Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Элементы группы IIA . — Элементы группы ИВ

    В этой таблице впервые появляются 8 групп элементов. Группа— это совокупность элементов, имеющих, как правило, валентность по кислороду в их высщих солеобразующих оксидах, равную номеру группы. Общие формулы этих оксидов приведены Д. И. Менделеевым внизу под номером группы. Впоследствии каждая группа разделилась внутри на подгруппы — главную и побочную. На рис. 5.2 и периоды почти соответствуют по составу современным, но не отвечают им по номерам. [c.76]


    Элементы каждой последующей группы резко отличаются по своим свойствам от элементов предыдущих групп. С повышением номера группы последовательно повышается на единицу высшая положительная валентность (от + 1 в 1-й группе до 7 в 7-й группе) и также последовательно понижается отрицательная валентность элементов (от —4 в 4-й группе до —1 в 7-й группе). В связи с этим, резко различаются формы и свойства соединений элементов разных групп. [c.195]

    Обратим внимание на то, что в пределах отдельных групп Менделеев располагал элементы в порядке возрастания атомных весов. Записи же элементов, составляющих столбцы в черновой таблице, идут в обратном порядке-, двигаясь по столбцу сверху вниз, мы видим не возрастание, а уменьшение атомного веса. Очевидно, что если бы Менделеев сразу располагал элементы столбцами, т. е. составлял из элементов периоды, то более легкий элемент стоял бы не под более тяжелым, а над ним, как это мы видим в более поздней таблице (см. фотокопии IV и V). Это указывает на то, что запись элементов вряд ли делалась столбцами. Напротив, в каждой строке элементы располагаются строго в порядке возрастания атомного веса, так что при нормальной записи элементов, т. е. слева направо, за более легким элементом во всех без исключения случаях следует более тяжелый элемент. Это свидетельствует о том, что, по-видимому, элементы записывались в строку, группой подряд, и что под одной группой ставилась другая. Столбцы же, или периоды, образовались позднее, после того, как были внесены в таблицу все основные группы элементов. На это указывает и следующее замечание Менделеева, сделанное им в 1871 г. по поводу истории открытия периодического закона За немногими исключениями я принял те же группы аналогичных элементов, что и мои предшественники, но поставил целью изучить закономерности во взаимоотношении групп. Тем самым я пришел к вышеупомянутому общему принципу, который приложим ко всем элементам [И, стр. 222]. Это замечание имеет исключительно большое значение для выяснения интересующего нас вопроса. Оно показывает, что Менделеев, приняв сопоставление элементов по группам за исходное, стал искать закономерность во взаимоотношении между самими группами для этого он, естественно, стал сопоставлять группы по величине атомных весов входящих в них элементов. Практически это достигалось тем, что под одной группой подписывалась другая, а затем рассматривались соотношения в атомных весах каждой пары элементов, один из которых (верхний) принадлежал к одной группе, другой (нижний) — к другой. Изучение первого издания Основ химии показывает, что Менделеев неоднократно для характеристики взаимоотношения групп элементов располагает их одну под другой в порядке убывания (а не возрастания ) атомных весов, если двигаться сверху вниз. Так, по поводу взаимоотношения группы галоидов и группь, кислорода, составляющих в табл. 1 вторую и третью строки, он пишет [И, стр. 79] Сопоставление атомных весов элементов двух названных групп прямо указывает то отношение, какое здесь существует. [c.42]


    Водородные связи между молекулами воды объясняют аномалию в температурах кипения гидридов. Так, у гидридов элементов 6-й группы от НоТе к НгЗ температура кипения понижается, и только у НзО она резко повышена благодаря ассоциации ее молекул через Н-связи. Аналогичную аномалию проявляет МНд в пятой и НР в седьмой группе элементов. [c.139]

    Параметры, определяющие варианты конструктивно-компоновочных рещений для групп элементов оборудования, агрегатов или вида схемы, являются дискретными и могут изменяться систематически, т. е. в определенной последовательности, но допущение об их непрерывности неправомерно. К этой группе параметров (признаков вида технологической схемы установки) можно отнести, например, число стадий циклического адсорбционного процесса (четырехстадийный, трехстадийный, двустадийный процесс), способы стадии десорбции, способы выделения рекуперата и т. п. Вторым определяющим показателем принадлежности параметров к четвертой группе служит непостоянство числа элементов оборудования в установке при изменении этих признаков. Как следствие этого изменяется число оптимизируемых термодинамических, расходных и конструктивно-компоновочных параметров, а также состав системы ограничений на область изменения параметров и технологических характеристик. Нетрудно видеть, что параметры рассматриваемой группы отражают более крупные технологические свойства и особенности адсорбционных установок, чем параметры трех предшествующих групп. Охватываемые ими признаки схемы и типа адсорбционной установки естественным образом включают рассмотренные ранее дискретные параметры 1, 2 и 3-й групп. [c.145]

    Особый интерес представляет сродство к электрону элементов группы 5А. В основном состоянии атомы элементов группы 5А обладают электронной конфигурацией пБ пр пр пр. Другими словами, в соответствии с правилом Гунда все валентные р-ор-битали этих атомов наполовину заполнены электронами, спины которых ориентированы в одинаковом направлении. Присоединение электрона к такой довольно устойчивой конфигурации энергетически невыгодно, и действительно, сродство к электрону азота близко к нулю или даже несколько положительно (см. разд. 6.6, ч. 1). Значения сродства к электрону для других элементов группы 5А отрицательны, но все же присоединение электрона к любому элементу группы 5А приводит к выделению значительно меньшей энергии, чем для элементов группы 6А или 7А. Наличие устойчивой, наполовину заполненной электронной подоболочки ответственно также за относительно высокие значения энергии ионизации элементов группы 5А, особенно в случае азота, который имеет более высокий потенциал ионизации, чем кислород. [c.314]

    Электронная конфигурация ns np дает возможность элементам этой группы проявлять степени окисления —И, +11, +IV и +VI. Так как до образования конфигурации инертного газа не достает всего двух электронов, то степень окисления —II возникает очень легко. Это особенно характерно для легких элементов группы. Действительно, кислород отличается от всех элементов группы легкостью, с которой его атом приобретает два электрона, образуя двухзарядный отрицательный ион. За исключением необычных отрицательных степеней окисления кислорода в перекисях (—1), надперекисях (—Va) и озонидах (7з), соединениях, в которых есть связи кислород — кислород, а также состояний + 1 и -+II в соединениях O. Fa и ОРз кислород во всех соединениях имеет степень окисления —И. Для остальных элементов группы отрицательная степень окисления становится постепенно менее устойчивой, а положительные — более устойчивыми. У тяжелых элементов преобладают низшие положительные степени окисления. [c.130]

    В структурной кристаллографии принята совсем иная система обозначений точечных групп, основанная на приведенных выше обозначениях элементов симметрии. Точечные группы, содержащие операции только одной поворотной оси, обозначаются, как и сами элементы симметрии, цифрами 1, 2, 3, 4,. .. группы с единственной инверсионной осью — цифрами с черточками 1, 2, 3, 4,.... Здесь 1 — группа только с центром инверсии 2 —группа с единственной плоскостью симметрии для нее предпочтительно обозначение т. Группы с осями симметрии второго порядка, перпендикулярными главной оси, обозначаются цифрами, стоящими подряд (например, 422 соответствует D4) добавление к главной оси плоскостей, ей параллельных, обозначается дополнением символа буквами т, стоящими подряд за цифрой (например, 4mm соответствует iv) а добавление плоскости, перпендикулярной главной оси, обозначается буквой т, стоящей за косой чертой (например, 4/т соответствует ih). [c.21]

    Принцип причисления элементов к определенным группам в зависимости от электронного строения их атомов, а не в результате учета проявлений макроскопических свойств и подобия их позволяет при строгом его применении поместить Н и Не в I и П группы Системы. [c.115]

    Описаны химические свойства неорганических веществ элементов, расположенных по группам Периодической системы, последовательно представлены свойства элементов А-групп ( - и р-элементов), Б-групп ( /-элементов) и относящихся к 1ПБ-группе семейств лантаноидов и актиноидов (/ -элементов). Внутри каждой группы элементы расположены по мере увеличения порядкового номера так, свойства элементов 1А-группы даны в следующем порядке свойства лития, натрия, калия, рубидия, цезия и франция. Свойства водорода как первого элемента Периодической системы, не относящегося ни к какой группе, представлены отдельно. [c.5]


    Рений (порядковый номер 75) принадлежит к УП группе периодической системы Д. И. Менделеева. Ближайшими к рению по группе элементами являются технеций, который в природе не найден, и элемент 107, который еще не открыт. Ближайшими соседями по периоду являются вольфрам и элементы триады осмия, а по диагональным сечениям таблицы — молибден, уран, элементы триады рутения. Сопоставление свойств рения с его аналогами обеспечивает более полное получение информации о свойствах рения и его соединений [558]. [c.7]

    Элементы образуют а-, р-, Ь- и -семейства, что определяется характером заполнения подуровней внешних энергетических уровней. Вертикальные ряды в П. С. называются группами элементов, где они объединены по признаку высшей степени окисления в оксидах. Каждая группа состоит из главной и побочной подгрупп у элементов главных подгрупп аналогия проявляется в строении внешнего электронного слоя, а у элементов побочных подгрупп — в строении внешнего и предвнешнего слоев. [c.225]

    Дополняющая первые две группы третья группа синтезов пиримидинов заключается в построении пиримидинового ядра путем присоединения фрагмента С—N к молекулам, содержащим группировку С—С—С—N. Такие структурные элементы типичны для большого числа соединений, и поэтому эта группа методов широко используется. [c.275]

    Принимая во внимание строение атома, можно (как будет видно из дальнейшего), начиная с элемента, стоящего за актинием тория с 2=90), рассматривать эти элементы как особую группу. Она располагается аналогично семейству лантанидов и называется семейством актинидов. Однако первые элементы семейства актинидов, именно торий, протактиний и уран, проявляют далеко идущую аналогию с элементами побочных подгрупп IV, V и VI групп. Поэтому при рассмотрении химического поведения этих элементов рекомендуется относить их к вышеуказанным подгруппам. Напротив, элементы, стоящие за ураном — трансураны, по химическому поведению полностью отличаются от элементов побочных подгрупп VII и VIII групп. Таким образом, по химическим свойствам эти элементы могут быть объединены совсем в особую группу. [c.22]

    В этой таблице имеется 8 вертикальных столбцов, которые содержат 8 групп элементов валентность их по кислороду изменяется от 1 до 8 при переходе от группы I к группе VIH элементы групп I, II, III и VIII обычных соединений с водородом не образуют, но элементы групп IV, V, VI и VII с ним соединяются, причем валентность по водороду уменьшается от группы IV к группе VII. Группа VIII содержит элементы различной валентности, которая варьируется от одновалентности (как у никеля) до восьмивалентности (как у осмия). Элементы этой группы проявляют обыкновенно промежуточные степени валентности так, н елезо, кобальт и никель, как правило, бывают двух- и трехвалентны, платина и ее аналоги — двух- и четырехвалентны и т. д. [c.268]

    Остается выяснить, с какой группы Менделеев начал составление табл. 1, иначе говоря, какую запись он сделал первой. Естественно предположить, что первой была записана самая верхняя строка, поскольку процесс раскрытия закономерной взаимосвязи между группами элементов состоял в том, что под заполненной уже строкой подписывалась новая группа элементов с меньншми атомными весами. Обратным был бы путь, при котором над заполненной строкой надписывалась новая группа с большими атомными весами. Таким обратным путем Менделеев вынужден был идти позднее, когда он начал достраивать свою таблицу сверху. Вначале же такой необходимости еще не было. Поэтому можно с большой долей вероятности допустить, что первым элементом в таблицу был записан Ь1, вторым N3, затем — К и т. д. Когда вся первая строка была заполнена группой щелочных металлов, под нею в таком же порядке была подписана группа галоидов, так как атомные веса галоидов ближе к атомным весам щелочных металлов, если идти в сторону уменьшения атомных весов. Вместе с тем такое сближение по атомным весам двух противо-по. гожных групп несходных элементов составило, по Менделееву, наиболее характерную черту его системы. В сопоставлении несходных элементов,— писал он в 1871 г.,— заключается, по-моему, основной признак, отличающий мою систему от систем моих предшественников [11, стр. 221—222]. Можно поэтому предположить, что Менделеев начал с сопоставления наиболее несходных элементов — щелочных металлов и галоидов. При этом оказалось, что, во-первых, атомный вес каждого галоида меньше атомного веса стоящего над ним щелочного металла, и, во-вторых, что разница между атомными весами в каждом случае составляет величину порядка нескольких атомных единиц — от 3,5 до 6  [c.43]

    В то время, когда Менделеев на основе открытого им периодического закона составлял свою таблицу, многие элементы были еще неизвестны. Так, был неизвестен элемент четвертого периода скандий. По атомной массе вслед за кальцием шел титан, но титан нельзя было поставить сразу после кальция, так как он попал бы в третью группу, тогда как титан образует высший оксид Т10г, да и по другим свойствам должен быть отнесен к четвертой группе. Поэтому Менделеев пропустил одну клетку, т. е. оставил свободное место между кальцием и титаном. На том же основании в четвертом периоде между цинком и мышьяком были оставлены две свободные клетки, занятые теперь элементами галлием и германием. Свободные места остались и в других рядах. Менделеев был не только убежден, что должны существовать неизвестные еще элементы, которые заполнят эти места, но и заранее предсказал свойства таких элементов, основываясь на их положении среди других элементов периодической системы. Одному из них, которому в будущем предстояло занять место между кальцием и титаном, он дал название экабор (так как свойства его должны были напоминать бор) два других, для которых в таблице остались свободные места между цинком и мышьяком, были названы экаалюминием и экасилицием. [c.76]

    К первому типу относятся молекулы, содержащие некоторые элемент ты II группы (например, ВеСЬ, 2пВгг, diz) и ряд других (СОг, Sz) такой же конфигурацией обладают некоторые молекулы с неодинаковыми межъядерными расстояниями (в частности, H N). Ко второму типу принадлежат многие соединения р-элементов VI группы (ЗОг, HjO и т.д.). [c.114]

    Тетраэдрические молекулы ХУ4 (группа 7 ), подобные молекуле СН4, весьма богаты элементами симметрии. Среди них встречаются так называемые диэдрические плоскости, которые включают главную ось С , но не пернендикулярньк к ней оси 2- Еще более богата элементами симметрии точечная группа О ,, к которой относятся октаэдрические молекулы иРб и (рис. 72). Особо важно наличие здесь центра симметрии г и горизонтальной плоскости, которых нет у тетраэдрических молекул Группы и относятся к кубическим точечным группам, для которых характерно присутствие более чем одной оси С , где п>2. Для обозначения Т Эчечных групп здесь использована номенклатура Шенфлиса С означает, что в молекуле есть ось симметрии и-го порядка Д —помимо оси С молекула содержит и осей второго порядка, направленных перпендикулярно оси С , причем все углы между осями второго порядка равны Т—тетраэдрические молекулы, О — октаэдрические молекулы. Символы v,% id указывают на существование вертикальной, горизонтальной и диэдрической плоскостей симметрии соответственно. В крх-ссталлографии используют чаще номенклатуру Германа — Могена. Важной характеристикой симметрии мо- [c.175]

    Названия соединений элементов с элементами групп VA, IVA, 1ПА периодической системы, в которых азот, фосфор, мышьяк, сурьма, углерод, кремний, бор являются относительно электроотри- [c.32]

    Таким образом, в VIII группе периодической системы изменение устойчивости соединений с характерными степенями окисления элемента-металла подчиняется тем же закономерностям, которые свойственны элементам-металлам других групп переходного ряда при переходе по группе сверху вниз степень окисления наиболее стабильных соединений растет. Мы уже много раз обращали внимание читателя, что это связано с двояким характером изменения поляризующего действия в группах переходных металлов и сопровождающим это изменение переходом от соединений с преобладающе ионной связью (низкая степень окисления, например, [РеЧ(Н20)в][Fe " (Н20)б] +) к соединениям с преобладающей ковалентной связью (высокая степень окисления, например, 0s i"04). [c.152]

    Группа Элементы группы Примеры (по Хохштрассеру) Ph= Hi [c.139]

    К переходным элементам периодической таблицы химических элементов Д. И. Менделеева относят те из них, у которых заполняется предвнешняя й-оболочка. За исключением цинка, кадмия и ртути, все они имеют недостроенную -оболочку. Цинк, кадмий и ртуть относят к переходным элементам, поскольку они близки им по ряду свойств. Отличаются же они проявлением единственной степени окисления + 2 и в этом отношении похожи на з-элемен-ты — щелочноземельные металлы, с которыми они находятся в одной группе. Как отмечалось в предыдущей главе, переходные элементы побочной подгруппы III группы также имеют одну степень окисления +3. Все же остальные переходные элементы отличает разнообразие проявляемых степеней окисления, обилие окислительновосстановительных реакций, широкое изменение кислотно-основных свойств в соединениях. Наличие неспаренных й-электронов приводит к проявлению широкого круга магнитных, электрических и оптических свойств этих элементов. [c.154]

    Целесообразно рассматривать таблицу Менделеева как своеобразную матрицу, элементами которой являются собственно химические элементы. Роль строки выполняет здесь период, а роль столбца — группа. Совокупность этих характеристик должна обеспечивать инвариантность положения элемента в таблице. В свете современных представлений о строении атома принадлежность элемента к конкретному периоду определяется числом электронных слоев атома в нормальном, невозбужденном состоянии. Номер периода отвечает номеру внешнего слоя, который не завершен и заполняется электронами. А принадлежность элемента к той или иной группе определяется общим числом валентных электронов, т. е. электронов, находящихся на внешней и недостроенных внутренних оболочках . Например, хром [Сг1 [Arl "ЗdЧs и сера [Sl fNe] Зs 3/) являются элементами одной и той же VI группы, поскольку оба атома имеют по б валентных электронов. Отметим, что деление на периоды и группы введено Д. И. Менделеевым, который определил принадлежность элемента к конкретной группе, ориентируясь на химические свойства, в частности на форму и характер высших оксидов и гидроксидов. Действительно, такие непохожие друг на друга металлический хром и неметаллическая сера в высшей степени окисления, соответствующей номеру группы, образуют оксиды [c.8]

    Используя представления о кайносимметрии, можно выделить более тонкий вид электронной аналогии, так называемую слоевую аналогию (в дополнение к групповой и типовой аналогии). Слоевыми аналогами называют элементы, которые являются типовыми аналогами, но не имеют внешних или предвнешних кайносимметричных электронов. К таким аналогам относятся, например, в IA-группе К, Rb, s и Fr, а Li и Na не являются слоевыми аналогами с остальными щелочными металлами, поскольку у Li присутствует внешняя кайносимметричная 2р-оболочка (вакантная), а у Na кайносимметрнчная заполненная 2р-оболочка является предвнеш-ней. В ПА-группе слоевыми аналогами являются щелочно-земельные металлы (подгруппа кальция), а в П1А-группе — элементы подгруппы галлия и т. д. С точки зрения электронного строения слоевые аналоги являются между собой полными электронными аналогами. Поэтому рассматривать химические свойства элементов группы мы будет в такой последовательности первый типический элемент, второй типический элемент, остальные элементы главной подгруппы, элементы побочной подгруппы. Например, в И1 группе отдельно рассматриваются бор, алюминий, подгруппа галлия, подгруппа скандия в V группе — азот, фосфор, подгруппа мышьяка, подгруппа ванадия п т. п. [c.15]

    Третья группа элементов периодической системы — самая эле-мептоемкая. Она содержит 37 элемеитов, включая лантаноиды и актиноиды. Все элементы III группы, за исключением бора, являются металлами. Первый типический элемент бор — неметалл. В какой-то мере бор выполняет роль переходного элемента от металлического бериллия к углероду. Но 1юскольку у атома бора уже в нормальном состоянии на кайносимметричной 2уО-орбитали имеется один электрон (а в возбужденном состоянии 2 электрона), он функционирует как неметалл. Наконец, в третьей груние наблюдается наименьшая разница в свойствах элементов IIIА- и ШВ-групп. Элементы подгруппы галлия, как и А1, являются б р-металлами. В отличие от пих элементы подгруппы скандия принадлежат к sii-металлам. Но в характеристической степени окисления +3 элементы подгруппы галлия имеют внешнюю электронную конфигурацию (n—l)d а типовые аналоги скандия, как и А1(+3),— электронную структуру благородных газов Поэтому некоторые авторы располагают [c.137]

    Предшественники Д. И. Менделеева (Дёберейнер, Ньюленд, Лотар Майер и др.) сравнивали только сходные элементы, а потому и не смогли открыть периодический закон. В отличие от них Д. И. Менделеев обнаружил периодическое изменение свойств элементов с изменением величин их атомных масс, сравнивая между собо11 несходные естественные группы элементов. В то время были известны такие, несходные по свойствам, естественные группы элементов, как, например, галогены и ш,елочные или ш,елочно-земельные металлы. Менделеев следуюш,им образом выписывал и сопоставлял элементы этих групп, располагая их в порядке возрастания атомной массы  [c.46]

    С позиций теории строения атома легко объясняется и тот факт, что с ростом заряда ядра металлические свойства элементов в каждой группе возрастают, а неметаллические — убывают. Так, сравнивая распределение электронов по уровням в атомах фтора Р и иода I, можно отметить, что у них соответственно [Не 25 2р и [Kr]4ii "5s 5/7 т. е. по 7 электронов на внешнем уровне это указывает на сходство свойств. Однако внеи1ние электроны в атоме иода находятся дальше от ядра, чем в атоме фтора (у иода больший атомный радиус), и поэтому удерживаются слабее. По этой причине атомы иода могут отдавать электроны или, иными словами, проявлять металлические свойства, чего нельзя сказать о фторе. К аналогичному выводу о возрастании металлических свойств в группе с ростом заряда ядра приводит и сравнение, например, атомов элементов щелочных металлов лития и цезия Сз, в которых распределение электронов по уровням характеризуется, соответственно, формулами [Не]251 и [Хе]б5Ч Внешний электрон у цезия находится дальше от ядра, чем у лития (у Сз больший атомный радиус), а потому он удерживается слабее. [c.55]

    Совокупность этих характеристик должна обеспечивать инвариантность положения элемента в таблице. В свете современных представлений о строении атома принадлежность элемента к конкретному периоду определяется числом электронных слоев атома в нормальном, невозбужденном состоянии. Номер периода отвечает номеру внешнего слоя, который не завершен и заполняется электронами. А принадлежность элемента к той или иной группе определяется общим числом валентных электронов, т.е. электронов, находящихся на внешней и недостроенных внутренних оболочках. Например, хром [Сг] " — [Аг] 3(Р45 и сера [8] — [Ке]103 23р- являются элементами одной и той же VI группы, поскольку оба атома имеют по 6 валентных электронов. Отметим, что деление на периоды и группы введено Д.И.Менделеевым, который определял принадлежность элемента к конкретной группе, ориентируясь на химические свойства, в частности на форму и характер высших оксидов и гидроксидов. Действительно, такие непохожие друг на друга металлический хром и неметаллическая сера в высшей степени окисления, соответствующей номеру группы, образуют оксиды одинакового состава ЭОз (СгОз и ЗОз), которые к тому же обладают сходными (кислотными) свойствами. Им отвечают гидроксиды, имеющие ярко выраженный кислотный характер, — хромовая НгСгО и серная Н2804 кислоты. Таким образом, в группы Периодической системы объединяются элементы с одинаковым общим числом электронов на достраивающихся оболочках независимо от их типа. Подобное объединение позволяет выделить наиболее общий вид аналогии, который называется группо- [c.227]

    Один из последних вариантов периодической системы массовым тиражом выпущен издательством Химия (1967 г.). В отличие от ранее публикуемых таблиц этот вариант не содержит самостоятельной нулевой группы, элементы которой в виде главной подгруппы перенесены в VIII группу. Это придает единообразие периодической системе. Другая особенность новой таблицы состоит в том, что в нее вошел 104-й элемент — курчатовий Ки. Этот элемент занял место под гафнием, аналогом которого он является, что дало возможность решить вопрос о размещении актиноидов. [c.188]

    Одно из самых наглядных достоинств периодической системы заключается в возможности предсказания с ее помощью наиболее вероятной валентности элемента. Элементы групп I — III, как правило, характеризуются степенью окисления 1, 2 и 3 соответственно. Степень окисления почти всех остальных элементов соответствует номеру их группы, однако возможны отклонения, особенно для элементов центральной части периодической таблицы. Например, элементы Ti, V, Сг, Мп, относящиеся к группам IVE, VB, VIE и VIIE, обнаруживают соответствующие этим группам степени окисления, хотя это не всегда наиболее типичные или устойчивые состояния для указанных металлов. Далее, все лантаноиды (редкоземельные металлы) относятся к III группе, и несмотря на то, что они характеризуются различными степенями окисления, для всех них наиболее типична степень окисления -t-3. У неметаллов, например галогенов, относящихся к VII группе, проявляются степени окисления 7 и — 1, у элементов VI группы, таких, как кислород, сера, селен и теллур, наиболее распространена степень окисления —2. Вместе с тем элементы IV группы — углерод, кремний и германий—почти всегда четырехвалентны. Таким образом, имеется возможность довольно надежно предсказывать наиболее вероятную степень окисления элемента по его положению в периодической таблице тем не менее следует пользоваться периодической таблицей лишь как полезным ориентиром, не считая ее непогрешимым источником сведений о степенях окисления элементов. [c.105]

    Следующий этап анализа - добавление раствора аммиака и соли аммония к насыщенному сероводородом раствору - также не приводит к образованию осадка. Это позволяет заключить, что в образце отсутствуют катионы элементов третьей аналитической группы Ве, А1, Оа и всех переходных и /-элементов. На следующем этапе анализа мы, наконец, получаем осадок под действием группового реактива (NH4)2 Oз, значит, мы имеем дело с элементами четвертой (карбонатной) аналитической группы Са, 8г, Ва. [c.452]

    Непереходные и переходные элементы. Под названием непереходных элементов (элементов главных групп) объединяются элементы, у которых проявляется замечательное сходство в пределах одной и той же подгруппы. Название переходные элементы (transition elements) охватывает важную группу элементов, у которых сходство прослеживается не только в пределах одной подгруппы, но и вдоль горизонтальных строк. Группы элементов периодической системы перечислены в табл 1.3. Чрезвычайно важным для понимания химической основы разграничения элементов главных и побочных подгрупп является то, что между ними существует глубокое различие в способе заполнения внешней электронной оболочки. [c.35]


Смотреть страницы где упоминается термин Элементы группы IIA . — Элементы группы ИВ: [c.63]    [c.241]    [c.252]    [c.51]    [c.46]    [c.138]    [c.246]    [c.235]    [c.226]    [c.127]    [c.226]    [c.226]    [c.226]    [c.226]    [c.241]   
Смотреть главы в:

Химия Справочник -> Элементы группы IIA . — Элементы группы ИВ




ПОИСК





Смотрите так же термины и статьи:

Элемент группы



© 2024 chem21.info Реклама на сайте