСЬ—ЫаС1 с низкой точкой плавления. Получаемый уран полностью поглошается цинко-ртутным расплавом и таким путем в виде интерметаллического соединения количественно отделяется от расплавленных солей. О промышленной реализации этих патентных рекомендаций сведений нет. [c.170]

    Однако в реальных условиях разряжающиеся компоненты сплава взаимодействуют между собой, поэтому по поляризационным кривым отдельных металлов состав сплава рассчитывать нельзя. При совместном разряде на катоде двух металлов происходит либо деполяризация (смещение потенциала разряда в сторону положительных значений), либо поляризация (смещение потенциала разряда в сторолу отрицательных значений) одного или обоих металлов. Причиной этого является взаимодейств,ие металлов на электроде с образованием интерметаллического соединения или твердого раствора возможен также случай, когда разряжающиеся ионы взаимодействуют между собой в растворе, как это наблюдалось в работе К- М. Тютиной при получении сплава олово — никель или в работе Н. В. Коровина при осаждении сплава железо— никель. [c.195]

    Железо растворяется в олове с образованием кристаллов твердого раствора. Предел растворимости железа в олове выражается несколькими сотыми долями процента. Оловянное покрытие на железе, полученное горячим способом, имеет структуру, аналогичную структуре цинкового покрытия и состоит из различных по составу слоев, а именно сплава железо-олово, непосредственно примыкающего к железу, и наружного слоя — олова. Вероятность наличия в полуде интерметаллических соединений типа РеЗпг мала вследствие малой продолжительности операции покрытия и недостаточной температуры ванны для образования этих соединений в покрытии. Однако в сплаве железо-олово, накапливающемся в ванне в процессе лужения, обнаруживаются значительные количества соединений типа РеЗпг, известные под названием скрап . [c.179]


Смотреть страницы где упоминается термин Получение сплавов и интерметаллических соединений: [c.162]    [c.60]    [c.36]    [c.129]    [c.29]    [c.247]    [c.45]    [c.207]    [c.43]    [c.230]    [c.40]   
Смотреть главы в:

Химия урана -> Получение сплавов и интерметаллических соединений




ПОИСК





Смотрите так же термины и статьи:

Интерметаллические соединени

Получение пз соединений

Получение сплава

Соединения интерметаллические



© 2024 chem21.info Реклама на сайте