Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Капли размер теоретический

    Теоретическое введение. Реальные эмульсии представляют собой полидисперсные системы, содержащие капли размерами от [c.214]

    Исходя из сложной природы механизмов коалесценции представляется интересным связать два вида коалесценции как отношение их времен для оценки фазового разделения в зоне плотной упаковки капель дисперсной фазы в системе жидкость—жидкость. Обычно предполагается, что в дисперсном слое переменные, влияющие на коалесценцию капля—капля и капля—поверхность раздела, одни и те же для данного размера капель. На этой основе возможно дать теоретические выражения для времен контакта. Так, уравнение для времени стенания пленки в модели жесткая сфера—плоскость записывается [39] [c.292]


    Рассмотрим дробление капли в электрическом поле. Имеется несколько теоретических и экспериментальных работ [92—95], посвященных этому вопросу. Однако во всех работах анализируется поведение не капель эмульсии, а капель аэрозоля, точнее, дождевых капель размером от 0,1 до 1 см в атмосфере при напряженности поля 10 кВ/см. [c.79]

    На форму капли оказывают влияние не только поверхностные, нон гравитационные силы. При большой разности плотностей смачивающих жидкостей форма капли под воздействием выталкивающей силы сильно отличается от сферической. В этом случае краевой угол не может служить объективным показателем смачивания. Однако влияние выталкивающей силы велико только для капель большого размера. Для капель радиусом 0,39—0,60 мм краевой угол смачивания даже на воздухе, где разность плотностей гораздо больше, чем в условиях избирательного смачивания, практически не зависит от размера капель [64]. В результате теоретических и экспериментальных исследований кинетики растекания капли найдено [208], что влиянием гравитационной силы можно пренебречь, если линейный размер капли [c.166]

    Различные аспекты нестабильности Рэлея — Тейлора были экспериментально изучены многими исследователями. Многократно проверены в различных условиях нелинейность волн возмущения, стабильность при ускорении в одном направлении и нестабильность при ускорении в противоположном направлении. Однако обстоятельных работ по приложению этой теории к проблеме образования эмульсий не проведено. О достигнутых в этом направлении результатах сообщено в обзоре Гопала (1963). Приведенные выше теоретические расчеты не могут быть использованы непосредственно для промышленного производства эмульсий, так как во всех случаях необходимо учитывать рекомбинацию частиц. Кроме того, ускорения изменяются от места к месту и с течением времени, так что обязательно будут образовываться капли различных размеров. Поэтому нужен, такой расчет, где были бы использованы законы статистики. [c.34]

    НИИ жидкостей в тонких пленках посвящено много теоретических и экспериментальных исследований (см., например, [4.1, 4.2]). Особенность пленки, образованной струей капель, состоит в том, что капли непрерывна возмущают пленку, внося вместе с тем в пленку жидкую, массу. Интенсивность воздействия потока капель на пленку, зависит от многих факторов, из которых отметим основные плотность потока жидкости (плотность орошения), скорость капель, функцию распределения капель по размерам, угол между направлением движения капель и поверхностью [c.173]


    Схема первичного дробления струи на капли вследствие турбулентного воздействия может служить в качестве одной из упрощенных моделей процесса распыливания жидкостей. Теоретические предпосылки и аналитические зависимости для размеров капель нуждаются в дальнейшей доработке. [c.97]

    Осуществлено экспериментально-теоретическое исследование процесса получения газовых эмульсий посредством АГА. Задача состояла в определении среднего размера капель в факеле распыла, если волны неустойчивости инициируются выходом частиц на свободную поверхность струи и определении вероятности вхождения частиц в капли факела распыла. [c.21]

    На каждый из упомянутых выше механизмов потерь оказывают влияние свойства топлива и конструкция камеры сгорания. Хотя теоретический удельный импульс системы определяют термодинамические и кинетические характеристики, степень его достижения обусловливается и газодинамическими эффектами. Дробление и испарение капель в основном определяют полноту сгорания и оказывают лишь второстепенное влияние на кинетические потери и потери в пограничном слое. Распыливание топлива определяется конструкцией форсунок и смесительной головки, тогда как скорости испарения зависят от конструкции камеры сгорания и свойств компонентов топлива. С точки зрения экономичности оптимальной является смесительная головка, обеспечиваюш ая такое распыление компонентов топлива, при котором они испаряются с одинаковой скоростью, а испарение завершается в одном поперечном сечении камеры сгорания. Камера при этом должна обеспечить достаточно большую относительную скорость Av между газом и каплями, чтобы полностью испарить последние на располагаемой длине. Характер изменения v по длине камеры определяется в значительной степени коэффициентом сужения камеры сгорания Лк/Лкр. Другими факторами, влияющими на распыление топлива, являются перепад давления ка форсунках, начальный размер капель, устойчивость внутрикамерного процесса, характер соударения струй, свойства топлива, самовоспламеняемость и турбулентность газов в камере. Распределение топлива в факеле распыла определяет влияние качества смешения компонентов [c.169]

    Если одноосно деформировать шарообразную частицу жидкости, то согласно теоретическим расчетам она распадается на две капли при достижении длины, превышающей диаметр в я/2 раз. Таким образом, в статическом состоянии невозможно существование изолированного объема жидкости в виде нити (под нитью подразумевается такая геометрическая форма тела, у которой один из размеров — длина — во много раз превосходит размеры в двух других направлениях или диаметр для тел круглого поперечного сечения). [c.235]

    ДО Предела, при котором сохраняется сферичность капли. Для каждого расхода определяют оптимальный размер к. опт, при котором объем одной теоретической ступени минимален. [c.63]

    Свойства и характеристики. Плотность газа, плотность, вязкость и поверхностное натяжение жидкости влияют на величину получаемых капель и их распределение по размерам, а также на степень трудности диспергирования струи или пленки. Точно оценить влияние этих свойств на отрыв и дальнейшее поведение капель можно только при самых упрощенных теоретических предпосылках, но опыт показывает, что оно весьма значительно. Давая качественную оценку, можно сказать, что увеличение плотности жидкости приводит к большей устойчивости струи, йо вместе с тем возрастают силы инерции, а поэтому уменьшается максимальный размер капли, устойчивой в гравитационном по.че. С увеличением плотности газа уменьшается ста- [c.74]

    Кинетика реакций изучается методом начальных скоростей [16—18], а также при установившемся режиме движения и массопередачи [19]. В последнем случае возникает задача экспериментального или теоретического учета концевого эффекта, т. е. количества вещества, перенесенного за время формирования капли и ее неустановившегося движения. Экспериментальному методу придается большее значение, чем теоретическому. Последний, как указывалось, имеет слишком большие ограничения. Пока удается описать массопередачу лишь во время медленного роста капель небольшого размера и при отсутствии целого ряда поверхностных процессов (образование СМБ, самопроизвольная поверхностная конвекция). [c.188]

    Размеры капель. Распад жидкости на капли в условиях пульсационного движения, сопровождаемый их коалесценцией, является сложным процессом, причем теоретически возможно лишь качественное и упрощенное описание механизма указанных явлений. Однако и в этих условиях приближенно применима теория локальной изотропной турбулентности, согласно которой максимальный устойчивый размер капли (сг/рс) е > (где о — межфазное натяжение, Н/м Рс — плотность сплошной фазы, кг/м е — диссипация энергии в единицу времени на единицу массы жидкости. Вт/кг). [c.319]


    Найденные для различных типов аппаратов зависимости й от интенсивности типа 1/с( [8—10] соответствуют теоретическим [1], т. е. размер капли определяется общими закономерностями дробления в турбулентном потоке. [c.104]

    В описанных выше конденсационных методах получения аэрозолей коллоидно-дисперсная фаза возникала из молекулярно-дисперсной (газообразной) фазы. В диспергационных же методах происходит разделение сравнительно больших объемов твердых или жидких тел на частицы коллоидных размеров. Сообщаемая жидкости энергия заставляет ее принять неустойчивую форму и распадаться на капли твердое тело диспергируется на мелкие частицы. Процесс распыления жидкостей интенсивно исследовался в связи с конструированием и эксплуатацией форсунок, широко используемых в промышленности, однако физические его основы еще не вполне выяснены и механизм распыления еще не поддается количественному теоретическому анализу. Это прискорбно, поскольку точное знание физики распыления имело бы не только научное, но и практическое значение, так как определило бы пути [c.43]

    Ядра конденсации могут состоять как из органического, так и из неорганического вещества, могут быть растворимыми, нерастворимыми или же нерастворимыми с тонким внешним слоем, состоящим из растворимого вещества (в этом случае они называются смешанными ядрами). Из-за многообразия существующих в природе растворимых веществ химический состав ядер конденсации не определен достаточно хорошо. Исследование смога показало, что около 60 % частиц состоят из неорганических веществ или минералов, а остальные представляют собой сложную смесь органических компонентов, угля и пыльцы [98]. Такое процентное соотношение не является неизменным везде. Частицы разных размеров могут отличаться и по химическому составу. Например, установлено [103], что большинство ядер диаметром 0,4-2 мкм состоит, главным образом, из сульфата аммония, в то время как состав частиц с диаметром, превышаюшлм 2 мкм, менее специфичен иногда такие частицы содержат значительное количество хлорида или нитрата натрия. Различают два типа нерастворимых ядер конденсации легко смачиваемые и несмачиваемые. Легко смачиваемые ядра быстро образуют капли. Для теоретического предсказания роста и испарения таких частиц ядро можно рассматривать как чистую каплю и непосредственно применять к нему уравнение Кельвина (но при меньшем предельном размере ядра). Конденсация пара на частицах с несмачиваемой поверхностью более затруднена. Конденсирующаяся жидкость на поверхности такой частицы стремится собраться в маленькие шарики, и жидкий слой образуется только тогда, когда поверхность покроется шариками целиком. Пока не достигается высокая степень пересыщения, конденсация на несмачиваемой частице не происходит [104]. [c.826]

    Экспериментально диффузионная теория горения была впервые проверена в лаборатории теплофизики Ленинградского политехнического института на крупных каплях тяжелого жидкого топлива (соляровое масло, мазут) [137]. Капли размером 1,5— 2 мм подвешивались на термопаре в потоке воздуха. Температура подогрева воздуха составляла 900—1100° С, скорость потока 0,5—1 м1сек. Кроме того, были проведены опыты со свободно падающими мелкими каплями. Исследования показали, что опытное время сгорания крупных капель солярового масла с учетом подвода тепла конвекцией получается меньше расчетного по диффузионной теории, если расчет выполнять даже по теоретической температуре в зоне горения. Приближенными измерениями установлено, что действительная температура в зоне горения составляет лишь 50—60% от теоретической и для тяжелых топлив не превышает 2000° К. При расчете времени горения с учетом фактических температур расчетные значения оказываются больше опытных в 2—3 раза. Для свободно падающих мелких капель солярового масла и мазута расхождение опытных и расчетных данных времени сгорания меньше, что, по-видимому, обусловлено отсутствием подвода тепла к каплям по подвесу, а также уменьшением роли радиационного и конвективного теплообмена. Однако и для мелких капель (150—200 мкм) опытное время оказа- [c.358]

    Значительный интерес представляет вторая часть экспериментального исследования, проведенная с каплями размером 1,5—2 мм, подвешенными на нити в камере спокойного воздуха. При сравнении теоретических и экспериментальных данных авторы учитывали диссоциацию СОг и Й2О и тепловой поток по подвеске капли. Следует отметить большое влияние подвода тепла по подвеске на время испарения канли. Так, для капель керосина размером 1,5—2 мм подвод тепла по подвесу диаметром 0,2 мм из константана (Я =26,8 втЫ град) уменьшает время испарения на 26%. После введения указанных поправок было получено удовлетворительное совпадение экспериментальных данных с расчетными по диффузионной теории. Время сгорания для капель керосина и бензина по экспериментальным данным оказалось ниже, чем по расчету, соответственно на 3 и 5%. [c.359]

    В результате процесса массообмена происходит уменьще-ние размеров капель, что на рисунке выражается в смещении кривой распределения по оси абсцисс влево, в сторону наименьщих размеров. Зная смещение кривой распределения, можно определить величину уменьшения диаметра максимальной капли. Начальный диаметр капли определяли теоретически (4) по формуле [c.305]

    При больших скоростях капли измельчаются до очень малых размеров. Эти явления изучены многими исследователями, и установлены раз.чпчные количественные соотношения, связывающие перечисленные выше параметры с размерами капель, степенью измельчения и т. д. Полученные данные паилучшим образом согла-совыва.лись с уравнениями, основанными на анализе размерностей или на приближенных моделях явления. Мюссе (1955) проанализировал все эти работы и тем дал повод для более критического теоретического и экспериментального изучения. [c.37]

    Обращение фаз — нестабильное состояние эмульсии, когда неожиданно происходит изменение типа эмульсии от В/М к М/В илп наоборот. На обращение фаз влияют объемная концентрация компонентов, природа и количество эмульгатора. При изменении концентрации п благоприятном сочетании всех остальных факторов обращение фаз происходит, когда концентрация достигает — 75%. Эта величина близка к теоретическому значению 74%, что соответствует плотной упаковке жестких шаров одинакового размера. Но совпадению этих величин не следует придавать большого значеиия, так как в концентрированных эмульсиях каили могут не иметь сферической формы, а кроме того, обращение фаз происходит и при иных концентрациях. Согласно схеме, предложенной Шульманом II Кокбейном (1940), при возрастании концентрации масла в эмульсин М/В капли масла сталкиваются друг с другом и соединяются таким образом, что теперь уже вода оказывается в виде каили (рис. 1.25). Эта упрощенная схема является, вероятно, правильной. Следует добавить, что на обращение фаз влияют также температура и динамика процесса эмульгирования. [c.66]

    Из табл. 8 видно, что механические форсунки дают при распылении самые крупные капли. Даже при давлении топлива перед форсункой р = 20 ати, радиус капли составляет 0,2 мм. Распыление вентиляторным воздухом, вследствие дост1ижения скоростей распылителя 80—100 м/сек, дает значительно меньший (в 5— —10 раз) размер капель. Самое тонкое распыление достигается форсунками высокого давления. Интересно отметить, что при распылении компрессорным воздухом начальная температура воздуха не оказывает влияния на размер капли, поскольку увеличение теплопадения к связано с соответствующим снижением уде1льного веса воздуха в конце расширения, т. е. в месте встречи распылителя с топливом. Это же обстоятельство объясняет сравнительно небольшое уменьшение размера капель в случае применения перегретого пара. Такой вывод получается в результате анализа принятой теоретической схемы распыления. В действительности же повышение начальной температуры воздуха обусловливает более высокое значение его температуры в конце расширения и предотвращает резкое охлаждение мазута, которое привело бы к понижению его вязкости и снижению распыливающего эффекта. Так, например, при адиабатном расширении (в расширяющихся соплах) воздуха, имеющего начальное давление р = [c.34]

    Самое тонкое распыление достигается форсунками высокого давления. Интересно отметить, что при распылении компрессорным воздухом начальная температура воздуха не оказывает влияния на размер капли, поскольку увеличение разности энтальпий связано с соответствующим снижением плотности воздуха в конце расщирения, т. е. в месте встречи распылителя с топливом. Это же обстоятельство объясняет сравнительно небольшое уменьшение размера капель в случае применения перегретого пара. Такой вывод получается в результате применени теоретической схемы распыления без поправок. [c.66]

    Разрабатывая способ выделения лигнина экстракцией нейтраль ным растворителями, Бьеркман исходил из теоретической концепции согласно которой древесное вещество следует рассматривать как твердый раствор , в котором три компонента - целлюлоза, гемицел люлоза и лигнин - образуют прочную пространственную сетку посред ством водородных связей [19]. Эту сетку можно разрушить механическим путем (размолом), но для того чтобы последний был эффективен необходимо свести пластические свойства древесины к минимуму Для этого древесину превращали в древесную муку с размером частиц проходящих через сито 25 меш (0,25 мм) и после экстракции последовательно спирто бензолом и этанолом высушивали над Р2О5 под вакуу мом в течение нескольких недель. Размол осуществляли в среде обезвоженного толуола, сначала 48 ч на мельнице Лампена, а затем такое же время на вибрационной шаровой мельнице. После этого измельченная древесина отделялась от толуола и экстрагировалась диоксаном, содержащим до 5% воды (в безводном диоксане лигнин не растворялся). После многократной смены экстрагента, экстракт упаривали под вакуумом досуха, растворяли в 90 %-ной уксусной кислоте, после чего по каплям при размешивании выливали в воду. При этом лигнин выпадал в виде хлопьевидного осадка. Последний отделяли центрифугированием и опять растворяли, но уже в смеси дихлорэтан - этанол. Из раствора лигнин осаждали абсолютным этиловым эфиром и отфильтровывали. Высушенный препарат лигнина - порошок светло-кремового цвета. [c.96]

    Скорость изменения п за счет дробления капель выражена через частоту дробления f(V) капли объемом в интервале V, V + dV) и вероятность P V, ю) образования капли объемом в интервале (У, V + dV) при дроблении капли объемом в интервале (м, ю-Ьс/ш). Модель дробления капель рассмотрена в разделе 11.7 в предположении, что дробление одиночной капли полностью определяется флуктуациями диссипации энергии в ее окрестности. При этом, если среднее по объему порядка размера капли значение диссипации энергии превосходит критическое значение, происходит акт дробления. Отмечено, что независимо от начального спектра капель через олределенное время в результате дробления распределение капель становится логарифмически нормальным. Для определения частоты дроблетш f(V) необходимо оценить минимальный радиус капель, дробящихся в турбулентном потоке. Теоретически этот размер можно определить, сравнивая силы, действующие на каплю и приводящие к значительной деформации ее поверхности. В [65] приводится выражение для путем сравнения силы вязкого трения и капиллярной силы, а в [2] — динамического напора внутри капли и капиллярной силы. Движение капель в газе не приводит к значительным силам вязкого трения, поэтому предпочтительней вторая модель и в качестве R имеет смысл взять выражение [c.548]

    Высказанные выше положения основаны на гидродинамике насадочной колонны в отсутствие массопередачи. При наличии массопередачи капля может не достичь своего устойчивого размера вследствие постоянно изменяюш,егося состава фаз. В этом случае эффективная межфазная поверхность в единице объема насадки будет изменяться в широком диапазоне, что, в свою очередь, будет влиять на значения ВЕП и БЭТС в различных точках колонды. Значения ВЕП и ВЭТС зависят также от изменений коэффициентов массопередачи под действием межфазной турбулентности. Несмотря на то что проводятся весьма интенсивные исследования ВЕП и ВЭТС для различных типов насадки, их изменение внутри одного отдельного аппарата практически не изучено. При исследовании процесса экстракции толуола из н-гептана в диэтиленгликоль было показано, что обш ее межфазное сопротивление массопередаче выше при низких концентрациях толуола, чем при высоких [И]. Поэтому для получения эквивалента теоретической ступени необходима большая межфазная поверхность в части колонны, обедненной толуолом при этом число теоретических ступеней не будет прямо пропорционально увеличению длины колонны. [c.16]

    Полагают, что на ранних стадиях реакции система состоит из мицелл эмульгатора, в которых содержится инициатор и мономер, а также из дисперсии макроскопических капелек мономера в водном растворе инициатора. Средний радиус капелек мономера на несколько порядков больше среднего радиуса мицелл, но общая поверхность последних чрезвычайно велика, поэтому почти все радикалы, образующиеся в водной фазе, захватываются мицеллами. Как только начинается реакция внутри мицеллы, сразу же должен начинать действовать механизм, обеспечивающий подачу мономера к растущим радикалам если бы в реакции роста прини1мал участие только мономер, уже имевшийся внутри мицеллы, то степень полимеризации получалась бы значительно меньшей, чем это имеет место в действительности. Было установлено, что в случае стирола количество молекул, первоначально солюбилизированных мицеллой, составляет лишь 100—200 [76]. Теоретически возможны два механизма а) диффузия мономера через водную среду из капелек к мицеллам [92—99] б) диффузия растущих радикалов внутрь капелек. Для объяснения явлений, наблюдаемых на опыте, достаточно первого положения. Виноград [100] изучал диффузию мономера из капелек путем прямого определения их размеров и показал, что скорость уменьшения диаметра капли линейна во времени до тех пор, пока не исчезнет 99% вещества капли он сделал вывод о том, что скорость диффузии достаточно велика, чтобы обеспечить подачу мономера в соответствии с наблюдаемой скоростью реакции. [c.166]

    При изучении поверхностного натяжения на границе раздела газ-ртуть по адсорбции спиртов, бензола и толуола на ртути Кемпбелл и Райдилл [137, 188] использовали метод определения размеров покоящейся капли. Метод, основанный на анализе формы капли, был разработан Башфортом и Адамсом [189], вычислившими форму покоящейся или висящей капли и составившими таблицы контуров таких капель. Снятый экспериментально контур капли накладывается на теоретический, и в результате находится у, хотя эта проце- [c.475]

    Теоретический размер капли и коалесценция. Механические свойства капель представляются весьма сложными. Капля может распасться на более мелкие частицы в результате инерционного взаимодействия с окружающим газом, как описано еще Гельмгольцем. Максимальный размер капли, противостоящей инерционному разрушению, может быть вычислен с учетом свойств жидкостей и относительной скорости капли Доказано, что влияние вязкости и турбулентности газа незначительно. Капли, падающие с конечной максимальной скоростью, обладают стабильностью Гельмгольца вплоть до относительно больших диаметров (для воды в воздухе эта величина порядка 1 см). Меньшие капли требуют высоких относительных скоростей для достижения нестабильности — для капли воды величиной 1 мм в воздухе эта скорость составляет 15 м1сек, при у.меньшении размера капли на порядок скорость увеличивается в У"Ю раз. [c.74]

    Для теоретического вычисления скорости образования зародышей надлежит решить уравнения (IV.52), (IV.57) или (IV.59) при условии, что функция распределения не изменяется во времени, т. е. положить левую часть уравнений, равной нулю. После этого надлежит вычислить поток диффузии в пространстве размера капли при условии, что концентрация молекул пара сохраняется постоянной, а каждая капля, превысящая размеры зародыша, выводится из системы. Для ненасыщенного пара уравнения (IV.52), (IV.57) и (IV.59) с производной по времени, равной нулю, и при условии, что поток диффузии в пространстве размера капли также равен нулю, дают распределение гетерофазных флуктуаций в паре. [c.112]


Смотреть страницы где упоминается термин Капли размер теоретический : [c.127]    [c.192]    [c.44]    [c.193]    [c.105]    [c.105]    [c.34]    [c.148]    [c.263]    [c.148]    [c.218]    [c.44]    [c.104]   
Справочник инженера - химика том второй (1969) -- [ c.74 ]




ПОИСК





Смотрите так же термины и статьи:

Капли



© 2025 chem21.info Реклама на сайте