Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Циклогексил, радикал

    Акцепторы радикалов снижают выходы циклогексена и молекулярного водорода (см. табл. 9.3), но не уничтожают эти продукты полностью это подтверждает предположение, что водород и циклогексен возникают как по радикальному, так и по молекулярному механизму. Образование водорода подавляется бензолом. (Этот эффект будет обсуждаться далее в гл. 10.) Поскольку ненасыщенные углеводороды являются хорошими акцепторами радикалов, то прибавление циклогексена к циклогексану понижает. выход молекулярного водорода 0(Н2) до 2,9. Однако этот же акцептор не оказывает никакого влияния на получение дициклогексила [19], так как циклогексил-радикал, из которого получается дициклогексил, образуется как по реакциям с обычными атомами водорода [реакция (9.24)], так и по акцепторным реакциям циклогексена [c.285]


    Изданных, приведенных в табл. 36, видно, что жидкие парафиновые и нафтеновые углеводороды образуются практически из фенильного остатка и, следовательно, метильная или оксиметильная группы в их образовании не участвуют. Исключение составляют метилциклогексан и толуол, из величин активностей которых следует, что они образуются в результате реакции метилирования. Следует отметить, что если удельные радиоактивности гексанов, а особенно циклогексана и бензола, близки к расчетным, то активность пентанов ниже расчетной, что подтверждает частичное протекание реакции глубокого распада оксифенильного радикала с выделением С0. Возможность такого распада была обнаружена ранее в опытах с фенолом [c.188]

    Действительно, в результате разрыва связи С—С, например и циклогекса-не, должна образоваться углеводородная цепочка, имеющая на концах свободные связи—радикал с двумя связями — СНа — СНг—СНг — СНг—, которая сейчас же распадается с образованием молекул непредельных углеводородов этилена, этилена и бутилена или пропилена. При этом распаде радикала, который мог бы начать цепную реакцию, не образуется и, следовательно, здесь имеется простой, молекулярный распад. [c.105]

    Начальная стадия этого -процесса наводит на мысль, что свободный радикал может образоваться из любого углеводорода [251. Атом водорода отщепляется от циклогексана примерно в четыре [c.72]

    В присутствии больших концентраций галоида увеличиваются выходы по двуокиси азота. Термодинамические расчеты указывают на крайне малую вероятность возникновения свободного радикала циклогексила в качестве промежуточного продукта при реакции циклогексана с N02- Очевидно, роль активных центров в изучаемой цепной реакции должны выполнять не радикалы, а сложные радикалоподобные промежуточные комплексы [61]. Небольшой выход нитроциклогексана объясняется тем, что наряду с основной реакцией протекают побочные процессы, при которых происходит разложение нитроциклогексана (при более высоких температурах). Продукты разложения вступают в реакцию с N02 и галоидом. [c.383]

    Катализатор в процессе окисления циклогексана играет инициирующую, регулирующую и ингибирующую роль. Пока не найдены такие катализаторы, с помощью которых можно существенно повысить селективность процеоса, увеличивая при этом конверсию. Образование циклогексанона и циклогексанола и их дальнейшие превращения лимитируются элементарными реакциями одного и того же перекисного радикала с молекулами этих соединений и циклогексаном Поэтому выход кетона и спирта определяется, помимо глубины превращения, отношением констант скоростей элементарных стадий, которое практически не зависит от вида катализатора. Применяемые в качестве катализаторов соли кобальта обеспечивают направленный распад перекисных соединений в ста- [c.51]


    При разложении метилциклогексана и метилциклопентана предпочтительной первичной реакцией является отрыв радикала -СНз [36]. Образовавшиеся циклопентил- и циклогексил-радикалы разлагаются далее по приведенным выше схемам. [c.21]

    Первоначально /яре/я-бутокси-радикал отщепляет атом водорода из аллильного положения циклогексена с образованием аллильного радикала, который далее окисляется до карбокатиона ионом меди (П). Реакция заверщается присоединением карбокси-лат-иона к карбокатиону. [c.537]

    При инициировании окисления циклогексана радикал R-, образовавшийся по реакции (2), реагирует с кислородом, давая радикал R02. Двуокись азота сама по себе является мало активным радикалом и естественно предположить, что она, реагируя с другими радикалами системы, обрывает цепи. Так как в процессах окисления ведущим радикалом является RO 2, то в результате рекомбинации должно образоваться соединение состава RO2NO2. Известно, что при нитровании циклогексана пятиокисью азота в присутствии следов кислорода образуется соединение, которому приписывают подобную структуру [50]. В окисленном циклогексане при инициировании кислородом полосы поглощения, приписываемые этому соединению, не были обнаружены. По-видимому, в условиях окисления (более высокая температура) это соединение быстро распадается. [c.217]

    Водородную связь образуют и пероксидные радикалы, что снижает их активность [102, 108]. Так, в окисляющемся метилэтилкетоне при 60 С p=0,i39 для свободного и всего 0,02 л/(.моль-с) для связанного водородной связью с HjO пероксидного радикала [102], т. е. водородная связь снижает активность ROa- примерно в 20 раз. Одновременно снижается и kt для свободного пероксидного радикала мстилэтнлкстопа пр -. 60 С 2.%/= ,8-10 , а для ROj . .. HjO 2fei = 7-10 л/(моль-с) [102], т. е. ассоциированный RO,- диспропорционирует в 26 раз медленнее. Однако отношение йр/У2й меняется незначительно оно. равно (в тех же условиях) 2,9-10- для свободного и 0,77-10- для ассоциированного ROz-. Аналогичный эффект оказывают спирты (метиловый и трет-бу-тиловый) на пероксидные радикалы метилэтилкетона 102] и циклогексана [102]. Зависимость kp от [ROOH] имеет вид [c.53]

    Механизм реакции. В процессе моноэтилирования хлористый водород предоставляет атомы водорода этилциклогенсильному радикалу (I) и дает атомы хлора последние начинают новый цикл, отрывая водород от циклогексана, образуя новый циклогексиль-ный радикал и регенерируя хлористый водород  [c.135]

    Этилцнклогексильный радикал (I), ио-видимому, отрывает водород от хлористого водорода быстрее, чем от циклогексана эта реакция тоже, вероятно, протекает быстрее, чем присоединение этил-циклогексильного радикала к этилену, приводящее к бутилцикло-гексильному или более высокомолекулярному радикалу. Обрыв цепи может происходить ири конденсации или диоиропорционнро-вании пары свободных радикалов ли в результате какой-либо другой реакции. Продукты, образующиеся при реакции обрыва цепи, не выделены. [c.135]

    Таким образом, в углеводородах ряда циклогексана термодинамическая устойчивость стереоизомеров будет зависеть от числа аксиально ориентированных заместителей, подобно тому как в углеводородах ряда циклопентана устойчивость связана с числом г ис-вицинальных взаимодействий. Энергия перехода аксиально ориентированного метильного радикала в экваториально ориентированный, равная 1800 кал1молъ, определяет, что в равновесии в системе е нри комнатной температуре будет находиться около 95% метилциклогексана с экваториальной ориентацией метильного радикала (см. рис. 9). При двух заместителях, например, в диметил-циклогексанах, количество диаксиальных изомеров будет еще меньшим и конформационное равновесие в системе аа ее практически [c.28]

    Атом водорода в структуре циклопентана или циклогексана может быть замеш ен на какой-либо углеводородный радикал — метил (СНз), этил (С2Н5) и др. В этом случае получаются производные циклопентана и циклогексана [c.238]

    Гидроперекись является первичным, сравнительно устойчивым промежуточным продуктом окисления углеводородов. Установлено, что перекисные соединения, выделенные из продуктов жидкофазного окисления углеводородов различных классов, состоят почти исключительно из гидроперекисей [3]. Однако имеются данные [4] об образовании первичных продуктов окисления, не содержащих гидроперекисных групп. Так, при окислении циклогексана до спирта с помощью меченых атомов было установлено, что часть циклогексанола получена непосредственно из перекисных радикалов, а не через цикло-гексилгидроперекись. Некоторое количество кислородных соединений может иметь меньше атомов углерода, чем исходный углеводород, что обусловлено распадом радикала ROO- по связи С—С. Таким образом, все промежуточные и конечные продукты окисления углеводородов образуются в результате превращений радикала ROO- [c.210]

    Ранее уже отмечалось, что присоединение Вгз и НОВг часто происходит как анти-процесс, обусловленный образованием ионов бромония, и что свободнорадикальная реакция НВг также представляет собой онтн-присоединение. При введении в любую из этих реакций циклогексена происходит ие просто анти-присоединение, но, кроме того, первоначально образующийся продукт отличается и специфичностью конформации— в основном это диаксиальный конформер [99]. Это происходит потому, что диаксиальное раскрытие трехчленного цикла обеспечивает максимальное сохранение копланарности участвующих реакционных центров в переходном состоянии. И действительно, при расщеплении эпоксидов также образуются диаксиальные продукты (см., например, [100]). Однако получающийся первоначально диаксиальный продукт может затем превращаться в диэкваториальный конформер (см. т. 1, разд. 4.20), кроме тех случаев, когда другие заместители в кольце делают последний конформер менее устойчивым, чем первый. В реакциях свободнорадикального присоединения к циклогексенам, когда циклический интермедиат не образуется, первоначальная атака радикала тоже, как правило, происходит по аксиальному направлению [101], в результате чего вначале образуется диаксиальный продукт, если общая реакция идет как анти-присоединение. [c.157]


    Однако рассматриваемая связь, вероятно, относится к более сложному типу. Дело в том, что мономерные литийорганические соединения оказываются координационно ненасыщенными и формула RLi в общем не отражает их структуры. Действительно, целый ряд данных (в том числе данные ЯМР на ядрах Н, и Li) указывает на то, что литийорганические соединения существуют в виде олигомеров или полимеров. Степень ассоциации зависит от природы радикала и растворителя, а также от температуры и концентрации раствора. Метиллитий тетрамерен в углеводородных растворителях. Многие стерически незатрудненные алкиллитиевые соединения, такие как бутиллитий и октиллитий, в неполярных растворителях типа бензола и циклогексана гексамерны, в то время как стерически затрудненные, такие как изопропиллитий и трет-бутиллитий, - тетрамерны (табл. 4,1), [c.221]

    Однако, если алкильный радикал затрудняет в пространственном отмошеиии доступ в положения 2 н б может образоваться 3,4-дигидропронзводное (С), которое легко затем восстанавливается до циклогексена (О) [c.84]

    Циклогексенан (конверсия 37% из циклогексена и хромового ангидрида в водном растворе уксусной кислоты при комнатной температуре помимо кетона, образуется 25% адипиновой кислоты) [88]. В качестве промежуточного соединения, вероятно, получается свободный радикал аллильного типа [89] [c.104]

    Высказывалось предположение, что направление (образование дизаме-щенпого в положении 1,4-, а не 1,2-скелета циклогексана) и легкость изомеризации (а-пинеп изомеризуется при более мягких условиях, чем пинан) обусловлены образованием в стадии 1 стабилизированного резонансом аллильного радикала [7]  [c.80]

    Многочисленные исследователи считают, что гидроксильные радикалы играют некоторую роль в окислении метана и формальдегида. Анализ работ по реакциям отнятия водорода гидроксильными радикалами приводит к выводу [172], что имеющиеся данные об энергии активации, требуемой для отнятия водорода гидроксильным радикалом, следует рассматривать в лучшем случае как весьма грубое приближение. Предполагают [116], что энергия активации для реакции отнятия водорода от молекулы пропана гидроксильным радикалом составляет 2—5 ккал/молъ. Результаты изучения разложения гидроперекиси трет-бутила в присутствии циклогексена показывают [67], что в этой системе могут образоваться трет-бутокси-и гидроксильные радикалы. Большинство трет-бутокси-радикалов отнимало атомы водорода с образованием трет-бутилового спирта, в то время как гидроксильные радикалы, ио-видимому, играли роль инициатора в цепи полимеризации циклогексена образование воды указывает на отнятие водорода гидроксильными радикалами, но количество воды отнюдь не соответствовало молярному выходу трет-бутилового спирта. Вполне возможно, что гидроксильный радикал легче, чем трет-бутокси-радикал, соединяется с циклогексеном, инициируя полимеризацию это связано с относительными размерами обоих радикалов. [c.225]

    Обнаружилась одна особенность реакции перераспределения водорода в циклогексене, которая, как оказалось, по-разному протекает на катализаторах в зависимости от их кислотности (табл. 2.7). По величинам отношения метилциклопентан/циклогексан все катализаторы можно разделить на две группы. На цеолитах, обладающих кислотностью, таких, как Ве-, Mg-, Са-, La-, Н-формы цеолита Y, зто отношение больше единицы и составляет обычно 2-19. На катализаторах, не имеющих кислотных центров (Na-формы цеолитов, SiOj), оно меньше единицы и находится обычно на уровне 03—0,7. Это отличие, по-видимому, обусловлено различным характером промежуточных комплексов. В случае кислотных катализаторов таким комплексом может быть циклогексильный карбокатион. На катализаторах, не обладающих кислотностью, возможно, таким комплексом является циклогексильный радикал. Как бы то ни было соотношение метилциклопентана и циклогексана в продуктах превращения циклогексена может указьшать на наличие или отсутствие кислотных центров у катализатора. В частности, цеолиты СаЭ, La3, СаМ ведут себя как некислотные катализаторы, аналогичные SiOj отношение метилциклопентан/циклогексан на них составляет 0,4-0,5 (см. табл. 2.7). Это объясняет пониженную активность СаМ по сравнению с НМ в изомеризации циклогексана [60]. В отличие от СаМ La-форма этого цеолита является типичным кислотным катализатором, так как отношение метилцикло-пентан/циклогексан равно 5,8. [c.94]

    Таким образом, суммарные тепловые эффекты дегидрирования циклогексана до циклогексена в обоих механизмах одинаковы,т.е. не зависят от природы катализатора, что и следовало ожидать, и позтому данный рез) 1ьтат указывает на справедливость проделанных расчетов. Кислотный и основный механизмы дегидрирования отличаются тепловыми эффектами Промежуточных стадий, а следовательно, и их энергиями активации Приближенный профиль поверхности потенциальной энергии реакции дегидрирования циклогексана по рассматриваемым механизмам процесса представлен на рис. 2.9. Как видно, при дегидрировании по основному механизму первая стадия процесса экзотермична, а вторая стадия осуществляется со значительным эндотермическим эффектом (-250 кДж/моль). Прн протекании реакции по кислотному механизму обе стадии зндотермичны с приблизительно равными тепловыми эффектами (-42- -66 кДж/моль). Из диаграммы поверхности потенциальной энергии следует, что протекание реакции по кислотному механизму более предпочтительно, поскольку в основном механизме вторая стадия будет иметь слишком высокую энергию активации (более 250 кДж/моль). По-видимому, зто является причиной невозможности протекания реакции дегидрирования циклогексана на щелочных формах цеолитов. К сожалению, из-за отсутствия справочных данных по потенциалам ионизации циклогексенильного и циклогексадиенильного радикала, а также по сродствам электрона к этим радикалам нет возможности провести аналогичные расчеты по дегидрированию циклогексена и циклогексадиена-1,4 на Na- и Н-формах цеолитов. [c.103]

    Однако цикланы с боковыми цепями или смеси цитшанов с алка-нами должны претерпевать распад по цепному механизму. Так, радикал, образовавшийся при крекинге алкана или боковой цепи циклана, взаимодействуя с молекулой циклана (например, цикло-гексана) даст циклический одновалентный радикал — циклогексил. Если концентрация этих радикалов высока и условия благоприятны, то опи могут вступать в реакцию конденсации. Однако более вероятно дальнейшее превраш ение образовавшегося цикло-гексил-радикала но схеме [c.19]

    В системах, где возникают такие радикалы (спирты, амины, некоторые непредельные соединения), ионы металлов переменной валентности проявляют себя как катализаторы обрыва цепей (см. гл. 13). Реакция ионов с пероксильными радикалами проявляет себя и в составе продуктов окисления, особенно на ранних стадиях окисления. Так, например, при автоокислении циклогексана единственным первичным продуктом окисления является гидропероксид Другие продукты, в частности спирт и кетон, появляются позднее как продукты распада гидропероксида. В присутствии стеаратов таких металлов, как кобальт, железо, марганец все три продукта (ROOH, ROH и кетон) появляются сразу с началом окисления и в начальный период (пока распад ROOH незначителен) образуются параллельно с постоянной скоростью. Соотношение скоростей их образования определяется катализатором. Причина такого поведения, очевидно, связана с быстрой реакцией взаимодействия R02 с катализатором. Таким образом, реакция пероксильньос радика- [c.518]

    Скорость реакции присоединения (5.72) умеренно снижается при повышении полярности растворителя так, при замене циклогексана на диметилсульфоксид реакция замедляется в 35 раз. В полярных растворителях биполярный тиильный радикал стабилизирован лучше, чем менее биполярный активированный комплекс. О стабилизации тиильного радикала за счет сольватации свидетельствует сильный сольватохромный эффект (т. е. батохромный сдвиг Ятах при повышении полярности растворителя) [576]. Аналогичное влияние растворителя на скорость реакции наблюдалось и в случае присоединения 4-аминобензолтиильно-го радикала к стиролу [577]. [c.267]

    Участие радикалов в реакциях ароматического замещения было обнаружено впервые в 1934 г. в классической работе Грива и Хея. С тех пор постоянно исследовались и уточнялись детали механизма и границы синтетического применения этой реакции. Реакция имеет широкие пределы, арильные и многие другие типы радикалов реагируют с ароматическими и гетероароматическими соединениями [34] по общему механизму, представленному в уравнениях (25) — (28). Хорошо известно также внутримолекулярное арилирование [35]. Большая часть работ по изучению механизма реакции была выполнена с арильными радикалами, генерированными из диароилпероксидов. Стадия присоединения, приводящая к образованию радикала (32) [уравнение (25)], является лимитирующей стадией для фенильного радикала эта стадия экзотермична ( к75 кДж-моль ) и при обычных условиях, по-видимому, необратима. Образующийся резонансно стабилизованный циклогекса-диенильный радикал (32) не реагирует с субстратом и не отщепляет спонтанно атом водорода с образованием продукта замещения (33), а подвергается быстрым радикал-радикальным реакциям [уравнения (26)—(28)]. Для реакции дибеизоилпероксида с бензолом при 80°С были определены константы скорости К = 2-10 , 3 = 4,5-10 , 2= 10,5-10 л-моль- -с . В этой реакции дибен-зоилпероксид разлагается также за счет взаимодействия с фенил-циклогексадиенильными радикалами. [c.582]

    При разложении метилциклоиентана и метилциклогексана предпочтительной первичной реакцией является отрыв радикала СНз. Образовавшиеся циклопентил- и циклогексил-радикалы далее превращаются в молекулярные продукты. [c.277]

    Эпоксидные соединения получаются при взаимодействии кумилгидроперекиси с олефинами в условиях, обеспечивающих образование радикалов (катализатор — пятиокись ванадия) . Хотя выделение эпоксициклогексана (из циклогексена) и 1,2-эпоксиоктана и октанона-2 (из октена-1) доказывает присоединение радикала R02 по двойной связи, в случае сс-диизобу-тилена одновременно происходит замещение, приводящее к непредельным кетонам, и расщепление с образованием формальдегида и метилнеопентилкетона [c.138]

    Кроме циклогексана и его производных активация молекуляр ного кислорода в процессе сопряженного окисления ароматически углеводородов может достигаться за счет добавок алифатически спиртов [168—170]. Интерес к использованию спиртов обуслов лен их способностью накапливать перекись водорода [171—173] которая при взаимодействии с перекисными радикалами обра зует радикал Н00-. При сопряженном окислении бензола с изо пропанолом, папример, удается достигнуть скорости на копления и максимальной концентрации фенола соответственн 10- моль-л- -с- и 0,12 моль/л при 200 С, объемном соотноше НИИ бензол спирт 7 3 и давлении 50 кгс/см . [c.285]


Смотреть страницы где упоминается термин Циклогексил, радикал: [c.258]    [c.143]    [c.486]    [c.271]    [c.80]    [c.463]    [c.160]    [c.135]    [c.147]    [c.60]    [c.114]    [c.277]    [c.425]    [c.679]    [c.199]    [c.44]    [c.237]   
Химия свободных радикалов (1948) -- [ c.232 ]




ПОИСК





Смотрите так же термины и статьи:

Циклогекса

Циклогексая

Циклогексил



© 2025 chem21.info Реклама на сайте