Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Азотная применение

    В наилучших условиях за. один проход через печь в нитропарафины переходит около 40% всей примененной азотной кислоты. Остаток превращается в окиси азота, из которых затем регенерируют азотную кислоту. [c.282]

    Первые лабораторные опыты газофазного нитрования проводились с нарами азотной кислоты этот нитрующий агент применен также и в промышленном масштабе, как описано в предыдущем параграфе. [c.294]


    На этом основании выход, рассчитанный по азоту, должен быть меньше, чем при применении азотной кислоты, с которой нитрование проходит по следующему уравнению  [c.295]

    При работе с легкокипящими углеводородами без применения давления требуется, естественно, весьма длительное время для проведения реакции например, гексан кипятился с дымящей азотной кислотой в течение 6 дней с обратным холодильником. Нитропарафины гораздо легче растворимы в концентрированной кислоте, чем исз одный материал. Это обстоятельство объясняет предпочтительное образование ди-и полинитросоединений при таком методе нитрования углеводородов. [c.302]

    Как показал Марковников [125], при употреблении нитрующей смеси требуется более высокая температура реакции, чем при азотной кислоте. Это объясняется тем, что и без того малая растворимость углеводородов в азотной кислоте еще более понижается в присутствии серной кислоты. Поэтому изложенный метод не получил применения в промышленности. [c.302]

    При нитровании в большом масштабе, проводимом по этому методу, необходимо учитывать, что реакция нитрования является экзотермическим процессом. Поэтому углеводород подогревают до необходимой исходной температуры, которая затем при хорошей теплоизоляции повышается за счет теплоты испарения азотной кислоты. Температура затем регулируется скоростью подачи азотной кислоты. Чрезмерное нагревание может быть предотвращено применением более разбавленной азотной кислоты. [c.305]

    Применение машии новых конструкций позволило в последние годы еще больше сократить объем и площадь производственных зданий. Так, па ряде заводов азотных удобрений вместо ранее использовавшихся в ироизводстве аммиака циркуляционных поршневых компрессоров, располагавшихся в закрытых крановых зданиях, [c.220]

    В СССР первые установки по каталитическому восстановлению оксидов азота введены в эксплуатацию в 1965 г. На многих химических предприятиях была реализована схема каталитического восстановления оксидов азота с применением природного газа, разработанная Государственным научно-исследовательским и проектным институтом азотной промышленности и продуктов органического синтеза (ГИАП). Катализатором служит палладий, нанесенный на активный оксид алюминия. Тепло, выделяющееся в процессе восстановления, можно использовать в газовых турбинах для получения дополнительной энергии, что улучшает экономические показатели процесса очистки. [c.65]


    При применении в качестве окислителей азотной кислоты, перекиси водорода, надуксусной кислоты взрывоопасность процесса в значительной степени возрастает, поскольку распад перекиси водорода и надуксусной кислоты происходит с выделением тепла (98,8 кДж/моль). [c.107]

    Применение аммиака, азотной кислоты, нитрит-нитратных солей аммония, нитрозных газов, содержащих аммиак, требует особого внимания, так как из этих веществ могут образовываться взрывоопасные смеси. Невнимательное отношение к возможным опасностям может привести к серьезным авариям. [c.93]

    При использовании азотной кислоты достигается более глубокое пре-вращение, считая на нитрующий агент, чем при применении только N02-Предполагается, что радикал ЛЮз способен атаковать угленодороды с образованием алкильных радикалов  [c.82]

    Нитрование можно промотировать применением кислот типа Льюиса, т. е. соединений, способных принимать электронную пару. Самым лучшим примером нитрующих смесей этого типа является система азотная кислота — трехфтористый бор. Многие органические соединения нитруются почти полностью стехиометрическими количествами азотной кислоты в присутствии трехфтористого бора. Последний действует так же, как катализатор в системе азотная кислота — серная кислота. [c.544]

    Кислородные приборы имеют сложное устройство и надо уметь ими пользоваться. Необходима особенно умелая регулировка подачи кислорода и регенерации отработанного воздуха как перед применением прибора, так и в процессе пользования им. На предприятиях азотной промышленности были случаи, когда неумелое пользование кислородным изолирующим прибором приводило к кислородному голоданию и смерти рабочих. [c.120]

    В литературе есть также сведения о применении азотной кислоты, ацетилхлорида, диметилсульфата, двуокиси серы, хлористого алюминия, сульфонилхлорида , ароматических сульфокислот (я-толуол-и п-бензолсульфокислоты ), хлорной кислоты > водной фосфорной кислоты , фос( рной кислоты с 85% фосфорного ангидрида и др. Однако сведения об условиях синтезов весьма ограничены и перспективность использования этих конденсирующих средств маловероятна. Высокий выход дифенилолпропана (95%) и большая ко-рость реакции достигаются при использовании фосгена (промотор — метилмеркаптан) . Фосген связывает образующуюся при реакции воду при этом выделяются хлористый водород и окись углерода [c.64]

    Азотная кислота в жидкой фазе либо нитрует, либо окисляет углеводороды первому направлению реакции способствует применение разбавленной кислоты и низких температур переработки. Конечные продукты по своей природе сложны, поскольку на реакцию оказывает влияние концентрация кислоты, температура и продолжительность реакций зачастую трудно разделить и опознать различные конечные нитросоединения при комнатной температуре. [c.146]

    В следующем параграфе рассматривается применение хлора в виде гипохлорита для очистки от активной серы. В ходе разработки этого процесса больших трудов стоило найти способы предотвращения прямого хлорирования. Так как качества большинства нефтепродуктов при длительном хранении ухудшаются в результате окисления, то были предприняты попытки очищать нефтепродукты от нестабильных компонентов путем селективного их окисления. Для этой цели были испробованы кислород, озон и даже азотная кислота, но должной селективности окисления не удалось добиться. Реакция формальдегида и серной кислоты с ненасыщенными циклическими углеводородами [75—80, 98], когда-то считалась перспективной, но и она не получила промышленного применения. [c.238]

    При переливании дымящихся кислот, таких, как концентрированная соляная или дымящаяся азотная, нужно надевать противогаз или респиратор, либо обвязывать рот и нос полотенцем, смоченным раствором соды. Применение предохранительных очков при этом обязательно. Работу лучше проводить под тягой (в вытяжном шкафу). [c.16]

    Вулканизаты тиоколов, содержащие 0,5% сшив щего агента, набухают значительно больше ( на 50—100%) [15, с. 115]. Вулканизаты отечественных тиоколов марок I и П, имеющих одинаковую степень разветвленности, также несколько различаются по стойкости к набуханию в растворителях и действию агрессивных сред. Вулканизаты на основе тиоколов марки II меньше набухают в диоксане, дихлорэтане, циклогексаноне и лучше сохраняют свойства после выдержки в разбавленных серной, соляной и азотной кислотах [37]. Такое различие в свойствах объясняется примененной системой отверждения. [c.569]

    Тантал обладает еще более высокой химической стойкостью, не корродирует в серной, азотной, фосфорной и кипящей соляной кислотах. Тантал чрезвычайно дорог, поэтому его применяют в исключительных случаях для особо ответственных машин н аппаратов, а также в виде тонкой фольги для обкладки аппаратов. Пределы применения цветных металлов и сплавов в химическом машиностроении приведены в табл. 2. [c.22]


    Катализ имеет огромное значение в технике и природе. Подбирая соответствующим образом катализаторы, можно осуществить процессы в желаемом направлении и с нужной скоростью. Область применения каталитических реакций в химической промышленности в настоящее время совершенно необозрима. Напомним лишь, что такие важные процессы, как производство серной кислоты, синтез аммиака, окисление аммиака до азотной кислоты и многие другие, являются каталитическими. [c.274]

    Применение кислорода весьма многообразно. Его применяю для интенсификации химических процессов во многих произвол ствах (например, в производстве серной и азотной кислот, в до менном процессе). Кислородом пользуются для получения высоки температур, для чего различные горючие газы (водород, ацети лен) сжигают в специальных горелках. Кислород используют 1 медицине при затрудненном дыхании. [c.378]

    Эти требования прежде всего определили выбор реагентов для получения активной окиси алюминия. В производство принята только особо чистая каустическая сода, а вместо серной кислоты — азотная. Применение азотной кислоты позволяет уменьшить содержание в окиси алюминия и катализаторе железа, полнее отмыть натрий и, наконец, исключает наличие в его составе 80 . Остатки же азотной кислоты разлагаются и улетучиваются при прокаливании. Вместе с тем в производстве окиси алюминия для получения алюмоплатинового катализатора нельзя применять выгодный комбинированный щелочнокислотный способ осаждения, т. е. нельзя разлагать растворы алюмината натрия действием азотнокислого алюминия. Причина этого заключается в том, что железо, содержащееся в небольших количествах в технической окиси алюминия, через азотнокислый алюминий проникает в этом случае в состав катализатора, тогда как при растворении в щелочи растворы алюмината натрия могут быть освобождены от железа. [c.96]

    Такое же благоприятное влияние оказывают галогены. Они обра-З уют свободные радикалы, как это уже известно, из реакции хлорирования. Образующийся галоидоводород опять окисляется в свободный галоген, и последний действует снова радикалообразующе. По этой причине для ускорения реакции нитрования галогена требуется значительно меньше, чем кислорода. Кроме того, галогены оказывают благоприятное действие вследствие того, что они соединяются с окисью азота в хлористый нитрозил и тем самым не происходит обрыва цепи. Кислород в условиях газофазного нитрования не может так быстро окислять N0 в ЫОг- Азотная кислота, как и N02, может употребляться как нитрующий агент. Действие азотной кислоты основывается лишь на том, что она поставляет N02 это происходит путем термического разложения ННОз0H + N02. Распад с образованием радикалов также объясняет, почему с азотной кислотой получаются лучшие результаты, чем с N02 [89]. При разложении азотной кислоты образуются чрезвычайно активные гидроксильные радикалы, которые при взаимодействии с углеводородом сразу же образуют алкильные радикалы НН + ОН-> К + Н20. Поэтому, как нашел Бахман с сотрудниками, добавка кислорода прн нитровании с двуокисью азота имеет относительно больший эффект, чем при применении самой азотной кислоты. Но и N02, как таковая, способствует образованию радикалов и одновременно нитрует. [c.285]

    При применении давления 7 ат нитрометан образуется с выходом 48% из расчета на израсходованпую азотную ислоту. Хэсс и Бойд проводили процесс при 475°, времени пребывания 0,2 се . и молярном отношении углеводород азотная кислота, равном 10 1. Оптимальный выход в опытах при нормальном давлении за один проход составлял 12% в расчете на аз-отную кислоту. Аппаратура в принципе аналогична аппаратуре, применяемой при нитровании пропана и бутана. [c.288]

    Хэсс, Шехтер и Александер [93] снова исследовали нитрование метана, на этот раз под давлением до 70 ат. При этом реакция превращения очень ускорялась. Авторы установили, что необходимо отделить все вещества, которые каталитически способствуют окислению, так как окислительные процессы благодаря применению давления также сильно ускоряются. Максимальное превращение составило 27% в расчете на азотную кислоту при 444° и молярном отношении метан HNOз=lG,5 1. В среднем за один проход превращение азотной кислоты составляет 20%. Реакция велась в трубке из стекла пайрекс. [c.288]

    Как уже упоминалось, это обстоятельство приводит к тому, что нитросоединения очень быстро претерпевают дальнейшие изменения б-лагодаря гидролитическим и окислительным процессам с образованием глйвным образом окислов азота, воды и углекислоты при этом происходит также образование ди- и полинитросоединений. Такие же процессы протекают и в гетерогенной системе без применения давления путем кипячения углеводородов с дымящей азотной кислотой, как это указано в предыдущем параграфе. [c.304]

    Для избежания двухфазной системы пробовали найти растворители, способны частично растворять углеводород и азотную кислоту. Для этой цели применялись ледяная уксусная кислота, ацетилнитрат, этил-нитрат и т. п., не говоря уже о взрывоопасности, которая появляется при применении этих растворителей необходимо указать на дальнейшее изменение этих веществ под влиянием азотной кислоты, так как она в условиях нитрования вызывает со временем изменение почти всех веществ. Даже уксусная кислота, которая является наиболее удовлетворительным растворителем из найденных до сих пор, также подвергается воздействию азотной кислоты в области температур, необходимых для нитрования. Кроме того, как установил Хэсс с сотрудниками [130], применение уксусной кислоты более благоприятствует окислению углеводородов, чем их нитрованию. [c.304]

    Хотя природа поверхности оказывает несомненное влияние на продолжительность периода Tj и, вероятно, периода г. , она не имеет, согласно данным Дэя и Пиза [9], большого влияния на границы давление—температура областей холоднопламенного и высокотемпературного воспламенений. Эти исследователи, изучая систему пронан—кислород, получили картину, подобную изображенной на рис. 2 в пирексовых сосудах, обработанных азотной или фтористоводородной кислотами или покрытых КС1. В последнем случае наблюдалось значительное удлинение индукционного периода, особенно при низких температурах. Анализ продуктов, полученных в серии опытов с применением аналогичной обработки, показал наличие перекисей во всех сосудах, кроме покрытых КС1. На основании этих фактов Дэй и Пиз высказали сомнение относительно роли перекисей в механизме образования холодного пламени, и одновременно, подняли вопрос о влиянии ацетальдегида в связи с тем, что, согласно более раннему исследованию Пиза [34], покрытие стенок сосуда слоем K I обусловливает значительно более низкую концентрацию ацетальдегида, чем в сосудах без такого покрытия. По нашему мнению, так как реакция не обнаруживает тенденции к достижению стационарного состояния, обрыв цепей на поверхности сосуда мон ет лишь замедлить скорость реакции, но не способен полностью предотвратить достижение критических концентраций альдегидов и перекисей, вызывающих образование холодйого пламени. Эти критические концентрации зависят главным образом от давления и температуры и достигаются спустя более или менее длительное время в зависимости от природы поверхности. То обстоятельство, что в непрерывной системе не обнаружены перекиси в покрытой КС1 трубке, не свидетельствует против их кратковременного существования аналогичным образом при гетерогенном каталитическом окислении ацетальдегида на покрытой КС1 поверхности не требуется достин ения критической концентрации для течения самоускоряющейся реакции. [c.259]

    Ароматические нитросоединения нолучаются обычно прямым нитрованием соответствующих соединений. Ароматические нитросоединения применяются в больших количествах как красители и взрывчатые вещества, а также в парфюмерной промышленности. Они используются также в качестве растворителей и химических реагентов. Нитрогруппа может действовать как хромофорная группа в красителях, особенно если имеется несколько нитрогрупн и они располагаются в кольце таким образом, что становятся частью сложной сопряженной системы. Значительно чаще нитрогруппа используется как исходная группа для получения соответствующего анилина в результате применения восстановления в довольно мягких условиях. Использование нитросоединений в промышленности взрывчатых веществ направлено в первую очередь на военные цели. Промышленное производство взрывчатых веществ основано больше на нитроглицерине, т. е. на сложном эфире азотной кислоты, чем на истинных нитросоединениях. Некоторым, весьма существенным исключением являются нитрокарбонитратные пороха, содержащие нитрат аммония и незначительные количества тринитротолуола или динитротолуола. В парфюмерной промышленности нитросоединения используются в качестве синтетических мускусов. Большая группа производных полинитро-/к/)т-бутилбензола обладает запахом, напоминающим мускус. [c.543]

    Для нитрования может также применяться азотная кислота в смеси с другими кислотами, кроме серной. Иногда используется смесь азотной кислоты с уксусной кислотой и уксусным ангидридом. Эта смесь, вероятно, содержит некоторое количество ацетилнитрата Hз 00N02, который, как известно, является сильным нитрующим агентом. Смесь азотной и фтористоводородной кислот применяется при нитровании бензола. Реакция идет гладко, без образования динитробензола и других продуктов нитрования или фторирования бензола. Предлагалось применение фосфорной кислоты и фосфорного ангидрида в нитрующих смесях. Хотя оба эти соединения являются хорошими дегидратирующими агентами, они оказались не очень эффективными промоторами ионизации азотной кислоты и поэтому не дают хороших нитрующих смесей. [c.544]

    Ряд проведенных исследований по нитрованию ароматических соединений в различных органических растворителях мало продвинул вопрос о механизме реакции нитрования, так как не был установлен даже кинетический порядок реакции. Бенфолд и Инголд [2] нашли, что при применении большого избытка азотной кислоты с нитрометаном в качестве растворителя такие реакционноспособные соединения, как бензол, толуол и этилбензол, нитровались с одинаковой скоростью согласно закону для реакций нулевого порядка. Для менее реакционноспособных соединений, таких, как п-дихлорбепзол, реакция нитрования следовала закону для реакций первого порядка. Эти определения положили начало всестороннему и детальному исследованию процесса нитрования [17]. [c.561]

    Для второго этапа — окисления в адипиновую кислоту —используют чистую смесь циклогексанона и циклогексанола. Существует непрерывный метод выделения, нашедший применение в промышленности при 80 °С и времени контакта 5 мин смесь обрабатывают 50—60%-ной азотной кислотой катализатор состоит из солей меди и ванадия. Весовое соотношение HNOз (в пересчете на 100%-ную) и окисляемой смеси составляет 2,5—6. [c.161]

    Алюминиевая аппаратура. Ее используют в производстве азотной, фосфорной и органических кислот. Максимально допустимая температура для алюминиевых аппаратов 200°С. Электро-дуговой или газовой сваркой соединяют части аппаратов. Сварные швы делают только стыковыми, места сварки должны быть практически одинаковой толщины. Из алюминия изготовляют резервуары (в том числе и резервуары большой емкости), колонны, теплообменники, небольи ие реакционные аппараты. Применение алюминия ограничивается его низкой механической прочноостью. [c.21]

    Титан. Он находит все большее применение в химическом машипостроеиии. По прочности он немного уступает стали, а удельный вес его почти в два раза меньше. Титан стоек к азотной к 1слоте любых концентраций, в разбавленной серной кислоте, в атмосфере влажного хлора и многих других корродирующих средах. Титан куется, штампуется и сваривается (за исключением отдельных его марок) и хорошо поддается механической обработке, что позволяет изготовлять из него самое разнообразное оборудование емкостные, колонные и теплообменные аппараты, фильтры, центрифуги, насосы, трубопроводную арматуру и др. [c.21]

    Требуется растворить некоторое количество меди в азотной кислоте. В каком случае расход азотной кислоты будет меньше — при применении 90% или 35 %-ного (по массе) раствора HNO3  [c.231]

    Поэтому водород применяют в металлургии для воеетановле-ния некоторых цветных металлов из нх оксидов. Главное применение водород находит в химической промышленности для синтеза хлороводорода (см. 121), для синтеза аммиака (см. 138), идущего в свою очередь на производство азотной киелоты и азотных удобрений, для получения метилового спирта (см. 169) и других органических соединений. Он используется для гидрогенизации жиров (стр, 490), угля и нефти. При гидрогенизации [c.346]

    В химической промышленности платина применяется для изго-топления коррозиониостойких детален аппаратуры. Платиновые аноды используются в ряде электрохимических производств (производство надсерной кислоты, перхлоратов, перборатов). Широко применяется платина как катализатор, особенно при проведении окислительно-восстановительных реакций. Она представляет собой первый, известный еще с начала XIX века гетерогенный катализатор. В настоящее время платиновые катализаторы применяются в производстве серной и азотной кислот, при очистке водорода от нрнмссей кислорода и в ряде других процессов. Из платины изготовляют нагревательные элементы электрических печей и приборы для измерения температуры (термометры сопротивления и термопары). В высокодисперспом состоянии платина растворяет значительные количества водорода и кислорода. На ее способности растворять водород основано применение платины для изготовления водородного электрода (см. стр. 281). [c.698]

    Как видно из уравнения (85), для процессов, сопровождающихся выделением тепла и соответственно ростом Рт, давление перед форсункой должно быть нопи-женным. Угол раскрытия факела у форсунок Хески не может быть большим 90°. Это ограничивает область их применения в аппаратах большого диаметра. Например, н сернокислотных башнях отношение высоты насаженной части колонны к ее диаметру Я//) 1,2ч-1,5 [66, 93], поэтому при установке таких форсунок колонну насаживают лишь до половины ее высоты. В производстве азотной кислоты, где наличие свободного объема обычно считается желательным для лучшего окисления N0 до NO2 [5], имеются лучшие условия для применения этих форсунок. [c.175]

    Нефтехимический (комплексный) вариант переработки нефти по сравнению с предыдущими вариантами, отличается большим ассортиментом нефтехимических продуктов и в связи с этим наибольшим числом технологических установок и высокими капиталовложениями. В последние годы наблюдается тенденция к строительству крупных нефтеперерабатывающих комбинатов с весьма широким применением нроцессов нефтехимии. Нефтехимический вариант переработки нефти представляет собой сложное сочетание предприятий, на которых помимо выработки высококачественных моторных топлив и масел не только проводится подготовка сырья (олефинов, ароматических, нормальных и изопарафиновых углеводородов и др.) для тяжелого органического синтеза, но и осуществляются сложнейшие физикохимические процессы, связанные с многотоннажным ироизводствой азотных удобрений, синтетического каучука, пластмасс, синтетических волокон, моющих веществ, жирных кислот, фенола, ацетона, спиртов, эфиров и многих других химикалий. [c.152]


Смотреть страницы где упоминается термин Азотная применение: [c.45]    [c.126]    [c.126]    [c.281]    [c.290]    [c.240]    [c.46]    [c.196]    [c.81]    [c.83]    [c.73]   
Общая химическая технология (1964) -- [ c.224 , c.225 , c.290 ]

Общая химическая технология (1970) -- [ c.316 ]

Краткая химическая энциклопедия Том 1 (1961) -- [ c.79 ]




ПОИСК







© 2024 chem21.info Реклама на сайте