Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Эластичность полимеров резин

    Определенный интерес представляет трактовка молекулярного механизма прочности при растяжении пространственно сшитых эластичных полимеров (резин), развиваемая Патрикеевым [И]. Сущность ее заключается в следующем. При растяжении полимеров сетчатой структуры образуется каркас из предельно деформированных напряженных элементов структуры (НЭС). Внешние силы, приложенные к деформированному образцу, механически уравновешиваются напряженным каркасом из НЭС, пронизывающим весь образец. При увеличении напряжения / на образец натяжение единичных НЭС не изменяется, но увеличивается их число п. Таким образом, / = а п (где — сила натяжения одной связи). Задаваясь значением можно определить число НЭС при известном значении /. Так, при / = 0,1 МПа п = 10 4-10 см . [c.116]


    ОТВЕРЖДЕНИЕ, необратимое превращение жидких реакционноспособных олигомеров н(нлн) мономеров в твердые неплавкие и нерастворимые сетчатые полимеры. Процесс получения эластичных сетчатых полимеров (резин) из каучуков наз. вулканизацией. В результате О. фиксируется структура и обеспечивается заданный комплекс св-в реактопластов (см. Пластические массы, Композиционные материалы), гер>-метиков, клеев (см. Клеи синтетические), лаков (см. Лакокрасочные покрытия), компаундов полимерных. [c.423]

    До недавнего времени катящиеся преобразователи работали на частотах не более 0,5. .. 1 МГц. Повышению частот препятствовало большое затухание УЗК в материалах их шин (полиуретан, резина и др.). Разработка новых эластичных полимеров с малым затуханием позволила увеличить верхнюю частотную границу катящихся преобразователей до 10 МГц и более. [c.479]

    Твердые полимеры чаще всего используются для изготовления пластмассовых изделий. Эластичными полимерами, с очень большими деформациями при малых усилиях, являются каучук и некоторые резины. [c.376]

    Эти продукты представляют собой эластичные полимеры хлоропрена, родственные обычному товарному наириту марки А — каучуку, широко применяемому в СССР при производстве резино-технических изделий. Жидкие наириты отличаются от наирита А повышенной способностью к деструкции. И те и другие наириты получают путем эмульсионной полимеризации хлоропрена — дешевого мономера, производство которого основано на использовании ацетилена и хлористого водорода. [c.22]

    Влияние наполнителей на Гхр материала проявляется по-разному. Прежде всего наполнители обычно снижают хрупкую прочность. Далее, расширяя релаксационный спектр в сторону длительных времен за счет образования связей наполнитель — полимер они должны повышать предел вынужденной эластичности полимера. Увеличивая модуль упругости резины, наполнители приводят к тому, что растягивающее напряжение, возникающее в образце при его изгибе, будет больше чем в ненаполненном полимере. Каждая из этих причин должна приводить к сдвигу Гхр в сторону более высоких температур, что и подтверждается экспериментом. [c.29]

    Пример № 5. Известно, что при понижении температуры полимерные материалы охрупчиваются. На этом построены технологии измельчения в порошок таких материалов, как полиэтилен низкой плотности, полиамиды, резина и др. Их приходится охлаждать до температур около —100 °С с помощью жидкого азота и затем дробить в специальных мельницах. Это энергоемкий процесс, но другого пути для получения порошков из вязких эластичных полимеров, казалось бы, нет. [c.67]


    Окислители вызывают разрыв или образование новых химических связей в полимере, что приводит к потере эластичности, например резин, при одновременном увеличении твердости и прочности, созданию внутренних напряжений, обусловливающих хрупкость полимерного материала и, в конечном счете, его разрушение. [c.72]

    Словом, нужен материал, легкий как пробка, прочный как сталь и эластичный как резина материал, не боящийся коррозии, высоких и низких температур. А это и есть полимеры  [c.13]

    Эластичные полимеры, способные обратимо деформироваться на многие сотни процентов при воздействии относительно небольших напряжений. В ненапряженном состоянии акие полимеры оказываются также аморфными. -Примерами эластичных полимеров являются все каучуки и получаемые из них в смеси с другими ингредиентами пространственно структурированные полимеры—резины. [c.317]

    Таким образом, эластичность резины и других подобных ей высокомолекулярных материалов не похожа на упругость кристаллов, так как кристаллы при деформации изменяют запас своей энергии, в то время как эластичные полимеры изменяют только форму своих молекул, но не энергию их взаимодействия. Интересно, что высокомолекулярные вегцества в своих упругих свойствах как бы воз-враш аются к газам, обычно состоящим из слабо взаимодействующих малых молекул. [c.15]

    Большинство каучуков при вулканизации в отсутствие наполнителей дают резины, имеющие относительно низкие значения прочности, величина которой зависит от энергии когезии полимера и его способности к кристаллизации. После введения активных наполнителей прочность, модуль, износостойкость и другие показатели резин возрастают, но уменьшается их эластичность (табл. 3). [c.84]

    Благодаря особенностям макростроения полимерных цепей резины из литиевого полиизопрена превосходят резины из НК по относительному удлинению, не уступают, а в сажевых смесях и превосходят последние по эластичности и стойкости к тепловому старению. В то же время высокая молекулярная масса и узкое ММР этого полимера создают определенные трудности в технологии его переработки. [c.206]

    Специфика растворной полимеризации обусловливает возможность получения полимеров, содержащих некоторое количество микроблоков полистирола. Проведенные исследования [43, 44] показали, что наличие в сополимере значительных количеств микроблоков полистирола приводит к заметному ухудшению свойств резин, связанному, по-видимому, с появлением дефектов в структуре вулканизационной сетки так, с увеличением содержания микроблоков полистирола наблюдается значительное понижение напряжения при удлинении, сопротивления разрыву, эластичности и сопротивления истиранию, повышение теплообразования и остаточной деформации (рис. 5). [c.278]

    Силиконы приобрели большое практическое значение. В зависимости от характера исходных веществ и условий полимеризации можно получать продукты с совершенно различными свойствами. Существуют метилсиликоновые полимеры с консистенцией масел или жиров, пригодные в качестве жароустойчивых смазочных, изолирующих и уплотняющих материалов. Другие характеризуются резино- или каучукоподобными свойствами и обладают большой эластичностью, которая мало изменяется в широком интервале температур (от —57 до 4 260°). Далее на основе силиконов получают смолы, пригодные для жароустойчивых красок и лаковых покрытий, а также для изготовления электрических сопротивлений и электроизоляционных материалов. Покрытые слоем силиконов поверхности любых предметов (дерево, хлопок, стекло, керамика и т. д.) становятся гидрофобными и не пропускают воду. [c.185]

    ДВОЙНЫХ связей, участки макромолекул с длинными боковыми ответвлениями. Разветвленные макромолекулы образуются в результате реакций передачи цепи через полимер. С повышением температуры полимеризации и количества катализатора или инициатора нерегулярность структуры полимера возрастает, увеличивается количество звеньев, соединенных в положении 1—2 или 3—4, а также разветвленность макромолекул. Наличие неодинаковых по структуре звеньев и различных боковых ответвлений в макромолекуле препятствует кристаллизации полимера и уменьшает подвижность отдельных сегментов макромолекул. Средний молекулярный вес синтетических каучуков обычно меньше среднего молекулярного веса натурального каучука. Все эти структурные различия между синтетическими полимерами и натуральным каучуком определяют более низкую прочность, мень шую морозостойкость и пониженную эластичность резин на основе синтетических полимеров непредельных углеводородов по сравнению с резинами из натурального каучука. [c.237]

    В заключение необходимо подчеркнуть, что прочность полимеров, как правило, в несколько раз ниже теоретической, что обусловлено наличием дефектов — концентраторов напряжений. Наличие дефектов приводит к тому, что определяемое значение прочности является среднестатистическим. Существует разброс значений прочности и проявляется влияние масштабного фактора на прочность. Теорией, качественно правильно объясняющей закономерности прочности твердых полимеров, является теория Гриффита, отклонения от которой тем больше, чем большая доля упругого напряжения в разрушаемом образце идет на потери, связанные с процессами деформации. Наряду с понятием прочности по Гриффиту существует понятие долговечности, т. е. времени, в течение которого образец разрушается под действием данного напряжения, меньшего чем Ор. Установлена прямая пропорциональность между 1дтр и а для твердых полимеров, малодеформируемых в момент разрушения, и прямая пропорциональность между ]gтp и lga для эластичных полимеров (резин). Аналогичным образом прн динамическом режиме нагружения циклическими нагрузками существует прямая пропорциональность между gNp и ао для твердых полиме- [c.212]


    На рис. 13.15 показана зависимость lgЛ/p—lgoo для эластичного полимера. Снова видна аналогия кривых на рис. 13.15 с кривыми на рис. 13.11, соответствующими долговечности резин при раз-лых напряжениях. Представленную иа рис. 13.15 зависимость можно выразить в виде эмпирической формулы М. М. Резпиковского  [c.212]

    В кремнийорганических полимерах проявляется преимущество силоксановой связи — ее высокая термическая устойчивость. Вместе с тем углеводородные радикалы придают полимерам гибкость, эластичность и способность растворяться в органических жидкостях. Чем больше число органических радикалов, приходящихся на один атом кремния, или чем меньше число поперечных связей, тем выше эластичность полимера. Наиболее эластичны линейные кремнийорганические полимеры, у которых на один атом кремния приходятся два органических радикала. В этом случае полимерные цепи связаны между собой только межмолекулярными силами, дающими возможность цепям, в отличие от химических связей, перемещаться друг относительно друга. Поперечные химические связи повьпиают твердоегь и прочность кремнийорганических полимерных веществ. Если число поперечных связей невелико и расположены они редко, то соединения более прочны, чем линейные, и в то же время сохраняют высокую гибкость и эластичность, свойственную резинам. Когда образуются пространственные структуры с частыми поперечными связями, получаются прочные твердые нерастворимые вещества, обладающие различной степенью эластичности в зависимости от числа поперечных связей. [c.266]

    Вулколан отличается большой прочностью на разрыв и истирание, а также лучшей стойкостью к действию спиртов и бензина, чем различные сорта резины [2106]. Сигер и другие [2107] подробно описывают эластичный полимер, полученный в США,— хемигум-SL. Этот каучук аналогичен немецкому вулколану. Исходными продуктами для его получения являются этилен-, пропилен- или 2,3-бутиленгликоль, конденсируемые лучше всего с адипиновой кислотой (можно и с янтарной, себациновой, дигликолевой и фталевой). Для удлинения цепи полиэфир сплавляют при 120° с диизоцианатом (предпочтительно — с ароматическим симметричным, причем отношение количества молей диизоцианата к количеству молей полиэфира должно иметь значение от 0,7 до 0,99). Вулканизацию ведут путем взаимодействия с добавочным количеством диизоцианата. Ниже приведены физико-механические характеристики этого каучука. [c.184]

    Рассмотрим теперь прочность эластичных полимеров, например резин. В этом случае недеформированный полимер неупорядочен. Если кристаллизация невозможна (предположим, что резина сделана на основе некристаллизующегося каучука), то прочность резины низка, так как ориентационные процессы при ее растяжении дают лишь небольшой эффект (резина не способна к течению). [c.137]

    Для установления равновесной деформации необ.ходимо исключить возможность процесса вязкого течения. Поэтому для подобного рода экспериментальных и теоретических исследований использовались пространствен- 1ые эластичные полимеры с очень редкой сетчатой структурой, достаточной для устранения течения, но мало влияющей на подзижность длинных линейных отрезков макромолекул, расположенных между узлами сетки. Одним из лучших примеров таких систем является хорошо вулканизованная мягкая пенаполненная резина из натурального каучука. [c.193]

    В торцовых уплотнениях химических аппаратов применяют резины, изготовляемые на основе фторкаучуков (СКФ) и бутадиен-нитрипьных каучуков (СКН). Фторсодержащие каучуки СКФ-32 и СКФ-26 - высокомолекулярные эластичные полимеры. По стойкости к агрессивным средам, в том числе к бензину и различным маслам, они намного превосходят все другие каучуки. [c.19]

    Мягкие эластичные полимеры обладают известной долей усталостного износа даже при истирании по абразивной шкурке. Жесткие и хрупкие полимеры даже при трении по гладким поверхностям истираются абразивно. При износе по сетке и твердым поверхностям резины изнашиваются по усталостному механизму. Пластики с развитой вынужденной эластичностью изнашиваются также усталостно, но с определенной тенденцией к абразивному износу. Твердые жесткие полимеры изнашиваются по всем поверхностям в основном абразивно. [c.183]

    Первый шаг на этом пути был сделан П. П. Кобеко, Е. В. Кувшин-ским и Г. И. Гуревичем [4], изучавшими температурные зависимости модуля упругости резины и эбонита. Было показано, что этот модуль в упругой области меняется сравнительно мало, но в области перехода от упругой деформации к высокоэластической наблюдается резкое уменьшение модуля упругости. Такое поведение полимерных тел при повышении температуры авторы объяснили тем, что время релаксации в переходной области соизмеримо со временем наблюдения, а сам при-Ц0СС деформации является неустановившимся. Здесь необходимо отметить, что в то время, как термодинамика явления высокой эластичности полимеров и молекулярная природа равновесной высокоэластической деформации благодаря работам Марка, Куна и других зарубежных ученых ко времени выхода цитируемой работы получили теоретическое обоснование и могли считаться, в основных чертах, выясненными, оставались совершенно не изученными кинетика высокой эластичности и природа затвердевания полимеров. Таким образом, работа П. П. Кобеко, Е. В. Кувшинского и Г. И. Гуревича [4] может считаться первым важным исследованием в этом направлении. [c.317]

    При получении полиуретанов сетчатой структуры три- или тетраизоцианат выполняет функцию отвердителя (вулканизующего агента). Для предотвращения взаимодействия полиэфира с три-или тетраизоцианатом во время хранения смеси и приготовления полимерного материала изоцианатные группц экранируют так, чтобы выбранное в качестве вулканизующего агента вещество превращалось в изоцианат только при нагревании выше 150°С— скрытые изоцианаты. Смесь формуют в нагретой форме, одновременно происходит вулканизация полиэфира с образованием редкосетчатого полимера. Эластичность полимера определяется длиной эффективных цепей и составом звеньев. Редкосетчатые полиуретаны (полиуретановые резины) отличаются исключительно высокой устойчивостью к истиранию и знакопеременным нагрузкам, морозостойкостью и стойкостью к маслам и бензинам. [c.549]

    Таким образом, СКД с широким ШАР имеет явные преимущества по реологическим характеристикам (табл. 4). Однако вул канизаты, полученные на основе такого каучука, имеют менее густую вулканизационную сетку с пониженной плотностью эластически эффективной части за счет низкомолекулярных фракций полимера (см. стр. 189) [69], что, естественно, обусловливает более низкие физико-механические показатели резин. Это касается в основном напряжений при удлинении 300% и сопротивления разрыву, а также эластичности по отскоку и теплообразования по Гудричу (см. табл. 4). [c.190]

    Для использования в шинной иромышленности рекомендуется полимер с AI (3 3,5) 10 и MwlMn = 2,5—3,0 с удовлетворительными физико-механическими и технологическими свойствами. Такой тип каучука в настоящее время освоен промышленностью. Резины, полученные на его основе, характеризуются высоким сопротивлением разрыву и эластичностью как при 20, так и при 100 °С. Кроме того, для них характерна высокая износостойкость и морозостойкость. По этим показателям вулканизаты на основе СКД значительно превосходят вулканизаты из НК. Вместе с тем для изготовления, например, целого ряда резинотехнических изделий, кабелей тонкого сечения, резиновой обуви СКД с таким ММР неприемлем. Для удовлетворения потребителей таких изделий освоен выпуск каучука с MJMn = 4,0 5,0. [c.191]

    Микроструктура полиизопрена оказывает решающее влияние на физико-механические свойства резин на его основе. Прочность ненаполненных вулканизатов минимальна при суммарном содержании 1,2- и 3,4-звеньев 20—60% (рис. 3) [13]. Скачок на кривой (см. рис. 3) обусловлен прежде всего возможностью плотной упаковки регулярно построенных макромолекул и кристаллизации их в условиях деформации. Следует отметить, что полимеры с высоким содержанием 1,2- или 3,4-звеньев характеризуются очень малыми значениями эластичности (рис. 4). При содержя--нии 1,2- и 3,4-звеньев близком к 100% как каучук, так и вулканизаты на его основе сильно закристаллизованы. [c.203]

    Физико-механические показатели солевых вулканизатов зависят от ряда факторов, из которых доминирующими являются концентрация карбоксильных групп и природа катиона солевой сшивкн. С увеличением содержания метакриловой кислоты в сополимере возрастают напряжение при удлинении 300% и сопротив ление разрыву вулканизатов. Особенно сильное увеличение прочности происходит в бутадиен-стирольном карбоксилсодержащем полимере при повышении содержания метакриловой кислоты до 2—3% (рис. 2) [1], С увеличением радиуса катиона наблюдается линейное возрастание напряжения при удлинении 300% и сопротивления разрыву резин из СКС-30-1. Максимальными сопротивлением. разрыву и эластичностью в широком температурном интервале характеризуются резины с Ва + [7]. [c.401]

    Пластификация битумных мастик расширяет температурный интервал эластично-пластичного состояния, понижает температуру хрупкости. Увеличение количества дисперсной среды путем введения нефтяных масел снижает теплостойкость масти) при некотором повышении пластичности при низких температурах. Использование в качестве пластификатора мастик некотор 1Х полимеров (полидиена и др.), имеющих более низкую температу11у, чем битум, позволяет получать мастики с повышенной пластичностью, с более низкой температурой хрупкости и в то же время с повышенной эластичностью и термической устойчивостью. Так, введение в битуморезиновую мастику (BH-IV (93%) + резина (7%)] золеного масла изменяет вязкость ее при - -40, + 60,+ 80° С соответственно в 7,5 13 8,5 раза, а введение полидиена (5%) — только в 1,4 2,6 и 2,5 раза при увеличении пластичности при отрицательной температуре. Битумо-нолидиеновая мастика течет как ньютоновская жидкость при температуре свыше + 240° С, битумо-минеральная и битумо-резиновая— при +180° С (соответственно вязкости 1 Н-с/м и 12 Н-с/м ). [c.158]

    Уменьшение эластичности кристаллического полимера после ориентации наглядно иллюстрирует рис. 24. Неориентированный кристаллический полиамид ведет себя под нагрузкой как высокоэластичная резина. После ори ентации силы межмолекуляр ного взаимодействия настолько возрастают, что. этот же материал становится жестким и твердым Кристаллические по-, имеры можно подвергап. ори- [c.56]

    Скорость кристаллизации достигает максимума при —25. При этой температуре процесс кристаллизации заканчивается в течение 10 час., тогда как при +20 он происходит в продолжение года. Растяжение натурального каучука приводит к ориентации полимера, следовательно, способствует повышению скорости и степени кристаллизации. Этим объясняется высокий предел прочности при растяжении резин на основе натурального каучука. Выше 45° натуральный каучук утрачивает кристалличность и переходит в аморфное состояние, одновременно начинают возрастать пластические деформации. При обычной температуре натуральный каучук представляет собой высокоэластичный полимер. Высокую эластичность каучук сохраняет и при низких температурах, вплоть до —70°, что свидетел1>ствует о высокой морозостойкости этого полимера. Температура перехода его в стекловидное состояние составляет минус 70—минус 75  [c.236]

    Высокополимерные соединения, пригодные для изготовления эластичных и термостабильных резин, получают преимущественно поликонденсацней диметилсиландиола, тщательно очищенного от различных примесей (чтобы предотвратить образование циклических соединений). Полученный полимер смешивают с наполнителем (окись титана или кремния), повышающим механическую прочность полимера, и вводятвсмесь перекись (например перекись бензоила), при помощи которой производится последующая вулканизация полисилоксана, т. е. образование полимера сетчатой структуры. Вулканизация начинается в процессе формования изделия и заканчивается прогреванием изделий в термошкафах при 160—200°. [c.484]


Смотреть страницы где упоминается термин Эластичность полимеров резин: [c.205]    [c.40]    [c.315]    [c.270]    [c.188]    [c.462]    [c.305]    [c.120]    [c.164]    [c.236]    [c.236]    [c.189]    [c.391]    [c.279]   
Общая химическая технология органических веществ (1966) -- [ c.474 , c.478 , c.485 , c.494 ]




ПОИСК





Смотрите так же термины и статьи:

Полимеры эластичные

Резина эластичные

Эластичность



© 2025 chem21.info Реклама на сайте