Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ферменты групповая

    Структура углеводных цепей групповых веществ крови изучалась иммунологическими методами для определения изменения серологической активности при кислотном гидролизе или обработке специфическими ферментами. Были определены терминальные углеводные остатки, ответственные за иммунологическую специфичность. С помощью щелочной деградации показано, что оли- [c.272]


    В зависимости от механизма действия различают ферменты с относительной (или групповой) и абсолютной специфичностью. Так, для действия некоторых гидролитических ферментов наибольщее значение имеет тип химической связи в молекуле субстрата. Например, пепсин в одинаковой степени расщепляет белки животного и растительного происхождения, несмотря на то что эти белки существенно отличаются друг от друга как по химическому строению и аминокислотному составу, так и по физико-химическим свойствам. Однако пепсин не расщепляет ни углеводы, ни жиры. Объясняется это тем, что точкой приложения, местом действия пепсина является пептидная —СО—КН-связь. Для действия липазы, катализирующей гидролиз жиров на глицерин и жирные кислоты, подобным местом является сложноэфирная связь. Аналогичной групповой специфичностью обладают трипсин, химотрипсин, пептидазы, ферменты, гидролизующие а-гликозидные связи (но не 3-гликозидные связи, имеющиеся в целлюлозе) в полисахаридах, и др. Обычно эти ферменты участвуют в процессе пищеварения, и их групповая специфичность, вероятнее всего, имеет определенный биологический смысл. Относительной специфичностью наделены также некоторые внутриклеточные ферменты, например гексокиназа, катализирующая в присутствии АТФ фосфорилирование почти всех гексоз, хотя одновременно в клетках имеются и специфические для каждой гексозы ферменты, выполняющие такое же фосфорилирование (см. главу 10). [c.142]

    Для иллюстрации изложенных в предыдущем разделе обш их соображений и возможностей использования различных аффинных сорбентов рассмотрим определенное число примеров, отобранных из периодической научной литературы последних трех лет. Большая их часть относится к очистке ферментов клеточного метаболизма (и отдельно — белков, регулирующ,их активность нуклеиновых кислот). Далее будут приведены примеры аффинного фракционирования и очистки самих нуклеиновых кислот, в том числе на иммуносорбентах. Основное внимание уделим более простому и универсальному методу — неспецифической элюции, однако био-снецифическая аффинная элюция белков тоже будет представлена несколькими типичными примерами. Рассмотрение начнем с использования сорбентов с индивидуальной специфичностью, ограничившись здесь тремя примерами, поскольку нет смысла пытаться сколько-нибудь полно иллюстрировать бесчисленное разнообразие возможных сорбентов этого типа. Аффинная хроматография белков клеточного метаболизма на сорбентах с групповой специфичностью будет иллюстрирована подробнее, а затем последуют два примера использования ковалентной хроматографии. [c.412]


    Для аффинных лигандов с групповой специфичностью каждый индивидуальный фермент не обязательно различает один и тот [c.105]

    Абсолютная групповая специфичность проявляется в действиях на вещества, близкие по типу строения, имеющие определенную связь и прилегающие к ней радикалы. К таким ферментам можно отнести некоторые глюкозидазы. [c.163]

    Обычно ферменты обладают абсолютной групповой специфичностью, т. е. фермент специфичен для реакций определенного класса соединений спиртов, альдегидов, эфиров, полипептидов и т. д. При групповой специфичности ферменты катализируют реакцию по определенной связи пептидной, эфирной и др. В соответствии с этим ферменты можно классифицировать по характеру их действия, разделив на следующие группы. [c.251]

    Второй тип ферментов обладает более ограниченной специфичностью, называемой групповой специфичностью. В реакции гидролиза, подобной приведенной выше, ферменты такого типа требуют, чтобы А соответствовал определенному типу, причем характер В безразличен. Примером фермента, обладающего подобной специфичностью, является а-гликозидаза (мальтаза) желудочного сока млекопитающих и -глико-зидаза (эмульсин). Как уже отмечалось, каждый из этих ферментов гидролизует (в рамках своей стереохимической специфичности) как дисахариды, так и гликозиды следовательно, они специфичны только для остатка моносахарида и в большой степени безразличны к характеру аглюкона. Мы уже видели (см. Олигосахариды ), каким образом можно использовать эту групповую специфичность гликозидаз в химии углеводов для идентификации а- и (З-гликозидной связи. [c.796]

    Иногда перед адсорбцией на специфическом сорбенте бывает необходимо освободиться от белков-примесей путем предварительного фракционирования. Если изменить условия адсорбции, такие, как pH, ионную силу, темшературу, скорость потока и диэлектрическую проницаемость, можно избирательно исключить некоторые ферменты. Более того, для предотвращения адсорбции некоторых из них можно добавить в раствор ингибитор или другие лиганды. Используя носитель с порами малого размера, можно исключить белки с высокой молекулярной массой. Повысить избирательность можно также, применяя специфическое элюирование. Специфические ингибиторы или субстраты могут быть применены для избирательного элюирования индивидуальных ферментов. В гл. 10 приведены примеры разделения смесей ферментов на сорбентах с групповой специфичностью для выделения индивидуальных веществ применялись градиенты pH, ионной силы или температуры. [c.107]

    Изменения нуклеиновых кислот в процессе пищеварения сводятся к воздействию ряда ферментов, имеющих групповое название н у к л е а 3. Нуклеазы расщепляют нуклеиновые кислоты на более простые соединения, всасывающиеся в кишечнике. [c.357]

    Многие ферменты обладают групповой специфичностью. Они катализируют расщепление связей, образованных определенными -функциональными группами (например, эфирную связь). Такая групповая специфичность может быть абсолютной или относительной. Ферменты с абсолютной групповой специфичностью действуют только на один род функциональных групп. Ферменты с относительной групповой специфичностью действуют преимущественно на один тип связи, например амидную, но при этом могут действовать и на другой тип связи (например, эфирную). Примером последнего типа может служить фермент пищеварительного тракта — трипсин. [c.346]

    Изучаются как групповые вещества крови человека, так и животных, так как они, по-видимому, не идентичны. Исследования эти связаны с огромными трудностями, ибо нет надежных методов полного снятия нативных углеводных цепей с полипептидной цепи с другой стороны, групповые вещества устойчивы к действию протеолитических ферментов, по-видимому, вследствие экранирования пептидных связей углеводными фрагментами. Тем не менее в настоящее время имеется ряд успехов в данной области и в первую очередь в отношении выяснения концевых углеводных остатков. [c.179]

    Гель-фильтрация является наиболее мягким способом фракционирования целлюлаз. Метод наиболее эффективен для отделения целлобиаз, имеющих значительно более высокую молекулярную массу, чем эндоглюканазы и целлобиогидролазы, или низкомолекулярных эндоглюканаз с молекулярной массой менее 20000 Ла. Среди носителей наиболее эффективны сефакрил S-200, ультрагели (Pharma ia), биогели (Bio-Rad). Применение гель-фильтрации эффективно и для групповой очистки эндоглюканаз и целлобиогидролаз, однако низкая разрешающая способность полидисперсных носителей, как правило,не позволяет разделить множественные формы этих ферментов с близкими Mr (см. табл. 5.1). Недостатком метода является многократное увеличение объема наносимых образцов в ходе элюции, что требует последующего концентрирования, длительность процесса. [c.126]

    Широко распространены в животном и растительном мире смешанные высокомолекулярные соединения, открытые в последние годы. Это — белки, содержащие одновременно углеводную или липидную компоненту либо связанные с нуклеиновыми кислотами, и полисахариды, содержащие белковую или липидную, или ту и другую компоненты. Смешанные высокомолекулярные соединения выполняют чрезвычайно ответственные функции в организме. Они определяют групповую принадлежность организма человека и животных и специфичность микробов, играя, по-видимому, видную роль в явлении иммунитета. Смешанные высокомолекулярнь]е соединения входят в состав нервных и соединительных тканей организма, секреторных жидкостей, участвуют в регулировании нервных процессов. Некоторые ферменты и гормоны, регулирующие жизнедеятельность организма, также относятся к смешанным высокомолекулярным соединениям. [c.14]


    Катализаторы обладают специфическим действием. Вещество, значительно ускоряющее одну реакцию, часто оказывается совершенно неэффективным для другой. В то же время для данной реакции может существовать целый набор катализаторов. Так, термическое разложение хлората калия ускоряется не только в присутствии МпОг, но и некоторых других оксидов (РегОз, СггОз). Существуют катализаторы, обладающие так называемой групповой специфичностью. Она проявляется в том, что при помощи их ускоряется целая группа однотипных реакций. Например, никель Ренея (мелкодисперсный никель с сильно развитой поверхностью) служит специфическим катализатором реакций гидрирования, а иентоксид ванадия ускоряет многие реакции окисления (ЗОг, N1 3 и т. д.). Многие катализаторы, в частности ферменты, обладают сугубо индивидуальным каталитическим действием. Такие катализаторы называются индивидуально-специфическими. По образному выражению Э. Фишера, реакцию, катализируемую ферментом, можно сравнить с замком, а сам фермент — с ключом. Как не каждый ключ может открыть замок, так не каждый фермент способен ускорить реакцию в данном направлении. Например, один фермент способствует сбраживанию сахара до спирта и диоксида углерода, другой — до молочной кислоты. [c.234]

    Ферменты обладают признаками как гомогенных, так и гетерогенных катализаторов. Они проявляют свою активность в водных растворах, что свойственно гомогенным катализаторам. Однако они имеют большую молекулярную массу, образующую мпкроповерх-ность раздела, на которой находятся особые участки — активные центры, состоящие из атомов, что свойственно гетерогенным катализаторам. Ферменты состоят из глобулярных белков, и для них характерны не только генетическн закодированная последовательность расположения отдельных аминокислот в иолипептидной цепи, но и разнообразие химических связей между отдельными звеньями этих цепей, определяющих уникальную для каждого фермента структуру. Поэтому одной из важных особенностей ферментов является высокая специфичность действия. Различают индивидуальную специфичность — способность катализировать только одну химическую реакцию и притом лишь данного субстрата — и групповую— способность катализировать ту же реакцию в разных субстратах. [c.115]

    Все разнообразие биологически активных молекул и их аналогов, которые могут быть использованы в качестве лигандов, не поддается перечислению. Тем не менее имеет смысл назвать некоторые (иногда очень широкие, а иногда ограниченные) группы веществ и даже индивидуальные вещества, чаще других используемые в качестве лигандов. Всем им свойственна определенная биоспецифичность — индивидуальная или групповая. Под первой будем понимать строгую взаимную специфичность ( сродство ) двух молекул, например антигена и антитела под второй — такой вид биоспецифического взаимодействия, когда лиганд может связывать целую группу родственных в этом смысле веществ. Примером может служить никотинаденин-нуклеотид, взаимодействующий со всеми ферментами, для которых он является коферментом. [c.361]

    Изомеразы — ферменты, катализирующие реакции изомеризации. К ним, в частности, относятся такие ферменты, как мутаротаза, катализирующая реакцию мутарота-ции — превращения а-глюкозы в р-глюкозу акоиитаза, катализирующая изомеризацию лимонной кислоты в изолимонную кислоту, и ряд других. Однако наряду с групповой специфичностью есть ферменты, обладающие абсолютной специфичностью. Уреаза способна разрушать только мочевину и больше ничего мальтаза из проростков ячменя действует только на мальтозу и неактивна к другим а-глюкозидам аргиназа действует на [c.252]

    Групповую специфичность можно наблюдать в случае действия альдегидоксицазы в р-циях превращения алифатич. альдегидов. Значительно менее селективны методы определения эффекторов, т. к. обычно имеется фуппа разл. соед,, в той или иной степени меняющих каталитич. активность данного фермента. Однако селективность определения эффекторов м. 6. и очень высокой. Так, очень малые кол-ва рт и (10 пМ) можно определять по ее ингибирующему действию на пероксидазу хрена на фоне тысячекратных кол-в В1 и С(1 и значительно больших кол-в мн. неорг. и орг. в-в. [c.79]

    Как видно из приведенных в табл. 25.3.1 данных, в миелине отношение липид белок выше, чем в других мембранах это соответствует специфической функциональной роли миелина. Напротив, для протекания высокоэффективных процессов окисления во внутренней мембране митохондрий необходимо присутствие нескольких ферментов и отношение липид белок у нее ниже. В мембране эритроцитов содержится относительно большое количество углеводов. Основной гликопротеин мембраны эритроцитов, гликофорин, как было показано [6], ориентирован на поверхности мембраны так, что Л -концевая часть его полипептидной цепи, несущая все ковалентно связанные остатки углеводов, выступает во внешнюю среду такими поверхностными олигосахаридами являются некоторые групповые антигены крови и рецепторы, включая рецептор вируса гриппа. Схематическое изображение возможного расположения белков, липидов и углеводов в биологической мембране, приведенное на рис. 25.3.1, основано на жидкомозаичной модели [7]. Полярные молекулы липидов образуют бимолекулярный слой (см. разд. 25.3.3), тогда как белки могут быть или связаны с поверхностью (так называемые внешние белки), или внедрены в бислой (так называемые внутренние или интегральные белки). В некоторых случаях белок может пронизывать бислой. Жидкомозаичная модель завоевала всеобщее признание предполагают, что мембрана в физиологических условиях является текучей, а не статичной. Так, липидные и белковые компоненты в изолированных [c.109]

    Ферменты природного происхождения, являясь катализаторами биохимических реакций, отличаются от обычных химических катализаторов высокой специфичностью, в силу которой действуют строго на одно вещество (субстрат) или очень небольшое число близких по химической структуре веществ. Данная особенность обеспечивается уникальной структурой активных центров ферментов, определяющих эффективность связывания только со своим субстратом и исключающих связывание других веществ. Классическим постулатом энзимологии является стерическое соответствие структуры молекулы субстрата структуре активного центра фермента, то есть каждый фермент подходит к субстрату, как ключ к отпираемому замку. В то же время степень специфичности ферментов варьирует. Принято различать абсолютную, абсолютную групповую, относительную групповую и оптическую виды специфичности. Абсолютная предусматривает только сродство к одному субстрату, не взаимодействуя даже с родственными по структуре субстратами. Примером может служить фермент уреаза (карбамидаминогидролаза), катализирующая гидролиз мочевины. Этот фермент был выделен в ГНЦЛС из семян столовых арбузов доказана его специфичность, изучены основные биохимические свойства [18, 19]. [c.163]

    Отаосительная групповая специфичность возможна в случаях,когда фермент проявляет специфичность в отношении связи между отдельными частями молекулы и абсолютно инертен к химической структуре самой молекулы. Таким примером может стать липаза, также выделенная в ГНЦЛС из семян чернушки дамасской и расщепляющая не только различные третлицериды (жиры), но и диглицериды и моноглицериды [20]. [c.163]

    Высокая разрешающая способность методов ВЭЖХ позволяет осуществлять очистку целлюлаз и без предварительной групповой очистки ферментов [54], однако это резко уменьшает рабочий ресурс колонок. [c.128]

    Следует отметить, однако, что общепринятое понятие абсолютная специфичность в определенной степени условно. Так, глюкозооксвдаза, специфически окисляющая в-глюкозу с образованием глюконовой кислоты, действует еще по крайней мере на 8—10 субстратов, таких, как манноза, мальтоза, лактоза и др. Учитывая тот факт, что скорость окисления этих субстратов ниже по сравнению с глюкозой примерно на два порядка, этими данными зачастую пренебрегают и глюкозооксидазу считают ферментом, проявляющим абсолютную специфичность. Вместе с тем исследования влияния фермента на близкие по строению субстраты оказались чрезвычайно плодотворными в другом отношении. Выяснилось, что на скорость ферментативной реакции влияет не только природа атакуемой связи, но и ее окружение, а также длина углеродной цепи субстрата. Это особенно характерно для ферментов, проявляющих относительную, или групповую, специфичность. Данные ферменты действуют на группу близких по строению субстратов с сопоставимой скоростью, [c.60]

    Характерной особенностью ферментов является специфичность их действия. Каждый фермент действует на строго определенный субстрат. Специфичность бывает абсолютная, когда фермент действует на один субстрат (уреаза), групповая— когда фермент действует на ряд соединений с определенными атомными группировками (липаза), а также стереохими-ческая — когда фермент действует на определенные стереоизомеры (р-глюкозооксидаза). Активность ферментов в клетке строго регулируется. Процесс биосинтеза ферментов находится под генетическим контролем. Активность ферментов регулируется концентрацией конечных и промежуточных продуктов превращения субстрата, а также условиями окружающей среды. [c.82]

    Различные катализаторы могут ускорять или одну реакцию, илн группу реакций, или же реакции различного класса. В соответствии с этим катализаторы могут обладать индивидуальной специфичностью (абсолютной специфичностью), групповой специфичностью или являться универсальными. Высокая избирательность (селективность) наблюдается у ферментов. Так, /-аргиназа действует только на /-аргинин, но не на -аргинин, лактодегидраза мышц дегидрирует только /-, но не /-молочную кислоту и т. д. [c.162]

    При групповом разделении методом гель-фильтрации удается в значительной мере избежать разбавления, если учитывать объемные соотношения, подробно рассмотренные в разделе Обессоливание . При очистке суспензии вируса (выделенного из столовой свеклы) от сопутствующих пигментов путем гель-фильтрации на 4—6-кратном (по отнощению к объему образца) объеме сефадекса 0-75 разделение составляло лишь 20—30% [14]. Свободные от белков катехоламины — адреналин и норадреналин — были выделены без разбавления из 20 мл сыворотки (27% объема колонки) гель-фильтрацией на сефадексе 0-25 (2X25 сж, 78 мл) [15]. Кислюк [16] показал, что с помощью гель-фильтрации на сефадексе 0-50 удается гораздо легче отделить фермент от его кофакторов, чем с помощью диализа. Таким путем удается получить кофакторы в сравнительно небольшом объеме и изучить эффект их вторичного присоединения к ферменту. После гель-фильтрации был выделен совершенно неактивный белок, активность которого вновь восстанавливалась (до 86% исходной) после добавления низкомолекулярной фракции. При диализе активность фермента снижалась только до 38% [16]. Групповое разделение гель-фильтрацией оказалось чрезвычайно удобным методом отделения низкомолекулярных антигенов от антител. Диссоциацию комплекса антиген — антитело часто осуществляют, добавляя избыток гаптена, который затем можно легко отделить от белка гель-фильтрацией [17]. В бактериологии гель-фильтрация на сефадексе 0-75 или биогеле Р-100 может служить для удобного выделения экстрацеллюлярных токсинов. Перед засевом культуральную среду освобождают от высокомолекулярных примесей гель-фильтрацией. Затем на той же колонке после удаления бактерий можно вновь отделить высокомолекулярные токсины от культуральной среды [18]. [c.142]

    Иммобилизсшанный на агарозе аденозин-2, 5 -дифосфат(вместе с пространственной группой —NH( Hj)eNH—). Групповой БСС со специфичностью по отношению к НАДФ-зависимым дегидрогеназам и другим ферментам. Поставляют в виде лиофилизированного порошка со стабилизирующими добавками, которые перед употреблением отмывают нейтральным фосфат1й>1м буферным раствором. Набухаемость 4,0 см /г, содержание лиганда в набухшем геле около 2 мкмоль/см . При pH > 10 фосфатные группы могут отщепляться. [c.226]

    Групповой БСС с аффинностью к большому числу ферментов (киназ, дегидрогеназ, трансфераз, редуктаз, мутаз) и других белков. Образован иммобилизацией на поперечносшитом агарозном геле красителя iba ron Blue F3G-A, содержащего полициклические хромофоры и первичные, вторичные и третичные [c.227]

    В этот обзор включены также аффинные лиганды с очень узкой специфичностью. Например, если к носителю прикрепить ингибитор, специфичный для единственного фермента, образующийся сорбент также будет специфичен только для данного фермента. Однако для использования специфических лигандов необходимо проводить различные и часто очень трудоемкие синтезы сорбента для каждого разделения. Не все аффинанты, которые подходят для комплементарного связывания макромолекул, имеют также подходящие функциональные группы для их прикрепления к нерастворимому носителю. Эти группы долл ны быть предварительно введены в аффинный лиганд, так же как и подходящей длины пространственная ножка , необходихмая главным образом для низкомолекулярных аффинных лигандов (она позволяет осуществлять их специфические взаимодействия с сорбируемым веществом). Практическая полезность специфических сорбентов возрастает, если для их приготовления вместо узко специфических лигандов использо-вать так называемый общий лиганд [37]. Очевидно, что матрица с групповой специфичностью, содержащая общий лиганд, проявляет аффинность к большой группе биологических макромолекул. Например, ферменты метаболизма аспарагиновой кислоты обнаруживают групповую специфическую [c.104]

    Катех олокаидаза относится к группе ферментов, действующих на фенолы и родственные им соединения (групповая специфичность). Акцептором электронов служит молекулярный кислород. [c.116]

    Хроматография гидролизатов проводилась при +4° С на колонке с фосфоцеллюлозой 2,4x25 см со скоростью 60 мл/час. Химотрипсиновый гидролизат лизоцима фракционировался с возрастающим градиентом pH аммонийно-ацетатного буфера от 3,4 до 9,0 и возрастанием концентрации от 0,02 до 0,3 М. Пепсиновый гидролизат фракционировался с возрастанием pH пиридин-ацетат-ного буфера от 3,9 до 5,4 и возрастанием концентрации от 0,05 до 0,45 М. Фракционирование по такой схеме дает очень хорошее групповое разделение пептидов (до 3—6 пептидов в одном пике). Сопоставление таких групп, полученных действием разных ферментов, позволяет составить полную аминокислотную последовательность исходного белка. [c.185]


Смотреть страницы где упоминается термин Ферменты групповая: [c.365]    [c.392]    [c.430]    [c.581]    [c.116]    [c.264]    [c.272]    [c.567]    [c.571]    [c.37]    [c.125]    [c.126]    [c.128]    [c.61]    [c.351]    [c.220]    [c.222]    [c.797]   
Кинетика и катализ (1963) -- [ c.251 , c.253 ]




ПОИСК





Смотрите так же термины и статьи:

КАО групповые



© 2025 chem21.info Реклама на сайте