Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хемосорбция на электроде

    Хемосорбция реагирующих частиц на электроде. [c.553]

    Так, следует отметить, что современные теории двойного электрического слоя носят феноменологический и полуэмпирический характер. Вместе с тем уже накопился значительный экспериментальный материал, объяснение которого требует рассмотрения структуры поверхности на молекулярном уровне. Такой подход необходим для более детального описания адсорбции органических веществ на электродах, а также для объяснения ряда особенностей структуры поверхностного слоя и в отсутствие органических веществ. Попытки создания молекулярных теорий двойного слоя уже предпринимались. Однако эти теории еще далеки от совершенства. Другой важной проблемой является построение количественной теории поверхностного слоя при хемосорбции ионов, сопровождающейся переносом заряда. Явления переноса заряда при адсорбции широко распространены и играют существенную роль в кинетике электродных процессов. Часто на поверхности электрода находится хемосорбированный кислород (или кислород в другой форме), который сильно влияет на строение поверхностного слоя и скорость электрохимических процессов. Поэтому количественное исследование строения двойного электрического слоя и электрохимической кинетики на окисленных поверхностях представляет собой одну из важнейших проблем кинетики электродных процессов. [c.389]


    Строение двойного электрического слоя для металлов группы платины в водных растворах электролитов отличается тремя главными особенностями 1) участием в образовании двойного слоя наряду с ионами раствора н молекулами растворителя адсорбирующихся на поверхности электрода атомов водорода и кислорода 2) ярко выраженным образованием прочных хемосорбционных связей между поверхностью металла и адсорбирующимися ионами, в результате чего многие, ионы при адсорбции частично или даже полностью теряют свой заряд (это явление получило название хемосорбции с переносом заряда) 3) диссоциативным необратимым характером адсорбции органических соединений. [c.182]

    Говоря об адсорбции органических веществ на электродах, целесообразно выделить системы с обратимой и необратимой адсорбцией. Для первых систем характерно сравнительно слабое ( физическое ) взаимодействие молекул адсорбата с электродом (как правило, это з, р-металлы Н , РЬ, Т1, 1п, Зп, В1 и др.). Адсорбция в этих системах подчиняется законам термодинамики, а поверхностную концентрацию адсорбата можно однозначно связать с его объемной концентрацией уравнением изотермы адсорбции. Для систем с необратимой адсорбцией характерно очень сильное ( химическое ) взаимодействие органических молекул с поверхностью электрода, которое нередко сопровождается деструкцией этих молекул, например разрывом связей С—Н и С—С. Такая хемосорбция органических веществ происходит, как правило, на электродах из переходных, или /-металлов, из которых наиболее полно изучены металлы платиновой группы и прежде всего сама платина. Понятия адсорбционного равновесия и изотермы адсорбции к этим системам не применимы. В самом деле, электрод с необратимо адсорбированным на нем органическим веществом можно извлечь из раствора, промыть водой и погрузить в раствор электролита, но без органического вещества при этом количество хемосорбированного вещества на электроде остается [c.4]

    В главе 8 книги обсуждаются особенности процессов электроокисления и электровосстановления органических соединений на электродах из -металлов. Основное внимание уделено роли продуктов хемосорбции в общем электродном процессе и критериям установления лимитирующей стадии. Процессы на -металлах относятся к типичным электрокаталитическим процессам, и их исследование составляет предмет быстро развивающегося раздела современной электрохимии — электрокатализа. [c.5]


    Закономерности адсорбции органических соединений на электродах из -металлов существенно отличаются от описанных выше для электродов из р-металлов. Сложный деструктивный характер хемосорбции органических веществ на платиновых металлах из газовой фазы был установлен достаточно давно и детально изучается в работах по катализу. В электрохимической литературе до начала 60-х годов трактовка всех экспериментальных результатов основывалась на предположении, что на платиновых металлах, как и на ртути, органические молекулы адсорбируются обратимо и без распада. Однако накопленный к настоящему времени большой экспериментальный материал, как уже отмечалось во введении, убедительно показывает, что на электродах из металлов группы платины адсорбция органических веществ в большинстве случаев сопровождается глубокими химическими превращениями, которые, как правило, необратимы. [c.86]

    О прочном необратимом характере хемосорбции многих органических веществ на металлах группы платины говорят рассмотренные в первой главе опыты по промывке электродов. Необратимость адсорбции была подтверждена и опытами с мечеными атомами. Продукты хемосорбции органических веществ, меченных С, практически не обмениваются с немеченым исходным веществом в растворе в области потенциалов, где не происходит их окисление или восстановление с заметными скоростями. [c.87]

    А. Бьюиком было проведено исследование состава продуктов хемосорбции метанола на гладком Р1-электроде методом инфра- [c.101]

    Очевидно, частицы типа I образуются в результате деструкции но С—С-связя М и окисления частиц типа II с участием в этом процессе молекул Н2О. Поэтому соотношение частиц типа I и типа II существенным образом зависит от целого ряда факторов, влияющих на кинетику процесса перехода частицы типа II—частица типа I, таких, как активность металла-катализатора, состав раствора, потенциал электрода, температура. Среди продуктов хемосорбции метана обнаружены частицы состава СН4-, которые относятся к частицам типа II и являются, очевидно, промежуточными продуктам и процесса образования частиц типа I. [c.103]

    Кратко рассмотрим вопрос трактовки зависимости заполнений поверхности адсорбированными частицами от концентрации органического вещества в растворе. Как уже отмечалось во введении, в случае электродов из металлов группы платины для подавляющего больщинства веществ подобные зависимости лишь формально могут быть названы изотермами. В действительности речь идет не о равновесных, а о некоторых стационарных заполнениях, устанавливающихся в результате баланса скоростей хемосорбции исходного органического вещества, а также окисления и гидрирования продуктов его хемосорбции. [c.107]

    Из-за разного влияния потенциала электрода на различные стадии превращения исходных органических молекул и продуктов хемосорбции с изменением потенциала меняется как общее количество хемосорбированного вещества, так и соотношение различных частиц на поверхности. Это демонстрирует рис. 3.11, где приведены результаты исследования адсорбции этанола на Р1-электроде в сернокислом растворе импульсными методами (А. Блейк, А. Кун, Дж. Сандерленд). [c.114]

    Можно указать ряд окислительно-восстановительных органических систем, в контакте с которыми платиновый электрод приобретает термодинамически равновесное значение потенциала, характерное для данной системы и подчиняющееся уравнению Д ернста. К таким системам относятся хинон — гидрохинон, ксан-тогенаты — диксантогенаты, некоторые красители и другие. Однако для большинства органических веществ значения потенциалов разомкнутой цепи не совпадают с предсказываемыми термодинамикой. Это связано со сложным характером превращений, претерпеваемых органическими соединениями при контакте с металлами группы платины, и их необратимостью. Поэтому потенциалы, устанавливающиеся в растворах органических соединений при разомкнутой цепи, оказываются не равновесными, а стационарными. Их величина зависит от соотношения скоростей процессов окисления и восстановления исходных веществ, а также продуктов их превращения, включая продукты хемосорбции, и определяется из условия равенства суммы скоростей катодных процессов сумме скоростей анодных процессов. [c.284]

    В электрокаталитических процессах особую роль играет хемосорбция частиц на поверхности электродов. Прочность хемосорбционных связей сильно зависит от материала электрода, что и обусловливает, в первую очередь, зависимость скоростей электрокаталитических процессов от природы катализатора. Скорость и направление этих процессов можно регулировать также, изменяя потенциал катализатора, pH и состав раствора, природу носителя, на который нанесен катализатор, и другие факторы. Электрохимические методы изучения катализаторов позволяют глубже подойти к пониманию природы катализа, на основе этих методов можно осуществлять контроль за практически важными каталитическими процессами. [c.265]


    Отличие химической адсорбции от физической заключается в том, что в случае хемосорбции поверхность металла (электрода) будет стремиться образовывать химические связи с вещест- [c.347]

    Это эмпирическое уравнение изотермы адсорбции, выражающее зависимость между Ь и давлением, превосходно передает многие характеристики процесса хемосорбции. Уравнение (72) предложено Фрумкиным и Шлыгиным [275], которые вывели его иа основании электрохимических исследований па водородных электродах. Это уравнение сыграло важную роль в создании удачной теории аммиачного катализа, предложенной Темкиным [276]. В литературе оно известно как уравнение Темкина [276], хотя сам Темкин и другие советские исследователи называют его логарифмическо изотермой адсорбции. [c.151]

    Растворение металла по химическому механизму необходимо учитывать не только при разложении амальгам щелочных и щелочноземельных металлов. Растворение железа, хрома и хромистых сталей, марганца в кислых растворах частично протекает по химическому механизму, особенно при повышенных температурах (Я. М. Колотыр-кин и сотр.). Необходимым условием химического механизма является хемосорбция окислительного компонента раствора, при которой в определенных условиях реакция растворения металла может происходить и без освобождения электронов непосредственно в одном акте с реакцией восстановления. При растворении металла по химическому механизму можно в первом приближении ожидать отсутствия зависимости между скоростью растворения и потенциалом. Кроме того, важным признаком химического механизма является несоответствие между скоростью растворения и величиной анодного тока, пропускаемого через электрод скорость растворения, найденная, например, аналитическим методом, оказывается больше,чем соответствующая пропускаемому току. На рис. 186 показаны поляризационные кривые, измеренные на стали в растворе серной кислоты, и полученная аналитически зависимость скорости растворения той же стали от потенциала. Скорость растворения стали значительно превосходит ожидаемую из величин анодного тока и не зависит от потенциала. Это указывает на химический механизм растворения хромистой стали в серной кислоте при повышенных температурах. [c.353]

    При необратимой хемосорбции органического вещества на электроде с достаточно развитой поверхностью поступают следующим образом. Электрод погружают в раствор, содержащий исследуемое органическое вещество и электролит фона, и выдерживают его некоторое время, необходимое для установления стационарного состояния адсорбции. Затем электрод и рабочее отделение ячейки многократно промывают раствором фона, освобожденным от кислорода, после чего также в растворе фона подвергают адсорбированное вещество электроокислению или электровосстановлению. Отсутствие органического вещества в объеме раствора естественно снимает трудности, связанные с возможностью дополнительной адсорбции. Эта методика была предложена в работе Т. Павела и работах А. И. Шлыгина с сотр. и получила более полное развитие в работах А. Н. Фрумкина, Б. И. Подловченко с сотр. [c.8]

    В условиях необратимой хемосорбции органических веществ на электродах можно применять метод, предложенный Н. А. Балашовой, Электрод помещают в электролит с радиоактивным органическим веществом, выдерживают в нем определенный промежуток времени для установлени,ч стационарного адсорбционного состояния, а затем извлекают и промывают раствором фона для удаленггп следов радиоактивного раствора с поверхности. Сравнивая радиоактивность подготовленного таким образом электрода с радиоактивностью эталона, определяют количество адсорбированного органического вещества. [c.29]

    Наиболее простым в отношении состава хемосорбированных частиц, по-видимому, является процесс хемосорбции СО на платиновом электроде. Состав хемосорбированных частиц совпадает с составом исходных молекул (т. е. СО) с достаточной достоверностью установлены две структурные формы хемосорбцин [c.100]

    Аналогичный подход к определению состава продукта хемосорбции метанола на гладком Р1-электроде, но в потенциостатических условиях поляризации был использован в работах В. С. Багоцкого, Ю. Б. Васильева и сотр. Количество отщепившегося водорода ан " определялось интегрированием /, -кри-вой, снятой после начала адсорбции СН3ОН при 0,4 В (при этих Ег хемосорбированные частицы окисляются медленно), а АСадс — анодным импульсом. Катодными импульсами находились ДС °н. Близость всех трех полученных величин в любой момент адсорбции позволила заключить о диссоциативной адсорбции согласно уравнению (3.44). [c.101]

    С ростом длины цепи органической молекулы разрыв по С—С-связям происходит в меньшей мере и степень дегидрирования падает. Так, если в растворах этана и пропана на фоне 1 н. H2SO4 при 80—90°С на Pt-электроде в значительных количествах присутствуют частицы типа I, то в случае м-гексана уже почти все хемосорбированное вещество является трудноокисляемым и удаляется с поверхности гидрированием. Предполагая, что хемосорбцию гексана приближенно можно описать реакцией eHt -i-- (СбН14 х)адс+- Надс, ИЗ электрохимических данных можно оценить среднее число х = 2 5, что указывает на относительно небольшую степень дегидрирования молекул w-гексана. [c.103]

    Это уравнение отвечает лэнгмюровским условиям электродесорбции с участием двух частиц — органической частицы и активных кислородных частиц (наиболее вероятно, радикалов ОНадс), присутствующих на местах, не занятых хемосорбированным веществом. Различия в энергиях адсорбции частиц типа НСО не были обнаружены и методом дифференциального изотопного обмена (В. Е. Казаринов, В. Н. Андреев). Процессы электроокнсления продуктов хемосорбции пропана и н-гексана на Pt/Pt-электроде удовлетворительно описываются соотношением  [c.106]

    Скорость адсорбции органических веществ при заданном потенциале обычно находится тремя способами 1) импульсньши методами по накоплению хемосорбированных частиц на поверхности 2) по току, наблюдаемому в первый момент после введения органического вещества в раствор, омывающий исследуемый электрод (в случае электродов с развитой поверхностью) 3) по максимальному току, протекающему через электрод, после переключения его потенциала со значения, при котором хемосорбированное вещество на поверхности практически отсутствует, на выбранное значение потенциала (на гладких электродах). В последних двух способах токи характеризуют скорости хемосорбции при 0орг = О, т. е. на поверхности, свободной от хемосорбированных частиц . [c.109]

    Типичная зависимость скоростей хемосорбцин органических веществ от потенциала платинового электрода представлена на рис. 3.8. Скорость хемосорбции максимальна при потенциалах двойнослойной области и в этой области Ег мало зависит от потенциала. При переходе к потенциалам адсорбции водорода и кислорода скорость хемосорбции органических веществ падает, [c.109]

    Выявление характера влияния Наде на скорость хемосорбции органических веществ в значительной мере осложняется эффектом вытеснения Наде хемосорбирующимися органическими частицами. Так, в случае адсорбции вещества при некотором постоянном Ег, отвечающем области потенциалов адсорбции водорода, происходит значительное уменьшение количества Наде на электроде, т. е. адсорбция органических частиц и на местах, предварительно занятых Наде. В результзте на токи хемосорбции органического вещества накладываются токи ионизации вытесненного Наде и разделение этих токов требует использования специальных электрохимических методик. [c.112]

    Хемосорбция органических веществ на электродах из металлов группы платины приводит к существеиному изменению структуры двойного электрического слоя. Ввиду необратимости адсорбции органических соединений характер нх влияния на адсорбцию ионов в большой мере может определяться последовательностью адсорбционных процессов. Типичным примером в этом отношении являются данные по совместной адсорбции органических ча-стиц и Вг"-анионов на платиновом электроде в интервале Ег = = 0,0-ь0,6 В в системе 0,1 М СНзОН—0,01 н. КВг— н. Н2304. Установлено отсутствие влияния на величину адсорбции предварительно адсорбированных органических частиц иди анионов Вг" (исходные заполнения близки к предельным) последующего введения в раствор ионов Вг или метанола. Это обусловлено в [c.115]

    Адсорбционные явления в растворах органических веш,еств при высоких анодных потенциалах отличаются еш,е большей сложностью. Прежде всего это определяется многообразием форм хемосорбции кислорода и сложным механизмом реакции выделения кислорода в этой области Ег- До сего времени нет единства мнений о формах поверхностных кислородных соединений на металлах группы платины. Наиболее надежные и однозначные результаты но адсорбции кислорода получены для платинового электрода. Сделан вывод о наличии нескольких хемосорбционных форм кислорода (не менее трех) н образовании фазовых окислов различной стехиометрии. Ряд особенностей характерен и для адсорбции ионов в рассматриваемой области Ег. Так, для галоидных анионов на основе данных по вытеснению ими адсорбированных сульфат-анионов установлен порядок адсорбционной активности, обратный наблюдаемому на Pt в области низких анодных потенциалов ( . 0,9 В) Р >С1 >Вг >1 . Правда, необходимо учитывать, что С1 -, Вг"- и 1 -анионы окисляются при высоких Ег и адсорбируются, вероятно, в виде кислородсодержащих соединений. Зависимости адсорбции катионов и анионов от потенциала в области высоких Ег являются сложными, полнэкстремальньши. [c.118]

    Природа адсорбционных центров и адсорбционных связей в области высоких анодных потенциалов существенно отличается от таковых в области низких потенциалов, поскольку важную роль в формировании этих центров, очевидно, играют оксиды платины. Разные формы хемосорбированного кислорода ведут себя различно по отношению к процессу хемосорбции органических веществ, показывая неодинаковые способности к вытеснению органическими частицами и окислительную активность. По-видимому, имеет место включение хемосорбированных органических частиц в окисную пленку. Свидетельством иной природы связей хемосорбированных органических частиц с поверхностью электрода в области высоких анодных потенциалов по сравненик> с областью г 1,0В является, например, близость адсорбируемости на окисленной платине третичных алифатических спиртов и их гомологов с неразветвленной цепью. Слабая адсорбируемость третичных спиртов в области низких потенциалов объясняется отсутствием в их молекуле наиболее легко отщепляемых атомов водорода у а- С-атома. [c.120]

    Согласно этой схеме процесс идет непосредственно через прочно хемосорбированное вещество (ПХВ). Такая схема реализуется для предельных углеводородов. Об этом свидетельствует, во-первых, тот экспериментальный результат, что скорости электроокисления продуктов хемосорбцин углеводородов либо близки, либо превышают скорости стационарного процесса их окисления. На рис. 8.3 это показано на примере сопоставления стационарных токов электроокисления пропана (кривая /) и токов окисления хемосорбированного вещества (кривая 2). Во-вторых, веским доводом в пользу предположения об электроокислении углеводородов на Р1-электроде непосредственно через продукты прочной хемосорбции является образование практически единственного конечного продукта — диоксида углерода. [c.271]

Рис. 8.3. Кривые электроокисления пропана (1) и продуктов его хемосорбции (2) на Pt/Pt-электроде на фоне 1 н. H2SO4 Рис. 8.3. Кривые электроокисления пропана (1) и продуктов его хемосорбции (2) на Pt/Pt-электроде на фоне 1 н. H2SO4
Рис. 8.4, Поляризационные кривые электроокисления 0,5 М этанола при наличии его в растворе ) и продуктов хемосорбции этанола (2), накопившихся после поляризации Pt/Pt-электрода при ,= =0,5В. Фон — 0,1 н. H2SO1 Рис. 8.4, <a href="/info/10700">Поляризационные кривые</a> электроокисления 0,5 М этанола при наличии его в растворе ) и продуктов хемосорбции этанола (2), накопившихся после поляризации Pt/Pt-электрода при ,= =0,5В. Фон — 0,1 н. H2SO1
    Изменение электрокаталитических свойств металлов при переходе к их дисперсным формам, очевидно,, определяется суммарным влиянием большого числа факторов преимущественным выходом тех или иных граней, большим числом биографических дефектов кристаллической решетки,, особенностями пористой структуры, адсорбцией микропримесей и т. д. Выявить парциальное действие тех или иных факторов пока не удается. Работ по исследованию влияния дефектов структуры кристаллической решетки на электрокаталитические процессы проводится мало, и выводы этих работ довольно противоречивы. Однако в пределах тех изменений дефектности поверхности гладких электродов, которые вызывают такие операции, как химическое травление, механическое полирование, наклеп, высокотемпературный отжиг и т. п., существенных изменений скоростей электрокаталитических процессов с участием органических веществ на металлах группы платины не установлено. Очевидно, после этих операций с электродом доля дефектных мест остается весьма ма-ло1(, к тому же их влияние в сильной мере снижается за счет г рочыой хемосорбции органических молекул. [c.296]

    Вместе с данными, из которых вытекает возможность возникновения полислойной адсорбции, имеются многие исследования, приводившие к выводу о возможности возникновения на поверхности твердого электрода монослоя. В таком случае адсорбционные процессы овяза ны с более глубоким взаимодействием между адсорбированным веществом и металлом, приводящим к образованию новых химических соединений на поверхности электрода (хемосорбция). [c.344]


Смотреть страницы где упоминается термин Хемосорбция на электроде: [c.40]    [c.221]    [c.194]    [c.33]    [c.101]    [c.104]    [c.106]    [c.107]    [c.118]    [c.119]    [c.120]    [c.219]    [c.270]    [c.295]   
Двойной слой и кинетика электродных процессов (1967) -- [ c.265 ]




ПОИСК





Смотрите так же термины и статьи:

Пшеничников, В. С. Тюрин, P. X. Бурштейн. Хемосорбция и окисление углеводородов на платиновом электроде. IV.Влияние хемосорбированного этилена на скорость его окисления

Хемосорбция



© 2025 chem21.info Реклама на сайте