Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение магния таллии

    Титан можно осаждать в присутствии железа (II и III), алюминия, цинка, кобальта, никеля, бериллия, хрома (III), марганца (II), кальция, магния, таллия, церия (III), тория, натрия, калия, аммония, а также фосфатов, молибдатов, хроматов, ванадатов, перманганатов, уранила и ванадила. Мешают определению ионы циркония, церия (IV) и олова. Перекись водорода также должна отсутствовать. На осаждение циркония влияют церий (IV), олово, большие количества фосфата, а также титан при отсутствии в растворе перекиси водорода. [c.156]


    Определение содержания таллия в исследуемых образцах производят с помощью калибровочной кривой, устанавливаемой на чистых растворах солей таллия известной концентрации при соответствующей обработке. Для этого определенное количество стандартного раствора хлорида таллия, предварительно окисленного до трехвалентного состояния бромной водой, переносят в мерную колбу емкостью 25 мл, добавляют 5 нл 0,2%-ного раствора иодида калия и раствор доводят водой до метки. После перемешивания раствор помещают в кварцевую кювету ультрафиолетового фотометра и измеряют оптическую плотность выделившегося иода, количество которого эквивалентно содержанию ионов таллия в растворе. По нескольким значениям оптической плотности, соответствующим разной концентрации таллия, строят калибровочную кривую. Прибавление к стандартному раствору значительных количеств хлоридов алюминия, цинка, магния, калия и натрия не оказывает замет- ного влияния на зависимость оптической плотности раствора от количества содержащихся в нем ионов таллия. [c.152]

    Вследствие заметной растворимости пикрата калия определение дает результаты, заниженные на 2—5% [2309]. В присутствии больших количеств солей натрия могут получаться завышенные результаты для калия. Определению мешает присутствие солей рубидия, цезия, одновалентного таллия, больших количеств аммония, осаждаемых пикриновой кислотой. Не мешают соли магния, кальция, алюминия, железа и других элементов. [c.52]

    Соли кадмия, алюминия, хрома, кобальта, никеля, цинка, марганца, магния, щелочноземельных и щелочных металлов не мещают определению таллия в нейтральных или слабокислых растворах. При осаждении из аммиачных растворов должны отсутствовать катионы, образующие малорастворимые гидроокиси. Присутствие солей свинца, ртути, серебра, висмута и других катионов, осаждаемых иодидом калия, мещает определению таллия добавление комплексонов повы-щает селективность метода [745]. [c.89]

    Свойства. Зеленовато-коричневые кристаллы или порошок. Применяют для определения РЗЭ при pH 4—6 переход окраски от голубой к красной для определения висмута (III) при pH 2—3 и свинца при pH 4 переход окраски от красной к желто-оранжевой. При pH 7—8 определяют никель, кобальт, кадмий, магний и марганец переход окраски от сине-фиолетовой к красной. Методом обратного титрования определяют палладий, таллий (III), железо, индий и галлий (III), [c.273]


    Определение Мо в растворимых солях магния, марганца и таллия проводят аналогичным образом без выделения молибдена. [c.326]

    Свинец высокой чистоты. Спектральный метод определения натрия, кальция, магния, алюминия, железа и таллия [c.582]

    ХИМИКО-СПЕКТРАЛЬНОЕ ОПРЕДЕЛЕНИЕ АЛЮМИНИЯ, ВИСМУТА, ГАЛЛИЯ, ЖЕЛЕЗА, ЗОЛОТА, ИНДИЯ, КАЛЬЦИЯ, МАГНИЯ, МАРГАНЦА, МЕДИ, НИКЕЛЯ, СВИНЦА, СУРЬМЫ, ОЛОВА, СЕРЕБРА, ТАЛЛИЯ, [c.119]

    Химико-спектральное определение алюминия, висмута, галлия, железа, индия, кальция, меди, магния, марганца, никеля, олова, свинца, сурьмы, серебра, таллия, тантала, титана, хрома и цинка в фтористоводородной, [c.528]

    Пламенную фотометрию применяют (табл. III.8) для определения щелочных (литий, натрий, калий, рубидий, цезий) и щелочноземельных (бериллий, магний, кальций, стронций, барий), а также некоторых других металлов (галлий, индий, таллий, свинец, марганец). Для щелочных металлов Сн ниже, чем в случае атомной абсорбции, а интервал определяемых содержаний составляет 0,1—0,001 мг/л для остальных металлов Си равен 0,1—5 мг/л при относительном стандартном отклонении -0,03 [1,4]. [c.247]

    Трехвалентный таллий образует вполне устойчивое комплексное соединение с комплексоном и в то же время не реагирует с индикатором. Для его непосредственного определения можно использовать реакцию вытеснения с применением комплексоната магния. [c.312]

    Так, авторы работы [55] испытывали 100-ваттную ксеноновую лампу, излучающую сплошной спектр в области от 230 ммк до 2000 ммк, и не обнаружили флуоресценции пламени. Существенной особенностью атомно-флуоресцентного метода является возможность использования при определении одного элемента источника света, излучающего спектр другого элемента. Так, при освещении паров цезия светом гелиевой лампы возбуждались, как указывают авторы [55], линии Сз 852 ммк., и Сз 388 ммк. Возможным является применение в качестве источников света ртутно-амальгамных ламп, а также электрических дуг и искр. Указывая на эту возможность, авторы [55] ссылаются на работы [57, 60], в которых ртутно-таллиевую лампу применяли для определения таллия по линии Т1 535 ммк. Что касается применения дуги, то имеется в виду работа [60], автор которой обнаружил интенсивную флуоресценцию атомных паров магния (линия Мд 285 ммк), а также заметную флуоресценцию серебра, золота и меди при возбуждении светом угольной дуги, электроды которой содержали небольшие количества указанных металлов. [c.240]

    Понятно, что чем более чистый объект поступает на анализ, тем более чистые реактивы при этом требуются. Чистота продажных реактивов часто оказывается недостаточной. Поэтому реактивы, используемые для аналитического концентрирования, обычно приходится дополнительно очищать. Прежде всего такая задача возникает при определении широко распространенных элементов алюминия, железа, кальция, кремния, магния, меди и некоторых других. При определении менее распространенных элементов, например редкоземельных, таллия, ванадия, ниобия, сурьмы, можно в большинстве случаев обойтись без дополнительной очистки применяемых реактивов. Особые требования предъявляются к реактивам, которые используются для концентрирования при анализе высокочистых веществ. [c.146]

    По приведенному ниже ходу анализа определение висмута можно выполнить в присутствии значительных количеств щелочных и щелочноземельных металлов, магния, марганца, цинка, кобальта, никеля, хрома, алюминия и т. п. Свинец и таллий не мешают определению, если они присутствуют в таких количествах, что не образуют осадков. В присутствии сурьмы, Меди, железа, серебра и т. п. вначале выделяют висмут, экстрагируя его дитизоном из аммиачно-цианидного раствора. [c.176]

    В этих же условиях флуоресцируют, но слабее рения ртуть—в сто раз, сурьма и уран—в 5—7 раз. Снижают яркость флуоресценции рения хром (Сг +), марганец (Мп " ) и золото при содержании, большем чем 100 мкг вольфрам— большем, чем 150—200 мкг. Молибден допустим в количестве до 25—30. иг. Присутствие в растворе галогенидов недопустимо, потому что такие элементы, как галлий, железо, таллий и некоторые другие, образуют с ними комплексные соединения, реагирующие с родамином 6Ж и тем самым мешающие определению рения. Для устранения указанных помех пробы спекают с окисью магния [2], при этом ртуть улетучивается, а при водном выщелачивании вольфрам, золото и другие элементы остаются в нерастворимом осадке- В объеме 25. u.i водного раствора этот метод позволяет определять от 0.5 до 30. икг рения. Средняя воспроизводимость результатов определений составляет 15—20%. [c.108]

    Определению фосфора не мешают 1000-кратное по отношению к фосфору количество кремния, а также титан, тантал, ниобий, мышьяк, сурьма, олово, свинец, бор, индий, таллий, галлий, алюминий, кальций, магний, никель, марганец, медь, железо, ртуть и серебро, если их количества не превышают 250-кратного по [c.101]

    При анализе сурьмы, ниобия, кремния и ванадия мышьяк выделяют в виде арсина, который поглощается смесью растворов хлорида ртути(II) и перманганата. В случае анализа сурьмы и ниобия мышьяк (V) предварительно выделяют вместе с магний-аммоний фосфатом. Для определения мышьяка в галлии, индии и таллии мышьяк(V) предварительно восстанавливают аскорбиновой кислотой и экстрагируют хлороформом в виде диэтилдитио-карбаматного комплекса, после разложения которого определяют мышьяк в виде мышьяковомолибденовой сини. [c.151]


    В результате работ Е. А. Божевольнова и сотрудников Институт занял ведущее положение в этой области. Были выполнены теоретические исследования по связи между строением органических реагентов, их комплексов с катионами и люминесцентными свойствами, а также по изысканию новых люминесцентных реактивов. Рекомендованы к выпуску промышленностью химических реактивов люминесцентные реактивы для определения алюминия, магния, таллия, галлия, цинка, кадмия, селена, сульфидной серы и других элементов. [c.29]

    Катионы алюминия, сурьмы, мышьяка, бария, бериллия, висмута, бора, кадмия, кальция, церия (III), хрома (III), галлия, германия, железа (III), ланггана, свинца, магния, марганца, ртути (II), молибдена, никеля, ниобия, серебра, стронция, тантала, тория, титана, таллия, олова (IV), вольфрама, урана (VI), ванадия (V), цинка и циркония не мешают определению 10— 15 мкг кобальта, если каждый из них присутствует в количествах, не больших чем 0,1 г [1255]. [c.137]

    Широкие исследования по разложению карбонатов проводились Центнершвером, Гюттигом и Завадским с их сотрудниками. Более ранние исследования были посвящены главным образом определению давления диссоциации и вычислению теплот диссоциации. Центнер-швер с сотрудниками [30] изучал кинетику диссоциации карбонатов свинца, магния, кадмия, цинка, таллия и серебра и получил для роста давления 8-образные кривые. Он объяснил эти кривые образованием промежуточных основных карбонатов такое объяснение не является общепринятым. Скорость реакции достигает максимума и затем изменяется по закону первого порядка, что характерно для многих уже упомянутых экзотермических реакций разложения в твердой фазе. Этот автор встретился с присущей для карбонатных систем трудностью, а именно с установлением ложного равновесия . [c.297]

    Купфероновый метод вполне надежен для определения железа, титана, циркония, ванадия и в отдельных случаях — олова, ниобия, тантала, урана (IV), галлия и, вероятно, гафния. Этим методом можно определять также медь и торий, но осаждать их следует из слабокислых растворов результаты определения этих элементов менее удовлетворительны, чем при обычно принятых методах. Из числа элементов, мешающих применению кунферонового метода, следует упомянуть таллий (III), сурьму (III), палладий, ниобий, тантал, молибден, висмут, церий, торий, вольфрам и большие количества кремния, фосфора, щелочноземельных и щелочных металлов Торий и церий частично выделяются купфероном даже из растворов, содержащих 40% (по объему) серной кислоты. Уран (VI) не влияет на осаждение купфероном. Число элементов, мешающих определению купфероном, может показаться очень значительным, но нужно принять во внимание, что часть из них относится к группе сероводорода и может быть легко отделена перед осаждением купфероном, а некоторые элементы встречаются редко. Здесь следует указать на представляющие интерес разделения, которые можно осуществить этим методом, а именно 1) отделение железа, титана, циркония, галлия и ванадия при анализе чистых алюминия, никеля, цинка и т. п. 2) отделение осаждающихся купфероном элементов от алюминия, хрома, магния и фосфора при анализе различных руд и горных пород 3) отделение ванадия (V) от урана (VI), разделение урана (IV) и урана (VI) и отделение ванадия от фосфора. Осажденяе купфероном может быть осуществлено в присутствии винной кислоты, что дает возможность предварительно отделять железо в виде сульфида. Для этого в раствор вводят достаточное количество винной кислоты, чтобы он оставался прозрачным нри последующем добавлении аммиака. В кислом растворе восстанавливают железо сероводородом и затем подщелачивают аммиаком. Выделившийся осадок сульфида железа отфильтровывают, как описано нри осаждении сульфидом аммония (стр. 115), фильтрат подкисляют серной кислотой, удаляют сероводород кипячением и после этого проводят осаждение купфероном. [c.144]

    Цирконий, гафний, скандий, торий, иттрий, лантан, церий, неодим и эрбий образуют розовые или красноватые лаки в аммиачных растворах, не содержащих карбоната аммония. Галлий в количествах менее 0,1 мг, иридий и таллий (менее 2 мг) не влияют на реакцию. Небольпше количества ванадия (V) [1 мг) не сказываются на определении, а большие количества дают желтое окрашивание. Кальций, стронций и барий в количестве 10 мг не оказывают влияния, а такие же количества магния дают розовую окраску, не исчезаюи ую в присутствии карбоната аммония. Азотная кислота, сернистый ангидрид, сероводород, фтористоводородная кислота и более 25 мг фосфорной кислоты обесцвечивают лак i. [c.578]

    Перекись водорода и перекись натрия препятствуют полному осаждению циркония на холоду при кипячении в их присутствии цирконий полностью осаждается. При осаждении гидроокиси циркония щелочами отделяются следующие элементы мюминий, галлий, цинк, молибден, вольфрам, ванадий, бериллий, мышьяк и Сурьма. В присутствии карбонатов отделяется уран. Для этой цели к щелочи прибавляют I—2 г Na Og. Прибавление перекиси водорода улучшает отделение. В осадке с цирконием находятся железо, титан, марганец, хром, кобальт, никель, медь, кадмий, серебро, индий, таллий, торий и редкоземельные элементы. Магний и щелочноземельные металлы при достаточном содержании карбонатов также полностью осаждаются. Этот метод может иметь некоторое значение для отделения циркония от молибдена, вольфрама, ванадия, алюминия и бериллия. По данным Руффа [700], бериллий не отделяется щелочью количественно, так же как и алюминий, особенно в присутствии больших количеств аммонийных солей. Осаждение гидроокиси циркония аммиаком может применяться при гравиметрическом определении циркония. Но этот метод используется лишь в случае отсутствия примесей, осаждаемых аммиаком. [c.53]

    Тозднее горизонтальный адаптер по типу, предложенному Фува и Валли, был довольно успешно использован Кёртиганом и Фельдманом [72] для увеличения чувствительности определения висмута, кадмия, меди, ртути, магния, марганца, никеля, свинца, сурьмы, стронция, теллура, таллия и цинка. Эксперименты проводились с кварцевыми трубками диаметром 1 см и длиной от 20 до 80 см, теплоизолированными снаружи слоем асбеста. Для атомизации растворов применялось в основном кислородно-водородное пламя, хотя, как было выяснено авторами, кислородно-ацетиленовое пламя обеспечивает известные преимущества в отношении [c.230]

    К кислому раствору соли таллия (П1) прибавляют не менее чем эквивалентное количество комплексоната магния (избыток не мешает) и раствор нейтрализуют аммиаком в присутствии нескольких капель метилового красного. К нейтрализованному раствору прибавляют буферный раствор (2—3 капли на каждый мл), затем столько твердого индикатора, чтобы появилась отчетливая виннокрасная окраска и титруют 0,01—0,001 М раствором комплексона. 1 мл 0,01 М раствора комплексона соответствует 2,0439 мг таллия [38]. В качестве индикатора служит эриохром черный Т в смеси с хлоридом натрия в отношении 1 300. Определение очень точное, если имеется уверенность в том, что в растворе весь таллий находится в трехвалентном состоянии. Одновалентный таллий образует в аммиачной среде очень слабое комплексное соединение. Согласно Флашке (цит. выше), таким способом можно определить таллий в количестве нескольких сотых миллиграмма. Автор рекомендует сперва отделить таллий от мешающих элементов осаждением иодидом в виде T1J в присутствии комплексона по Пршибилу и Забранскому [39]. Раствор центрифугируют и иодид таллия разлагают азотной кислотой, после чего содержание таллия определяют указанным способом-. Серебро также осаждается в этих условиях в виде AgJ, но не мешает комплексометрическому определению таллия. Автор намеревается применить этот метод для токсикологических и судебно-химических определений. [c.64]

    Ход определения по Флашке [46]. К слабокислому анализируемому раствору соли таллия прибавляют эквивалентное количество комплексоната магния, раствор нейтрализуют аммиаком по метиловому красному (одна капля), подщелачивают буферным раствором (стр. ЗСЗ) (2—3 капли на 1 мл раствора) и после прибавления эриохрома черного Т титруют до появления чистосиней окраски. [c.312]

    Совершенно специфическим является осаждение таллия из цианидного и тартратного растворов (pH 7—9). Серебро можно также определить висмутиолом и отделить от ряда металлов, если применить в качестве маскирующих реактивов комплексон, тиосульфат и цианид калия [56, 58]. Некоторые весовые определения можно заменить косвенным комплексометрическим определением. Так, например, висмут [59] после осаждения висмутиолом из 0,3 и. раствора азотной кислоты (или 0,5 н. раствора НС1 или 1 н. раствора Н2804) отфильтровывают, осадок промывают и затем растворяют в 0,02 М растворе комплексона, избыток которого определяют обратным титрованием раствором соли магния. Аналогичным образом можно определять свинец [60]. [c.541]

    Спектры испускания флуоресценции хелатов металлов обычно размыты, и для строгой идентификации их недостаточно. Поэтому при проведении анализа стараются подобрать специфичный реагент и подходящие условия опыта. Кроме того, часто бывает необходимо отделять мешающие элементы. Флуоресцирующие хелаты пригодны для определения ряда металлов, например алюминия, галлия, бериллия, циркония, тория, германия, магния, цинка, вольфрама, олова, таллия, ванадия, рутения и т. д. (см. обзоры Уайта [374]). Для иллюстрации рассмотрим один пример — хорошо известное флуо-риметрическое определение ионов алюминия с помощью 8-оксихинолина. В принципе метод прост проводят реакцию при pH 5—6 и оксинат алюминия экстрагируют хлороформом для измерения его флуоресценции. Галлий и индий также дают оксинаты, имеющие полосы флуоресценции, перекрывающие полосы оксината алюминия (рис. 182), и Коллат и Роджерс [377] разработали метод для одновременного определения галлия и алюминия в смеси. Он основан на том, что относительная эффективность возбуждения двух оксинатов при 366 и 436 нм различна (т. е. различны отношения их коэффициентов погашения при этих длинах волн). К сожалению, различия недостаточны для очень точного определения, и этим методом особенно трудно определять небольшие количества одного элемента в присутствии гораздо больших кон-центраций другого. [c.462]

    Зесовые методы одновременного определения углерода, водорода и других элементов в одной навеске (мг) разработаны на основе пиролитич. сожжения в пустой трубке (Коршун и сотр.). Для раздельного поглощения нек-рых мешающих соединений в трубку для сожжения помещают взвешиваемые контейнеры (пробирки, гильзы, лодочки). По весу несгорающего остатка определяют а) в виде окисла — бор, алюминий, кремний, фосфор, титан, железо, германий, цирконий, олово, сурьму, вольфрам, таллий, свинец и др. б) в виде металла — серебро, золото, палладий, платину, ртуть (последнюю — в виде амальгамы золота пли серебра). По изменению веса металлич. серебра определяют летучие элементы и окислы, реагирующие с серебром с образованием солей хлор, бром и иод — в виде галогенидов серебра, окислы серы — в виде сульфата серебра, окислы рения — в виде перрената серебра и т. д. Возможно определение четырех или пяти элементов из одной навески, напр, углерода, водорода, серы и фосфора или углерода, водорода, ртути, хлора и железа и т. д. Разработан метод определения углерода, водорода и фтора в одной навеске, применимый к анализу твердых, жидких и газообразных веществ. Вещество сжигают в контейнере, наполненном окисью магния углерод и водород определяют по весу СО2 и Н2О, а фтор, задержавшийся в виде фторида магния, определяют после разложения последнего перегретым водяным наром. Выделяющийся нри этом НГ поглощают водой и определяют фторид-ион методами неорганического анализа. [c.159]

    ЭДТА и другие комплексоны этого типа продолжают играть важную роль в амперометрическом определении меди [39—45]. Есть рекомендации для определения меди в присутствии магния [45] цинка [46], серебра и таллия [47]. Определение меди при помощи комплексонов в присутствии других элементов описано в соответствующих разделах ( Висмут , Железо , Индий , Лантан , Кадмий , Палладий , Ртуть , Молибден , Серебро ). [c.207]

    Вообще работ, посвященных определению таллия (III) в присутствии других элементов, довольно много. Таллий(III) титруют раствором ЭДТА в присутствии циркония, свинца, цинка, магния [c.268]

    Атомно-абсорбциснными методами с повышенной чувствительностью определяют серебро, магний, кадмий, таллий, свинец, марганец, железо, кобальт, никель, родий и, кро-ме того, трудноопределяемые эмиссионными методами золото, ртуть, молибден, палладий, платину, цинк, сурьму, висмут, олово. Чувствительность определений элементов пламеннофотометрическими методами представлена в табл. 1. [c.310]

    Метод применим для анализа твердых, жидких и газообразных соединений, в том числе и для перфторированных, содержащих любые гетероэлементы, кроме щелочных и щелочноземельных металлов и таллия, образующих трудногидролизуемые фториды, а также кроме рутения и осмия. Оксид рутения (IV) поглощается MgO, но при пирогидролизе можно опасаться образования летучего RUO4 и перехода его в гидролизах. Окоид осмия(VIII) оксидом магния не задерживается и в некоторых случаях может быть определен одновременно с С, Н и F. Однако не исключено, что в присутствии в веществе некоторых других гетероэлементов, например, бора, часть осмия останется в слое MgO и, выделяясь при пирогидролизе в конденсат, может мешать определению фтора. Мешающее действие рутения и осмия при определении фтора с помощью пирогидролиза Mgp2 не исследовано. [c.111]


Смотреть страницы где упоминается термин Определение магния таллии: [c.227]    [c.362]    [c.362]    [c.362]    [c.169]    [c.362]    [c.669]    [c.751]    [c.301]    [c.40]    [c.29]   
Аналитическая химия магния (1973) -- [ c.176 ]




ПОИСК





Смотрите так же термины и статьи:

Магний определение

Таллий



© 2025 chem21.info Реклама на сайте