Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вулканизаты соединениями

    Наряду с указанными соединениями весьма эффективным стабилизатором для хлоропренового каучука является дибутил-дитиокарбамат никеля (в количестве 2% от массы полимера), который повышает стойкость каучука и вулканизатов на его основе к тепловому старению и замедляет подвулканизацию резиновых смесей, превосходя в этом отношении неозон Д. Другое преимущество дибутилдитиокарбамата никеля заключается в том, что каучук, стабилизированный им, имеет повышенную стойкость к озонному старению (озоностойкость увеличивается в 20 раз) [46]. [c.382]


    Вследствие высокой реакционной способности карбоксильных групп в качестве вулканизующих агентов можно кроме окисей, гидроокисей и других соединений поливалентных металлов использовать также диамины, гликоли, диизоцианаты, полиэпоксиды. В этих случаях пространственная структура вулканизатов образована за счет ковалентных связей. В зависимости от применяемого вулканизующего агента образуются различные типы поперечных связей  [c.400]

    В присутствии активаторов уменьшается степень сульфидности связей в вулканизатах в результате взаимодействия полисульфидных соединений каучука с активатором, например с окисью цинка (с образованием 2п5), и частично за счет превращения полисульфидных связей в дисульфидные и моносульфидные связи. Последнее сопровождается обычно увеличением числа поперечных сульфидных связей в структуре вулканизата. [c.145]

    Бромбутилкаучук и хлорбутилкаучук совмещаются с другими каучуками, различными мягчителями и смолами. Смеси с бром-бутилкаучуком и хлорбутилкаучуком обладают способностью крепиться к металлу в процессе вулканизации, они отличаются повышенной скоростью вулканизации по сравнению со смесями на основе бутилкаучука. Вулканизаты бромбутилкаучука имеют меньшую прочность и более высокий модуль по сравнению с вулканизатами из бутилкаучука. Ввиду склонности к подвулканизации в смеси из бромбутилкаучука необходимо вводить соединения, предотвращающие преждевременную вулканизацию, например окись магния или ацетат натрия . [c.363]

    Мягчители не только участвуют в процессе регенерации, но и образуют один из компонентов регенерата, повышая его пластичность. Кроме того, непредельные соединения, содержащиеся в мягчителях, могут взаимодействовать как со свободной серой, содержащейся в вулканизате, так и с серой, выделяющейся при тепловой обработке при распаде полисульфидных связей благодаря этому также уменьшается возможность структурирования каучука . Согласно представлениям, высказанным разными авторами, в присутствии мягчителей, имеющих в своем составе непредельные соединения, склонные к окислению или образованию перекисей, происходит сопряженное окисление мягчителя и вулканизата. Такие мягчители в условиях регенерации образуют нестойкие перекисные соединения, распадающиеся на радикалы, которые инициируют окислительную деструкцию вулканизованного каучука. [c.370]

    БК не совмещается с высоконенасыщенными соединениями без применения специфических приемов. Уже при наличии 1-5% (масс) высоконенасыщенных добавок, как правило, получаются губчатые вулканизаты. [c.283]


    ХБК можно вулканизовать системами, эффективными для БК, например комбинацией серы с ускорителями серной вулканизации, соединениями — донорами серы, хиноидными системами, метилол-фенольными смолами, а также соединениями, реагирующими с ал-лильным хлором [1]. Среди вулканизующих агентов, обусловливающих сшивание ХБК по связи С—С1, наибольший практический интерес представляет оксид цинка. В его присутствии получают достаточно прочные теплостойкие вулканизаты [1, 7, 10]. [c.183]

    Наиболее важным представителем мочевин является этилен-тиомочевина, известная также под названием меркаптоимидазолина [1, 17, 18]. Тиомочевины — быстровулканизующие соединения, смеси с ними характеризуются меньшей склонностью к подвулканизации, чем смеси с ди- и полиаминами, и имеют сравнительно слабый запах. Вулканизаты характеризуются хорошей озоностойкостью. [c.185]

    Данные расширенных испытаний резиновых смесей и вулканизатов с кобальтсодержащими соединениями [c.241]

    Для повышения теплостойкости вулканизатов используют специальные добавки — окись железа, двуокись титана, двуокись хрома, соединения церия, силикаты тяжелых металлов, углеродистую сажу. [c.111]

    Бутадиеновые каучуки, получаемые в растворе. К этой группе каучуков относятся статистический СКДЛ, получаемый в присутствии литийорганических соединений, и стереорегулярные ц с-1,4-полибутадиены, образующиеся под влиянием титановых, кобальтовых и никелевых каталитических систем (СКД, СКД-2, СКД-3). Эти каучуки имеют различные молекулярные параметры, в связи с этим они отличаются реологическими характеристиками, стойкостью к термомеханической деструкции, морозостойкостью и некоторыми другими свойствами вулканизатов. [c.187]

    Эффективный способ устранения подвулканизации смесей — экранирование поверхности частиц соединения металла защитной пленкой. Например, описан способ повышения стабильности резиновых смесей за счет использования окиси цинка, покрытой сульфидом цинка, и окиси цинка, покрытой фосфатом цинка [8]. Применение органических кислот и их ангидридов в качестве замедлителей реакции солеобразования с окисью цинка снижает подвулканизацию смесей карбоксилсодержащих каучуков и одновременно существенно улучшает свойства вулканизатов [8]. Применение в качестве вулканизующих агентов алкоголятов алюминия, магния, а также различных перекисей двухвалентных металлов (Zn02, ВаОг и др.) позволяет существенно повысить стойкость резиновых смесей к подвулканизации [7]. Особенностью карбоксилсодержащих каучуков является повышенная стойкость в процессе теплового старения, очень высокое сопротивление разрастанию трещин (больше 300 тыс. циклов) [1]. По комплексу свойств карбоксилсодержащие каучуки представляют существенный интв--рес для различных областей применения.  [c.403]

    В присутствии оксидов металлов или их солей реакции распада ускорителей и формирования активных промежуточных соединений протекают на поверхности оксидов или в мицеллах нх солей жирных кислот. Они имеют топохимнческий характер, что сказывается на формирующейся сетчатой структуре вулканизата  [c.305]

    Из практики известно, что обкладочные резины (резины, предназначенные для крепления к текстильному или металлическому корду, ткани или проволоке) следует тщательно предохранять от попадания силоксановых каучуков и кремнийорганических жидкостей, поскольку они, как правило, несовместимы с углеводородными каучуками и, вследствие этого, стремятся выйти на поверхность раздела между армирующим материалом и полимером. От этих процессов в наибольшей степени страдают адгезионные свойства композиций. В то же время, известно, что в некоторых случаях малые добавки кремнийорганических соединений оказывают положительное влияние на свойства эластомерных композиций на основе обычных углеводородных каучуков, в частности, на их вязкость и уровень упруго-прочностных и динамических показателей их вулканизатов. Известно также, применение кремнийоранических добавок, содержащих функциональные группы, в качестве промоторов взаимодействия неполярных каучуков с гидрофильными наполнителями, особенно, кремнекислотного типа. [c.112]

    Вулканизующие вещества (вулканизующие агенты) гфедстаь-ляют собой химически активные соединения, принимающие участие в образоватш пространственной сетчатой структуры вулканизата. Для вулканизащш натурального каучука н большей части синтетических каучуков, применяемых в настоящее время, используется сера, она является основным вулканизующим веществом. Иногда совместно с серой применяется селен. [c.128]

    Органические ускорители вулканизации стали применяться значительно позднее неорганических ускорителей, а именно в начале текущего столетия. Ввиду весьма благоприятного влияния на физико-механические свойства вулканизатов и высокой активности органические ускорители в настоящее время почти полностью вытеснили неорганические ускорители. Органические ускорители относятся к самым различным классам соединений в настоящее время известно несколько сот органических веществ, способных ускорять вулканизацию, но на практике преимущественно применяют только некоторые, лучшие из них тиурам, кап-такс, альтакс, сульфенамиды, дифенилгуанидин. [c.135]


    Общее содержание мягчителей в резиновых смесях бывает разное, оно зависит не только от ингредиентов, но главным образом от вида каучука. Натуральный каучук содержит естественные мягчители он легко смешивается с ингредиентами и хорошо обрабатывается, поэтому при изготовлении резиновых смесей на основе натурального каучука обычно ограничиваются небольшим количеством мягчителей — 5—8% от массы каучука. Синтетические каучуки, особенно дивинил-стирольные и диви-нил-нитрильные, трудно смешиваются с ингредиентами, поэтому требуют применения значительного количества мягчителей, до 30%. Большая часть мягчителей применяется в резиновых смесях в количестве 2—5% от массы каучука, но некоторые могут применяться в количестве до 10%, а иногда и в большем количестве без существенного ухудшения физико-механических свойств вулканизата. В этом случае мягчители выполняют одновременно роль наполнителей. К таким мягчителям относятся рубракс, ку-мароновые смолы. Эти вещества содержат различные непредельные соединения, которые химически взаимодействуют с серой во время вулканизации, образуя продукты, обладающие некоторой прочностью и эластичностью, чем и объясняется возможность их применения в резиновых смесях в больших количествах. [c.180]

    Вулканизацию бутилкаучука можно также производить с помощью феноло-формальдегидных смол резольного типа, например с помощью смолы 101-К (продукт конденсации п-тогт-бутилфе-нола с формальдегидом), взятой в количестве 6—12%, в присутствии галоидсодержащих соединений. По тепло- и термостойкости и выносливости при многократных деформациях также вулканизаты значительно превосходят обычные серные вулканизаты бу-тилкayчyкa  [c.363]

    Некоторые полимеры при пиролизе не образуют характеристических соединений, преобладающих по количественному содержанию (полиэтилен и этиленпропиленовые сополимеры, полиуретаны на основе простых эфиров, полисилоксаны). Однако в продуктах пиролиза большинства полимеров, в том числе и каучуков общего назначения, выявлены индивидуальные соединения, позволяющие осуществлять их идентификацию как в товарных полимерах, так и в материалах сложного состава, содержащих наряду с полимерами другие органические и неорганические компоненты (в резиновых смесях, найозтенных и ненаполненных вулканизатах, клеевых композициях, полимерных покрытиях и пленках, синтетических волокнах и т.п.). Использование индивидуальных характеристических продуктов пиро- [c.72]

    Исследование ускорителей вулкагшзации и продуктов их тер мического распада. Масс-спектральный метод позволяет выявить аналитические характеристики индивидуальных веществ для идентификации этих соединений в вулканизатах и различных средах, контактирующих с эластомерами [45, 46]. Дня этого термолиз резин проводят в баллоне напуска масс-спектрометра с последующим разделением продуктов методом молекулярной дистилляции. Для качественного состава образующихся соединений используют ионизацию электронами низких энергий, метод высокого разрешения и прямой анализ дочерних ионов. [c.146]

    Содержание цыс-1,4-звеньев определяется в основном типом катализатора, применяемого для полимеризации изопрена. Так, применение циглеровскнх (на основе тетрахлорида титана и алюминийалкилов) катализаторов позволяет получить полиизопрен, содержащие до 98% цыс-1,4-звеньев, соединенных по принципу голова к хвосту , с физико-механнческими свойствами близкими к свойствам НК. Следует указать, что в НК практически 100 /о цис-1,А-зьенъеъ соединены по принципу голова к хвосту . При полимеризации на литийалкильных катализаторах полимер содержит до 93%) 1,4-звеньев и по ряду показателей уступает НК. Свойства вулканизатов поли- [c.152]

    Вулканизация проходит втристадии I — индукционный период, в течение которого идет соединение отдельных молекул каучука, II — собственно вулканизация, характеризующаяся образованием сетчатой структуры, III — в зависимости от состава резиновой смеси концентрация поперечных связей после достижения максимального значения может падать. Это явление называется реверсией. Кинетика вулканизации показана на рис. 5.1. Индукционный период— период сохранения при заданной температуре вулканизации вязкотекучего состояния, обеспечивающего оформление заготовок без подвулканизации вулканизация — период сшивания макромолекул каучука с образованием пространственной сетки с заданным комплексом технических свойств достижение оптимума и плато вулканизации, обеспечивающее постепенное образование вулканизата по всей толщине изделия без перевулканизации. За плато при продолжении вулканизации может наблюдаться реверсия (перевулканизация), приводящая к ухудшению свойств вулканизата. [c.46]

    При дублировании двух слоев не-вулканизованных резиновых смесей, которые можно рассматривать как вязкие или упруговязкие жидкости, сравнительно быстро достигается плотный контакт по площади, соответствующей номинальной площади контакта. Если полимеры несовместимы термодинамически, то между ними сохраняется четкая граница раздела. При этом адгезия определяется межмолекулярным взаимодействием [32] или (при полном отсутствии воздушных включений, загрязнений и оксидных пленок на поверхности) когезионной прочностью более слабого компонента, же юлимеры совме Т1ш 1 (самопроизвольно смеши-ваютсяУРгоГвследствие взаимодиффузии макромолекул будет происходить постепенное размывание границы контакта с образованием промежуточного диффузного слоя. При этом граничный слой приобретает свойства полимера в объеме и прочность адгезионного соединения также следует рассматривать с позиций общих представлений о природе (объемной) прочности полимеров. При соединении резиновой смеси с вулканизатом, даже если они приготовлены на основе совмещающихся каучуков, вследствие наличия пространственной устойчивой структуры у вулканизата возможна, главным образом, односторонняя диффузия смеси. Поэтому всегда сохраняется четкая граница раздела и глубокий микрорельеф поверхности. Истинная (фактическая) площадь контакта в этом случае может быть гораздо больше (в десятки раз) номинальной [39, 40] и при полном покрытии этого рельефа пластичной резиновой смесью прочность связи может быть довольно высокой (до 1—2 МПа), даже если удельное межмолекулярное или химическое взаимодействие сравнительно мало и имеются многочисленные дефекты и включения в граничном слое. Например сложная структура технических волокон (рис. 2.18) может быть причиной многих дефектов резино-кордной системы. [c.96]

    Например, пенаполненные вулкапизаты ХСПЭ, полученные под действием соли СГ, имеют прочность при растяжении до 16 МПа. По совокупности свойств они подобны вулканизатам диеновых эластомеров с солями непредельных кислот и другими напределъ-ньши соединениями [78, il55, 211], а также термоэластопластам [212, 213], повышенная прочность которых объясняется гетерогенной структурой, вулканизационные узлы которой служат одновременно полифункциональными поперечными вязям.и и усиливающим наполн ителем. [c.85]

    Гуанидины, напр.имер ДФГ и ди-о-толилгуанидин,. применяются только. как вторичные ускорители в ко1мбина,ции -с тиазолами, так как свойства йулканизатов с этими соединениями уступают свойствам вулканизатов с ускор.ителями других классов. [c.139]

    Смеси ХСПЭ с полиолами склонны к подвулканизации. Скорчинг смесей, содержащих первичные многоатомные опирты, уменьшается (При использовании соединений с. повышенной тем.перату-рой плавления, например лентаэритрита (т. пл. 250 °С). Благодаря ряду ценных ОВОЙСТВ вулканизатов и низкой стоимости пентаэритрит оказался наиболее пригоднььм для практического иопользования. Его обычное содержание в смеси 8 масс. ч. С помощью системы пентаэритрит —. оксид магния (Получают вулканизаты, устойчивые к изменению окраски. [c.142]

    Вулканизаты ХСПЭ не -поддерживают горения, что, (по-видимо-му, объясняется (возникновением защитной пленки из газообразных соединений хлора, образующихся в результате термического разложения каучука. Однако п-о огнестойкости вулканизаты ХСПЭ несколько хуже, чем вуЛ(Канизаты хлоропреновых (Каучуков [3]. Новые типы ХСПЭ с повышенным содержанием хлора по огнестойкости равноценны -или превосходят полихл-оропрен -[ 100, 130— 132]. Введение оксида сурьмы позволяет дополнительно повысить огнестойкость вулканизатов ХСПЭ. [c.151]

    Характерными представителями вулканизующих агентов аминного типа являются диэтилентриамин, гексаметилен- и фенилен-диамин [1, 7], которые обеспечивают чрезвычайно быструю вулканизацию и высокую озоностойкость. Однако смеси с этими соединениями склонны к подвулканизации, а резины имеют низкое относительное удлинение, сильный неприятный запах и пачкают при соприкосновении. При вулканизации аминами выделяется хлористый водород, для связывания которого следует вводить вещества основного характера, например избыток амина или лучше оксид магния. Оксид цинка в этом случае не используют. Наибольшая степень вулканизации достигается при отношении [КН2]/[С1], близком к единице. При недостатке амина имеет место недовулка-низация, а избыток амина способствует протеканию монофункциональной реакции и вследствие этого уменьшению содержания поперечных связей в вулканизате. [c.184]

    Для вулканизации ХБК можно использовать полиметилолфе-нольные (фенолоформальдегидные) смолы [1, 7]. Так как эти соединения активируются галогенами, смоляная вулканизация ХБК в отличие от БК протекает быстро, обеспечивает высокую степень сшивания полимера и требует меньше смолы (3—6 масс. ч. вместо 10—12 масс. ч. при вулканизации БК). Для улучшения качества вулканизатов рекомендуется вводить 3—5 масс. ч. оксида цинка. Смоляные вулканизаты ХБК характеризуются отличной озоностойкостью, низким остаточным сжатием-и хорошими динамическими свойствами. По теплостойкости при 177 °С они уступают вулканизатам с оксидом цинка, тиурамом и тиазолом, а при 200 °С — смоляным вулканизатом БК [20]. Можно сочетать смолы с серой или с веществами — донорами серы, что приводит к улучшению прочности и сопротивления раздиру при некотором ухудшении других свойств. Рекомендуется комбинация смолы, вещества — донора серы и дитиокарбамата цинка. [c.186]

    Фирма AKZO (Нидерланды) предлагает новое соединение Перкалин 900 для снижения склонности резин к реверсии [151]. Стабилизация вулканизационной сетки при длительной и высокотемпературной вулканизации осуществляется за счет создания дополнительных прочных термостойких связей при распаде полисульфидных связей. Отличительной особенностью нового соединения является отсутствие его влияния на кинетику вулканизации резин до достижения оптимума. Сами вулканизаты имеют сниженные гистерезисные потери. [c.174]

    Продолжаются работы с традиционными ускорителями, в частности тиазолами, для применения их в шинной промышленности [187]. Предлагаемый тиазол ДН не является таким же универсальным ускорителем как сульфенамиды Ц и М. Эффективность его зависит от наличия других химически активных компонентов резиновой смеси и при их отсутствии невозможно получить резиновые смеси и вулканизаты с необходимыми характеристиками. Тиазол ДН проявляет удовлетворительную вулканизационную активность преимущественно в резинах на основе 1,4-цис-полиизопрена. Для получения шинных резин с высоким значением напряжения при 300 % удлинении и условной прочностью при растяжении необходимо использовать тиазол ДН вместе с активными добавками, либо со вторичным ускорителем. К ним относятся такие соединения как моноалконаты на основе синтетических жирных кислот и капролактама.При этом значительно растет скорость и степень сшивания, а смеси имеют вулканизационные характеристики, аналогичные тем, которые получаются при использовании сульфенамида М. [c.182]

    В патенте США [327] модификатор получают реакцией а) гидроксилсодержащей циклопентадиеновой смолы и б) > 1 соединений типа полизоцианата, многоосновных кислот, их ангидридов или сложных полиэфиров. В резиновую смесь на основе 100 частей > 1 каучука (НК и/или СК) модификатор вводится в количестве 1-30 частей. Получаемые вулканизаты характеризуются высокой стойкостью к порезам и расщеплению. Опытные вулканизаты и конггхтяьные резины имели (в %) сопротивление порезу (усл.ед.) 120 и 100 соответственно теплообразование (усл.ед.) 101 и 100. Шины размером 10.00R20 с протектором из опытной и контрольной резины имели следующие характеристики сопротивление образованию трещин глубиной [c.278]

    Бутадиеновые каучуки. Для стереорегулярного дивини-лового каучука 1,4-цис-присоединения полоса двойной связи (1,2-присоединения) при 1645 см 1 слабая, а при 1665 см- (1,4-цис-присоединение) — интенсивная, в спектре пиролизата соотношение интенсивностей изменяется на обратное (см. рис. 5 Приложения). В спектре пиролизата остается интенсивная полоса деформационных колебаний СН2 1460 см и появляется полоса 1380 см характеризующая деформационное колебание СНз. В пиролизате сохраняются полосы 910 и 990 см . Интенсивность полосы 730 см (1,4-цис) значительно уменьшается. Можно заметить появление в пиролизате полос 700, 1500 и 1600 см К Это дает возможность предположить образование ароматических соединений. В пиролизате вулканизата есть довольно интенсивная полоса 1710 характеризующая образование карбонила за счет окисления каучука. Интенсивность полос СН-валентных колебаний 3006 и  [c.21]

    Представленные в таблице 4.15 результаты исследований свидетельствуют о некотором увеличении концентрации узлов пространственной сетки вулканизатов при замене М,Ы -дифенилгуанидина соединениями полифункционального действия. В то же время, анализ данных таблиц 4.14 и 4.15 показывает неадекватное изменение сопротивления тепловому старению резин, возрастание плотности узлов пространственной сетки. Наибольшие значения плотности узлов сетки имеют вулканизаты, полученные с применением соединений III и XII, тогда как лучшие показатели сопротивления тепловому старению по прочности и относительному удлинению характерны для резины, полученной с применением соединения XVII. Из этого следует, что сопротивление тепловому старению исследованных резин в основном зависит от эффективности действия соединения полифункционального действия как противостарителя. [c.248]

    Видно, что ДАСМФК обеспечивают резиновым смесям на основе НК одинаковые и прочностные свойства с контрольной резиновой смесью, в то же время сопротивление тепловому старению вулканизатов зависит от числа углеродных атомов в алкильном радикале соединения. [c.265]

    Открытие Циглером новых катализаторных систем и приме нение их в реакции полимеризации непредельных соединений привело к получению новых видов синтетических каучуков, к числу которых относятся стереорегулярные 1 4 цис полиизопре новый, 1,4 цис полибутадиеновые и этиленпропиленовые Среди них последние занимают ведущее место—благодаря доступности исходного сырья и высоким качествам вулканизатов Этилен пропиленовые эластомеры можно охарактеризовать как деше вые каучуки общего назначения с высокими показателями, в большинстве случаев заменяющие дорогостоящие специальные каучуки [I] [c.3]

    В с1учае применения СКЭПТ для изоляции проводов и ка бетеи когда серная вутканизация нежелательна можно вулка низовать перекисными соединениями (табл 73) В качестве со агента перекиснои вулканизации применяют этилендиметакри лат дивииилбензол хинондиоксим батон 150, что позволяет улучшить физические свойства вулканизатов [c.120]

    Систематические исследования, проведенные в последние годы, показали, что некоторые свойства резин при переходе от одного типа поперечных связей к другому меняются так же, как и при изменении структуры эластомера Характер вулканизационных связей влияет на стойкость вулканизатов к окислению и утоМле-нию и долговременную прочность. Например, при вулканизации серой в присутствии днфенилгуанидина образуются полисульфид-ные связи —С—8зс—С—, не стойкие к термомеханическим воздействиям, но обеспечивающие благоприятные условия для ориентации каучука при растяжении. Резины с указанной вулканизующей системой обладают высокой прочностью. При структурировании перекисями и излучении высоких энергий возникают —С—С-связи, затрудняющие ориентацию каучука при растяжении. Резины имеют низкую прочность, но высокую термомеханическую и термоокислительную стойкость. Поэтому для создания резин с высокими эксплуатационными характеристиками применяют соединения, обеспечивающие получение поперечных связей различного строения, в том числе алкилфеноло-формальдегидные (АФФС) и бисфеноль-ные (БФС) смолы. I [c.149]


Смотреть страницы где упоминается термин Вулканизаты соединениями: [c.213]    [c.69]    [c.60]    [c.209]    [c.122]    [c.138]    [c.139]    [c.139]    [c.185]    [c.19]    [c.22]    [c.243]    [c.104]   
Процессы структурирования эластомеров (1978) -- [ c.115 ]




ПОИСК





Смотрите так же термины и статьи:

Вулканизаты



© 2024 chem21.info Реклама на сайте