Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионитов классификация

    Классификация лигандов. Лиганды могут занимать в координационной сфере одно или несколько мест, т. е. соединяться с центральным атомом посредством одного или нескольких атомов. По этому признаку различают монодентатные, бидентатные, тридентатные..., полиден-татные лиганды . Примерами монодентатных лигандов являются ионы С1-, Р-, СЫ-, ОН-, молекулы НзЫ, Н О, СО и др. К бидентатным [c.112]

    Ионный обмени его применение. Изд. АН СССР, 1959, (319 стр.). Сборник статей различных авторов — крупных специалистов по ионному обмену. Отдельные статьи содержат сведения о классификации ионитов, их химическом составе и методах синтеза о теории ионного обмена и ионообменной хроматографии о применении ионитов в аналитической химии и технологии неорганических веществ, в промышленности, медицине о сорбции органических соединений. Каждая глава снабжена обширным библиографическим списком. [c.489]


    Важнейшая характеристика ионита — количество обмениваемых им ионов, называемое обменной емкостью ионита, Она зависит от природы ионита, свойств и концентрации обменивающихся ионов, а также в значительной степени от pH среды. Зависимость обменной емкости ионитов от pH среды положена в основу их классификации, разработанной Никольским [8]. [c.147]

    АНАЛИТИЧЕСКАЯ КЛАССИФИКАЦИЯ ИОНОВ. СИСТЕМАТИЧЕСКИЙ ХОД КАЧЕСТВЕННОГО АНАЛИЗА [c.157]

    Задачи и методы выявления закономерностей и особенностей фрагментации органических соединений принципиально отличаются от задач и методов структурного анализа и идентификации неизвестных веществ по их масс-спектрам прежде всего тем, что строение изучаемых соединений известно. Конечная цель такого исследования впервые синтезированных или ранее не охарактеризованных веществ — связь спектральных признаков со строением веществ и получение данных о механизмах фрагментации отдельных соединений, их совокупностей со сходными элементами структуры или, чаще всего, целых классов (гомологических рядов). Это подразумевает выявление основных направлений распада молекулярных ионов, классификацию этих процессов, соотнесение всех интенсивных сигналов спектра с соответствующими осколочными ионами и установление связи таких осколочных ионов с теми или иными структурными фрагментами молекул. Чаще всего результатом подобного исследования является формулировка правил интерпретации спектров, пригодных для структурного анализа неизвестных соединений этого же типа. Полученные данные нередко представляют в виде схем фрагментации как индивидуальных соединений, так и, в общем виде, гомологических рядов. При этом следует учитывать, что структуры осколочных ионов обычно неизвестны, и на таких схемах их предпочтительнее изображать брутто-формулами. [c.50]

    Выше рассмотрена классификация методов анализа в зависимости от типа реакции, на которой основано определение. Кроме того, различают методы объемного анализа по способу титрования. Наиболее прост метод прямого титрования, когда определяемый ион непосредственно реагирует с рабочим раствором. К таким методам прямого титрования относится, например, титрование едкой щелочи или углекислого натрия раствором соляной кислоты, титрование щавелевой кислоты или соли закисного железа раствором перманганата и т. п. Наряду с этим большое значение имеют непрямые методы определения из этих непрямых методов наиболее важны метод замещения и метод остатков. [c.280]


    Современная ионная классификация ПАВ была принята на III Международном конгрессе по ПАВ и рекомендована Международной организацией по стандартизации (ISO) в 1960 г. Основу ее составляет химическая структура соединений. По данной классификации ПАВ делятся на ионогенные и неионогенные. [c.9]

    В приведенной классификации учтены природа молекул, определяющая поверхностные эффекты, ионный характер (анионный, катионный, амфотерный) соединений и наличие других структурных элементов. [c.338]

    Учитывая особенности электронного строения атомов (наличие или отсутствие заряда, неспаренных электронов и т. д.), целесообразно ввести более широкое понятие — молеку.п.ярные частицы, при классификации которых необходимо выделять молекулы (отсутствуют заряд и неспаренные электроны), молекулярные радикалы (отсутствует заряд, имеются неспаренные электроны), молеку.чярные ионы (имеется заряд, отсутствуют неспаренные электроны), молекулярные ион-радикалы (имеются заряд и неспаренные электроны) (табл. 1). [c.8]

    Согласно классификации А. В. Киселева [4, с. 18] адсорбенты можно отнести к трем типам. Тип I — неспецифические адсорбенты, к которым относится графитированная сажа. Адсорбенты этого типа не содержат на своей поверхности функциональных групп или ионов, способных к обмену. К этому же типу адсорбентов можно отнести высокомолекулярные углеводороды, например полиэтилен. [c.54]

    В соответствии с современными представлениями электролиты в растворах подразделяются на две группы неассоциированные (сильные) и ассоциированные. Единственным критерием для классификации электролитов в растворе является его полная или неполная диссоциация. Если электролит в растворе диссоциирован нацело, он является неассоциированным. Примером таких электролитов в разбавленных водных растворах являются хорошо растворимые в воде соли, например галогениды, нитраты и сульфаты щелочных Металлов, некоторые кислоты (хлористоводородная, азотная и др,), шелочи. К этому же типу электролитов относятся некоторые малорастворимые в воде соединения, например РЫа,, Сар2, 8г80<, которые в очень разбавленных водных растворах полностью диссоциируют на ио(гы. Ионные равновесия в растворах малорастворимых соединений Описываются произведением растворимости (ПР). Значение ПР малорастворимых соединений невелико. Все остальные электролиты в растворе относятся к группе ассоциированных, которые делятся на три подгруппы. К первой подгруппе [c.75]

    Классификация комплексов. По характеру электрического заряда различают катионные, анионные и нейтральные комплексы. В приближении ионной модели заряд комплекса представляет собой алгебраическую сумму зарядов образующих его частиц. [c.110]

    Помимо классификации относительно водородного электрода по знаку потенциалопределяющего иона электроды подразделяются на электроды первого, второго и третьего рода. [c.430]

    ТАБЛИЦА 121. КЛАССИФИКАЦИЯ случаев совместного РАЗРЯДА ионов [c.567]

    При связывании органических молекул (или ионов) в поверхностном слое белковой глобулы действуют те же силы, которые обычно возникают при межмолекулярных взаимодействиях. Их классификация весьма детально изложена Уэббом [30]. Среди механизмов, [c.23]

    Скорость электрохимического процесса определяется самой медленной стадией, которая в разных электродных реакциях может быть различной по своей природе. Это служит основанием для классификации электрохимических процессов. В любых электрохимических процессах тип поляризации может быть определен ио абсолютной величине эффективной энергии активации, т. е. той энергии, которая необходима, чтобы молекула или ион вступили в электрохимическое взаимодействие, по ее зависимости от потенциала поляризации и скорости перемешивания. Эффективная энергия активации электрохимической реакции может быть определена при постоянном потенциале поляризации по линейной зависимости логарифма плотности тока от обратного значения абсолютной температуры. [c.403]

    Связь водорода с другими элементами в зависимости от их электроотрицательности носит более или менее полярный характер (рис. В.17), что может служить основой для классификации бинарных гидридов. Вследствие того что водород находится примерно в середине шкалы электроотрицательности, он образует как ковалентные, так и ионные соединения (рис. Б. 17), а также соединения промежуточных типов. Особый класс составляют соединения включения водорода с металлами (разд. 36.16.1). [c.461]

    Ионы АР+, Ga3+ и 1п + относятся к жестким кислотам (разд. 33.4.3.4), а TF+ и Т1+ — к группе мягких кислот. Такая классификация обусловлена в основном различными размерами ионов (ионные радиусы, нм) А1 + 0,057 Ga + 0,062 1пЗ+ 0,092 ТР+0,105 Т1+0,149). [c.591]

    Во второй главной подгруппе находятся элементы от бериллия до радия. Во всех своих устойчивых соединениях они про- являют степень окисления +2, причем образуют только бесцветные ионы [M-aq]2+. Ионы Ве2+, Mg2+, Са н-, а также Sr2+ относятся, по классификации Пирсона, к жестким кислотам (разд. 33.4.3.4) поэтому с жестким основанием НгО они образуют устойчивые кислотно-основные комплексы типа М(Н20) ]2+. [c.600]


    Рассмотрим понятие о степени окисления элемента, являющееся одним из важнейших в химии. Степенью окисления называется заряд иона элемента, вычисленный исходя из предположения, что молекула сложного вещества состоит из ионов. Степень окисления — понятие условное, так как большинство соединений не являются ионными. Тем не менее введение этого понятия облегчает классификацию веществ в химии и составление химических уравнений. [c.23]

    Кратко познакомившись с основными методами теории химической связи, перейдем к обсуждению ее свойств. Свойства химической связи проявляются в свойствах различных типов молекул, кристаллов и других объединений атомов и молекул. Ранее считалось, что и природа различных видов связи (ковалентной, ионной, металлической, водородной и др.) различна. Сегодня можно считать, что известные на сегодня виды химической связи едины по своей природе. Поэтому существует возможность единой их классификации. Химическую связь можно подразделить на различные виды. [c.113]

    Происхождение типичных примесей природных вод, их классификация по преобладающим ионам (классификация О. А. Алекииа), основные технологические показатели качества воды и другие сведения из гидрохимии рассматриваются в курсе Водоподготовка и входят соответственно в учебные пособия по этому предмету [4.2, 4.3]. В них рассматриваются сущность методов удаления из воды отдельных примесей, основы построения комбинированных технологических схем, устройство и работа водоподготовительного оборудования. Для того чтобы обосновать выбор наилучшего варианта очистки разных по назначению вод ТЭС, необходимо знать, какие именно примеси и насколько полно следует удалять из воды, чтобы подготовить ее к использованию, т. е. необходимо знать требования к качеству обработанной воды. Эти требования устанавливаются, исходя из условий водного режима станции в целом. В связи с существенным различием водных режимов основных циклов, тепловых сетей и систем охлаждения конкретные требования к воде, поступающей в эти контуры, также различны. [c.99]

    U Классификация комплексов. По характеру электрического за-)Яда различают катионные, анионные и нейтральные комплексы. В приближении ионной модели гдряд комплекс представляет собой 1лгебраическую сумму зарядов ( бразующих ег, частиц. [c.95]

    Не следует думать, что комплексные соединения всегда построены из ионов в действительности эффективные заряды птомоа н молекул, входящих в состав комплекса, обычно невелики. Более правильно поэтому пользоваться термином центральвшй атом . Ионные представления о природе связи в комплексных соединениях носят в некоторой степени формальный характер, одиако они удобны для классификации и определения зарядов комплексов и позволяют качественно предсказать некоторые их свойства. [c.583]

    Авторы сохранили общий строй книги, но для облегчения пользования материалом отказались от разделения процессов на реакции, проходящие в присутствии и в отсутствие щелочи, воспользовавщись классификацией по типам реакций. Введены отдельные разделы по хиральным и полимерносвязанным катализаторам, которые отсутствовали в первом издании, а также новые разделы относительно нуклеофильного ароматического замещения и реакций металлоорганических соединений в условиях межфазного катализа. Основную часть книги занимает гл. 3, посвященная практическому использованию межфазного катализа, где достаточно подробно освещены вопросы техники проведения межфазных реакций, а затем последовательно обсуждено применение межфазного катализа в реакциях замещения (синтез галогенидов, включая фториды, синтезы нитрилов, сложных эфиров, тиолов и сульфидов, простых эфиров, Ы- и С-алкилирование, в том числе амбидентных ионов), изомеризации и дейтерообмена, присоединения к кратным С—С-связям, включая неактивированные, присоединения к С = 0-связям, р-элиминирования, гидролиза, генерирования и превращения фосфониевых и сульфониевых илидов, в нуклеофильном ароматическом замещении, в различных реакциях (ион-радикальных, радикальных, электрохимических и др.), в металлоорганической химии, при а-элиминировании (генерировании и присоединении дигалокарбенов и тригалометилид-ных анионов), окислении и восстановлении. В каждом разделе приведены конкретные методики проведения реакций в различных условиях межфазного катализа и таблицы примеров синтеза разнообразных классов соединений. В монографии использовано более 2000 литературных источников. [c.6]

    Факторы, определяющие характер и вид коррозии, весьма разнообразны. Основные причины коррозии металлов заложены в их свойствах термодинамической неустойчивости, стремлении переходить из металлического состояния в более энергетически устойчивое — оксидное или ионное состояние. Большое многообразие металлов, коррозионных сред и условий их контакта обусловливают различные виды коррозии. На рис, 23,2 приведена обобщенная классификация различных вндов коррозии металлов в зависимости от коррозионной среды характера разрушения условий эксплуатации и механизма коррозионного процесса. Первая группа не нуждается в комментариях о четвертой было сказано раньше. [c.280]

    Процессы адсорбции классифицируют в соответствии с типом взаимодействия адсорбата с адсорбентом. Физико-химическая классификация основывается на том положении, что перераспределение компонентов между объемной фазой и поверхностным слоем может произойти под действием физических сил или в результате химической реакции между адсорбатом и адсорбентом. Химическую реакцию в этом случае можно представить либо как химическое ирисоедииеиие атомов (молекул), либо как ионообменное взаимодействие. Таким образом, согласно физико-химической классификации различают физическую (молекулярную) ад-сорб[иио, хемосорбцию (химическое присоединение атома, молекулы) и ионный обмен. В данном разделе рассматривается, главным образом, физическая адсорбция газов и паров. [c.108]

    Обычно ПАВ классифицируют в зависимости от их способности к диссоциации на ионогенные и неионогенные " . В свою очередь ионогенные ПАВ разделяются на анионо- и катионоактивные и ам-фолитные (амфотерные) . Такая классификация имеет своей основой свойства головки молекулы. Ионные ПАВ всегда связаны с противоионами и их свойства существенным образом зависят от природы этих ионов. Гидрофобная часть молекулы ПАВ ( хвост ) обычно состоит из углеводородной цепи различной длины, которая может содержать ненасыщенные, ароматические фрагменты, быть частично галогенизированной и т.п. [c.66]

    Классификация на основе природы элементарного акта. Если неподвижной фазой является твердое вещество, то элементарным актом взаимодействия анализируемого вещества (сорбата ) с твердой фазой (сорбентом) может быть 1) акт адсорбции— адсорбционная молекулярная хроматография 2) обмен ионов, содержащихся в твердой фазе, на ионы из раствора — ионообменная хроматография 3) химическое взаимодействие с образованием труднорастворимого осадка — осадочная хроматография. При адсорбционной молекулярной хроматографии жидких или газообразных веществ хроматографическое разделение основывается на различии адсорбционного сродства между компонентами разделяемой смеси и веществом твердой фазы, называемым в данном случае адсорбентом. Этот вариант хроматографии относится к классическому цветовскому варианту. [c.12]

    Классификацию гидроокисей проводят обычно на основании величины концентрации водородных ионов, ири которой начинается или заканчивается осаждение гидроокисей различных металлов. Кислотность или щелочность растворов характеризуют, как обычно, неличиной рН(рН = —1 [Н+1). Часто для характеристики растворимости гидроокисей пользуются данными Бриттона (табл. 5). Однако Бриттон обращал недостаточно внимания на концентрацию катионов между тем нз принципа произведения раствори.мости видно, что начало осаждения гидроокиси зависит от концентрации катиоиов в растворе. [c.95]

    Широкое изучение различных типов сопряженных реакций окисления проведено Н. А. Шиловым. Наряду с обширным экспериментальным исследованием Н. А. Шилов глубоко разработал теорию сопрян<енных реакций и дал основную классификацию и терминологию, которая применяется и в настоящее время. Кроме образования различных активных промежуточных ступеней окисления, в некоторых случаях сопряженные реакции связаны с комплексообразованием. Так, при окислении иона, например, Ре , идр., связанного в комплекс с винной кислотой, наблюдается часто сопряженное окисление винной кислоты, хотя последняя сама по себе в тех же условиях не окисляется данным окислителем. [c.359]

    Сблеобразные карбиды образуют ионную кристаллическую-решетку, состоящую из катионов металла и разнообразных анионов углерода, производных-этина (Сг аллилена (Сз ) и метана (С ). Ковалентная составляющая связи в этих соеди-1йениях относительно мала. Солеобразные карбиды — бесцветные, прозрачные кристаллические вещества. При их взаимодеЙ -ствии с водой образуются различные продукты соответственна с этим принята классификация солеобразных карбидов. [c.556]

    Современная классификация силикатов основывается на различии способов сочленения кремнекислородных тетраэдров между собой. Наиболее детально классификация структур кристаллических силикатов разработана У. Брэггом, Ф. Махачки и Л. Полингом. Она относится главным образом к силикатам, содержащим катионы со сравнительно небольшими ионными радиусами (Ь1, Mg, Ре и др.). [c.178]

    На рис. 12 приведены плоскостные схемы всех рассмотренных типов кристаллических решеток. Однако, принимая такую классификацию кристаллов, всегда нужно иметь в виду, что характер разных связей даже в одном и том же кристалле может быть не одинаковым и классификационные признаки не всегда четко и хорошо выражены. Наряду с кристаллами, относящимися к одному из четырех рассмотренных видов связи, существуют кристаллы с различными переходными и смешанными формами связи. Это, например, целиком относится к кристаллогидратам, в которых встречаются одновременно ионный тип связи между катионами и анионами соли, ковалентная связь между атомами, входящими в состав аниона, а также полярные связи внутри молекул воды и ионоди-польная связь молекул с ионами. [c.34]

    Студент, торопившийся закончить свою лабораторную работу, решил, что неизвестный раствор, качественный анализ которого он проводил, содержит ион металла из группы нерастворимых карбонатов (группа 4 по классификации разд. 16.6), Поэтому, минуя предварительные пробы на ионы металлов из групп 1-3, он сразу же обработал свой раствор 1 а2СОз. Из раствора выпал осадок, и поэтому студент сделал вывод, что в нем присутствовал ион металла из четвертой группы. Почему такое заключение может быть ошибочным Указание. [c.140]


Смотреть страницы где упоминается термин Ионитов классификация: [c.80]    [c.439]    [c.96]    [c.175]    [c.470]    [c.403]    [c.21]    [c.192]    [c.103]    [c.114]    [c.94]   
Технология редких металлов в атомной технике (1974) -- [ c.140 ]

Технология редких металлов в атомной технике (1971) -- [ c.140 ]




ПОИСК







© 2025 chem21.info Реклама на сайте