Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фенол реакции с серой

    Очистка фенолов от серы протекает при повышенной температуре также в инертной среде в присутствии железа, меди, никеля и др. Тиофенол реагирует с железом (восстановленным из окиси железа в струе водорода) с образованием бензола, дифенила, закиси железа и водорода бензола из тиофенола образуется примерно 57% и дифенила 5 %. Тиофенол начинает реагировать с железом при 175°, и при 230—250° реакция протекает бурно. Эту очистку можно проводить как периодически (с обратным холодильником), так и непрерывно при температуре 250— 280° [5]. Периодический подогрев с медью и др. мон но объединить с дистилляцией фенолов. [c.267]


    Очищать сырые фенолы от серы можно и при помощи серы. Сера реагирует с меркаптаном по реакции [c.270]

    Предложен такой механизм реакции фенола и серы [67]  [c.183]

    Аналогично схеме (6.37) действует эпоксид. Роль активированных олефинов и эпоксида в реакции (6.37) заключается в связывании полисульфидных анионов серы, что способствует селективному образованию моносульфидов в реакциях фенолов с серой в мягких условиях [68],  [c.185]

    При проведении конденсации фенола с ацетоном в присутствии соляной кислоты или хлористого водорода исследовались самые различные промоторы. Действие их неодинаково. Например свободная и однохлористая сера, тиосульфат натрия и т/зет-бутил-меркаптан являются малоэффективными. Данные по действию сероводорода разноречивы по-видимому, он ускоряет реакцию, однако в значительно меньшей степени, чем при использовании серной кислоты как конденсирующего агента. Селенистая и теллуристая кислоты и их соли ускоряют процесс ) , но выход дифенилолпропана не превышает 80—90%. Вероятно, выход можно увеличить, если повысить мольное отношение фенол ацетон в исходной смеси или количество катализатора, г- [c.123]

    Накопленные к настоящему времени данные по химии процесса жидкофазной гидрогенизации и взаимосвязи реакций, имеющих место в этом процессе, представляют значительный интерес. Целесообразно рассмотреть сначала общую динамику изменения группового состава типичного сырья в процессе жидкофазной гидрогенизации с тем, чтобы выяснить закономерности превращений одних групп компонентов в другие, а затем перейти к уточнению и детализации химии превращений каждого класса соединений — нейтральных соединений, кислотных компонентов (фенолов) и азотсодержащих соединений. Превращения соединений, содержащих серу, вследствие специфичности процессов гидрообессеривания топлив рассматриваются в гл. 6. [c.163]

    В модификации активности катализаторов могут играть роль и физические факторы. Среди них первостепенную роль играет величина поверхности. Так, при сравнении в реакции гидрирования фенола различных образцов WS2, освобожденных от физических загрязнений (в том числе от механически увлеченной избыточной серы) прокаливанием в вакууме, показано что активность катализатора была прямо пропорциональна его удельной поверхности. Следовательно, развитая поверхность — обязательное условие получения активного катализатора. В ходе эксплуатации поверхность катализатора уменьшается за счет упорядочения кристаллической структуры и образования углистых отложений. Считают что упорядочение кристаллической структуры протекает не вследствие перехода из моноклинной в гексагональную систему, как полагали ранее так как все образцы катализаторов независимо от отношений S W состояли из одной фазы с одинаковыми порядками решетки. Свежий катализатор представляет собой небольшие тонкие пакеты, образованные беспорядочно смещенными по отношению друг к другу слоями WSg. Упорядочение при кратковременном нагревании происходит только при температуре выше 700 °С. При этом быстро уменьшается удельная поверхность в основном за счет пор радиусом 20—80 А. По этой же причине уменьшается и поверхность ката- [c.272]


    В литературе имеется довольно обширный материал по синтезу присадок первой группы. Их можно получить реакцией алкилфенолов с хлоридами серы и дальнейшим омылением бис(алкил-фенол)сульфидов оксидами или гидроксидами металлов. Такие присадки улучшают противокоррозионные и моющие свойства масел. Это — присадки АзНИИ-ЦИАТИМ-1, ЦИАТИМ-339 и др. Однако противокоррозионные свойства их недостаточно высоки, что связано с сильным пространственным эффектом арильных групп. Противокоррозионное действие веществ, содержащих серу, сводится, как известно, к образованию защитной сульфидной пленки на металле. В случае же фенолятов присоединение серы к металлам затрудняется в результате экранирования ее объемистыми арильными радикалами. [c.200]

    Реакция проводится в серии реакторов с применением катализатора палладий на угле. Продукты реакции фильтруются от катализатора и подвергаются ректификации с целью удаления непрореагировавшего фенола, который затем поступает в рецикл. Полученную смесь циклогексанона и циклогексанола разделяют дистилляцией. Циклогексанон направляют затем на переработку в соответствующий оксим классическим методом. После проведения бекмановской перегруппировки капролактам-сырец, выделенный из реакционной массы нейтрализацией аммиаком и последующей экстракцией растворителем, очищается методом кристаллизации из водных растворов.  [c.307]

    Независимо от схемы, по которой протекает гидрокрекинг, результаты его обычно оценивают по достигнутой степени расщепления. В первом приближении во всех случаях эта степень может количественно определяться по уравнению (8). Однако для более полной характеристики процесса целесообразно оценивать также интенсивность гидрирования, например, путем определения скорости присоединения водорода к типичным сероорганическим, кислород- и азотсодержащим соединениям. Во всех формах гидрокрекинга количество сероорганических соединений можно косвенно учитывать по общему содержанию серы в сырье и в продуктах реакции. Кислород- и азотсодержащие соединения условно учитывают по содержанию в сырье фенолов и оснований. [c.146]

    При абсорбционной очистке используют такие селективные растворители как фенол, фурфурол, смесь фенола с пропаном, жидкий оксид серы (IV), серная кислота, гидроксид натрия. Так например, при щ елочной абсорбционной очистке протекают реакции  [c.150]

    Охлажденный плав подкисляют. Выделение диоксида серы указывает на присутствие в анализируемом соединении сульфогруппы. В случае сульфокислот ароматического ряда подкисленный плав должен дать качественную реакцию на фенол. [c.269]

    Сходные по строению продукты образуются, если сначала фенол конденсируют с альдегидом и только после этого проводят реакцию с серой. Несмотря на то, что модифицированные серой ФС [c.115]

    Для снижения индукционного периода к сырью часто добавляют небольшие количества веществ, способных генерировать свободные радикалы. К числу наиболее распространенных технических инициаторов реакции окисления относятся гидроперекись изопропилбензола ( гипериз ), динитрил бас-изомасляной кислоты ( диниз ), гидроперекись тргт-бутила и др. При необходимости затормозить или полностью прервать реакцию окисления в реакционную массу добавляют ингибиторы — вещества, вызывающие рекомбинацию свободных радикалов (такие, например, как производные фенола и серы, амины и т. д.). [c.174]

    Взаимодействие фенолов и серы происходит относительно легко в присутствии щелочных катализаторов при 130—230°С нри этом в зависимости от типа фенольного компонента и мольного соотношения фенола и серы образуются жидкие или твердые смолы, имеющие неприятный запах сульфида водорода. Простейшее соединение, образующееся в ходе этой реакции, — дигидроксидифе-нилсульфид, может быть или подвергнут конденсации с формальдегидом (8.4) и затем отвержден или же его сразу сшивают резолом (8.5) [27, 34]  [c.115]

    Шестичленные цикланы частью изомеризуются в нятнчленные, частью распадаются. При недостаточном парциальном давлении водорода и высокой температуре идет их дегидрогенизация. Полицикланы в оперативных условиях гидрогенизации превращаются в более простые цикланы. Сернистые, азотистые и кислородные соединения претерпевают ряд превращений. В конечном счете процесс гидрогенизации приводит обычно к отщеплению серы в виде сероводорода, азота в виде аммиака и кислорода в виде воды 1. В последнем случае, нанример нри гидрогенизации фенола, реакция в зависимости от свойств 1 атализатора и режима процесса может пойти в направлении превращения фенола нли в циклогексанол, или в бензол. [c.314]

    Сущность механизма этой важной для синтеза фенолов реакции состоит в следующем. Сера, имеющая в сульфокислоте степень окисления +5, подвергается восстановлению ионом ОН (или ОГ), который, атакуя контактный атом углерода (связанный с серой), передает в переходном состоянии часть заряда на вакантную орбиталь бензольного кольца и часть на сульфитный (не сульфатный) кислород. Минуя стадию переходного состояния, атом серы уносит целый электрон, который первоначально принадлежал иону ОН . Таким образом, ОН служит восстановителем, а -ЗОзО Ма — окислителем. [c.529]


    Реакция с серой и ее соединениями. Взаимодействие с сероа осуществляется обычно при нагревании фенолов с серой в водных растворах или глицерине. В реакционную массу добавляется, кроме того, щелочь или сода. Возможно также введение серы и при реакции с хлористой серой [15, с. 645]. [c.38]

    Для осаждения антифрикционного сплава с 8—12% Зп и 92—88% РЬ Н. Т. Кудрявцев и Л. А. Яковлева применили фенолсульфоновый раствор (раствор 4, табл. 23). Пара-фенолсульфоновую кислоту готовили сульфированием фенола концентрированной серйой кислотой. Фенолсульфоновый свинец получали по реакции [c.64]

    Присадки в пластичные смазки вводят реже, чем в смазочные масла. В мыльные смазки чаще всего добавляют модификаторы структуры, улучшающие их коллоидную стабильность и реологические свойства. Модификаторы структуры в основном представляют собой мылообразные поверхностно-активные вещества стеараты, олеаты и нафтенаты алюминия, свинца, кальция, натрия и других металлов. Применяют также свободные жирные кислоты, одно- и многоатомные спирты и сложные эфиры. В качестве антиокислителей вводят соединения тех же типов, что и в смазочные масла, — амины, фенолы, амино-фенолы, соединения серы, селена, фосфора, цинка, кадмия [160, 264]. Они предотвращают образование перекисей или переводят их в неактивную форму и препятствуют развитию цепной реакции окисления. Такие присадки действуют избирательно например в литиевых и кальциевых смазках хорошо зарекомендовал себя дифениламин, параоксидифениламин и их смеси, а также фенил-р-нафтиламин. Распространенными присадками, улучшающими защитные свойства мыльных смазок, являются сульфонаты и нафтенаты щелочных и щелочноземельных металлов и некоторые амины. Для повышения липкости в смазки вводят высокополимеры полиолефипы, полиакрилаты, а также некоторые мыла, в частности мыла канифольных кислот. [c.175]

    Нагревание серы до 150 °С в насыщенном углеводороде приводит к дегидрированию, сопровождающемуся выделением сероводорода [30, 31]. Для более эффективного осуществления дегидрирования смесь нагревают до 500—700 °С. Получающиеся при этом непредельные соединения вступают во взаимодействие с серой, образуя зачастую серусодержащие циклические соединения. Этан и пропан [32] или этилбензол [33] дают соответственно этилен, пропилен и стирол с хорошими выходами. Из циклогексана и серы при 300 °С образуется бензол [34]. Кроме упомянутых реакций серы с углеводородами известны многочисленные процессы дегидрирования углеводородов и их производных с участием полисульфидов и сульфидов. Например, при кипячении тетралина с полисульфидом образуется нафталин [35], из циклогеКсанола — фенол [36], а при облучении светом смеси дисульфида с тетралином или циклогексаном получаются соответственно нафталин и бензол [37]. Однако при кипячении серы с н-бутаном в качестве основного продукта образуется тиофен [32]. [c.37]

    В присутствии NaOH при взаимодействии фенола с серой при 120—160° С промежуточно получается полисульфид натрия, который действует как катализатор. Реакция (6.20) ингибируется образующимся бис (оксифенил) дисульфидом. Автоингибирование возрастает с температурой и коррелируется с концентрацией реагентов [60]. [c.182]

    Эта реакция, которая может быть проведена со всеми органическими соединениями, имеющими подвижный атом водорода, называется реакцией сульфометилирования. Она также гладко протекает и с фенолами, аминами, амидами кислот, меркаптанами, тиофенолами и др. В этой реакции mohiho применять вместо бисульфита двуокись серы, о чем свидетельствует следующий опыт. [c.425]

    Реакцию ведут в аппаратуре, описанной для алкилирова-иия фенола изобутилепом в присутствии сериой кислоты, с той тольр о разницей, что в тубусе колбы, через который проходит труб1 а для подачи изобутилена, устанавливают капельную вороику. [c.386]

    Аппаратура и условия реакции такие же, как и для получения сульфида тг-торе/тг-бутилфенола. К 41,2 г (0,2 моль) п-трет-оитл-фенола в растворе 62 мл бензола постепенно добавляют 13,5 г (0,1 моль) полухлористой серы. В результате реакции получают дисульфид п-трет-октллфеяола в виде твердой массы коричневого цвета. Выход 46 г, что составляет 97% от теоретического. [c.398]

    И кинетическом отношении кислотное разложение гидропероксидов характеризуется очень высокой скоростью, причем практически полное превращение в присутствии 0,05—1% (масс.) НгЗО,-(в расчете на гидропероксид) при 50—60 °С достигается за 2— 3 мни. Реакция тормозится водой и ускоряется образующимся фенолом, имея первые порядки по кислотному катализатору и гидропероксиду. Вместо сериой кислоты в качестве катализаторов ИСП эП Ывались катионообменные смолы, но сведения об их практп-чес1 ом применении отсутствуют. [c.373]

    А б с о р б iTiTTIk ндкостями — наиболее распространенный и до сих пор наиболее надежный способ газоочистки. Она используется в промышленности как основной прием извлечения из газов оксидов углерода, оксидов азота, хлора, диоксида серы, сероводорода и других сернистых соединений, паров кислот (НС1, H2SO4, HF), цианистых соединений, разнообразных токсических органических веществ (фенол, формальдегид, фталевый ангидрид и др.) и т. д. Метод абсорбционной очистки основан на избирательной растворимости вредных примесей в жидкости (физическая абсорбция) или избирательном извлечении их прн помощи реакций с активными компонентами поглотителя (хемосорбция). Абсорбцион- [c.229]

    Природа сшивающего агента (вулканизатора) и, следовательно, способ вулканизации зависит от природы каучука. Каучуки, содержащие в молекуле двойные связи (НК, СКС, СКИ, СКД) вулканизируются серой при 140—160°С (серная или горячая вулканизация) или, реже, хлористой серой 8гС12 без нагревания (холодная вулканизация). Серные вулканизаты не обладают достаточно высокой термической и химической стойкостью, поэтому, эти каучуки вулканизируют также пероксидами, хинонами, азо- и диазосоединениями, феноло-формаль-дегидными олигомерами. СК, содержащие функциональные группы (карбоксилатные, уретановые, хлоропреновый и т.п.) вулканизируются бифункциональными агентами, реагирующими с этими группами по реакциям замещения или присоединения (оксиды двухвалентных металлов, соли непредельных кислот и др.). [c.440]

    За исключением указанной особенности, присущей нитрофево-лам, этерификация фенолов при действии сульфохлоридов не осложняется побочными процессами при самых разнообразных условиях реакции. -Нафтол реагирует с п-толуолсульфохлоридом [158] при нагревании до 140°, причем этерификация облегчается присутствием конденсирующих агентов. Согласно одному сообщению [159], бензолсульфохлорид реагирует с фенолом при 60° в присутствии цинка, однако целесообразность применения этого катализатора вызывает сомнение. Большое значение имеет метод, заключающийся в обработке фенола в растворе щелочи [160] или углекислого натрия [161] сульфохлоридом. Если сульфохлорид представляет собой твердое вещество, его можно предварительно растворить в бензоле или эфире. Применение в качестве реакционной среды спирта [162] имеет то преимущество, что получается гомогенная реакционная смесь, и это особенно важно в случае высокомолекулярных фенолов, например 2,5-дифенилфенола [163]. Фенолят натрия [164а] легко реагирует с сульфохлоридами в бензольном растворе. Серебряная соль 2-нитро-4-метилфенола [1646] реагирует с п-толуолсульфохлоридом аномально из реакционной смеси выделено соединение, которое не содержит серы (G14H23O5N). [c.337]

    Алкилирование фенолов осуществляют разнообразными продуктами (олефинам и, спиртами, хлорпарафинами, полимер-дистиллятом и др.) в присугствии катализаторов (серной или бен-золсульфокислоты, хлористого алюминия, катионообменной смолы КУ-2 и др.). Этот процесс является головным для получения многофункциональных присадок АзНИИ-ЦИАТИМ-1, ЦИАТИМ-339, БФК, ИНХП-21, ВНИИ НП-370, а также Присадок АСК, МАСК, ионола и др. Высокая химическая активность алкилфенолов в реакциях с серо- и фосфорсодержащими соединениями, окисями и гидроокисями металлов, а также в реакциях [c.314]

    Известны методы дегидрирования кетонов в присутствии серы ил селена. Реакция, вероятно, протекает с отщеплением двух атомов водорода и образованием неустойчивого кетодигидробензола, который изомеризуется в фенол  [c.280]

    Реакция проводится в мягких условиях (30°) при постепенном добавлении А1С1з к смеси соответствующего фенола и этилортоформиата в хлористом метилене или бензоле. Ароматический альдегид выделяют после гидролиза реакционной смеси. В случае образования о- и п-изомеров их разделение осуществляют обычными методами. Выходы альдегидов 40—97%- Метод проверен на большой серии фенолов, метилфенолов и нафтолов и имеет преимущества перед ранее применявшимися способами формилирования указанных соединений. Впоследствии [29] метод был распространен и на другие соединения фенольного ряда. Подробно исследовано взаимодействие различных фенолятов с этилортоформиатом [30]. Показано, что в этом случае образуется сложная смесь формилпроизводных, триарилметанов и ксан-тенов (см. стр. 86). [c.85]

    Синтез Вильсмейера применим к реакцнонносиособным ароматическим соединениям, особенно к полициклическим соеднианням, фенолам, их простым эфирам, а также к реакцнонноспособным гетероциклическим соединениям, содержашлм кислород, серу и азот. Б отличие от синтезов Гаттермана, Гаттермана — Коха и Гаттермана— Адамса в эту реакцию также хорошо вступают вторичные II третичные ароматические амины. [c.427]


Смотреть страницы где упоминается термин Фенол реакции с серой: [c.120]    [c.121]    [c.709]    [c.30]    [c.24]    [c.35]    [c.282]    [c.136]    [c.258]    [c.146]    [c.164]    [c.295]    [c.285]    [c.501]    [c.530]    [c.96]    [c.30]   
Фенолы (1974) -- [ c.38 ]




ПОИСК







© 2025 chem21.info Реклама на сайте