Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки изомеризации

    Интенсификация процесса кипячения сусла возможна при повышении температуры. Так, при температуре 135 °С необходимое время на изомеризацию а-кислот хмеля и коагуляцию белков снижается до 2,5 мин. [c.772]

    Гидролиз белков можно провести ферментативно или используя кислоты и щелочи. При щелочном гидролизе белков возможно разрушение некоторых аминокислот или их изомеризация в )-формы, которые в биологических системах используются не полностью. Надо отметить, что в щелочной среде инактивируются некоторые витамины. При кислотном гидролизе белков разрушаются незаменимая аминокислота — триптофан и некоторые витамины группы В. Гидролиз белков можно осуществить, используя препараты протеолитических ферментов. Кроме того, в самих клетках дрожжей есть активные протеолитические ферменты, которые при определенных условиях в среде могут разрушать клеточные белки (автолиз). [c.110]


    Плавление кристаллического спирального полимера есть поворотная изомеризация, переход спираль — клубок. Сходные процессы играют важную роль в молекулярной биофизике — в физике белков и нуклеиновых кислот (см. ниже гл. 4 и 8). [c.134]

    Родопсин состоит из белка опсина (рис. 1.16) и связанного е ним хромофора, являющегося альдегидной формой витамина Л (ретиналем) соотношение этих составных частей в молекуле родопсина 1 1. У наземных и морских позвоночных, которые приспособились к различным условиям освещенности окружающей пх среды, имеются различные хромофоры, обозначаемые как ретиналь I и ретиналь II (рис. 1.2). И палочки, и колбочки, несмотря на разные спектры поглощения (рис. 1.3), содержат, однако, в своем родопсине один и тот же ретиналь, различия в спектрах обусловлены белковым компонентом. С помощью своей альдегидной группы ретиналь образует шиффово основание с е-аминогруппой лизинового остатка опсина и, таким образом, ковалентно связывается с этим белком. Главная стадия фоторецепции состоит в использовании поглощенной световой энергии для изомеризации ретиналя 1 мс-ретиналь (рис. [c.10]

    IV. 7. Использование гель-проникающей хроматографии для изучения изомеризации, ассоциации и комплексообразования белков и определения их молекулярной массы [c.168]

    Определив константы изомеризации, нетрудно затем восстановить распределение каждого компонента С (х, 1) на выходе из хроматографической системы и, воспользовавшись ее калибровкой, найти молекулярную массу белка. При этом для изомера в клубкообразном состоянии можно применять универсальную калибровочную зависимость Бенуа, а для глобулярного изомера — специальную калибровку по стоксовым радиусам белковых молекул [89] или по их молекулярным массам (рис. IV.28, IV.29). [c.176]

    Белки денатурируют тщательным перемешиванием исходного материала с этанолом. Омыление проводят спиртовым раствором гидроокиси калия в контролируемых условиях. Для снижения потерь витаминов за счет окисления в экстракт добавляют небольшое количество антиоксиданта. Тем не менее в этих условиях возможны гидролиз эфиров витаминов и частичная изомеризация. Гидролиз обычно проводят в более концентрированном растворе щелочи. Однако при этом увеличивается возможность потерь и изомеризации витаминов. После омыления образцы [c.176]

    Интересный пример реакции восстановления альдегида встречается в сетчатке глаза, где он играет важную роль в восприятии глазом света (рис. 8.49). Родопсин, красный комплекс 11- с-ретиналя с белком опсином, при поглощении света дает гранс-ретиналь. За восстановлением этого альдегида до транс-витамина А следует изомеризация (в темноте) до И-г мс-вита-мина А и обратное окисление до 11-г ыс-ретиналя. [c.198]


    В основе ростового действия различных веществ, видимо, ле-ншт их взаимодействие (фиксация) со специфическим белком. По представлениям ряда исследователей [20], рост клетки требует фиксации молекулы ауксина на белке — субстрате в определенном положении. Возможность осуществления этого взаимодействия может зависеть от пространственной структуры реагирующих молекул. Терентьев и Потапов [21] отмечают, что различия в физиологическом действии стереоизомеров зависят от их сродства к рецептору , т. е. от совпадения или несовпадения пространственного расположения частей молекул реагента и рецептора — белка. В работе по биосинтезу умбеллиферона [22] прямо указывается, что способностью образовывать водородные связи обладает лишь 1 мс-изомер гликозида о-оксикоричной кислоты. Предполагается также, что фото-1 мс-7 / акс-изомеризация лежит е основе обратимых абсорбционных свойств фитохрома [23]. [c.252]

    Изменение взаимосвязи внутримолекулярных степеней свободы, определяющих релаксацию белка, изомеризацию ретиналя, смещение и перенос протона, может приводить к появлению других фотопродуктов. Так, предполагают, что наблюдаемое при низких температурах преимущественное образование псевдобактериоро- [c.405]

    На первой стадии образование батородопсина происходит за времена порядка десятков пикосекунд, а каждая последующая в 10 —10 раз медленнее предыдущей. Согласно современным представлениям, изменения обусловлены стерической невозможностью для прямого а11-гра с-ретиналя поместиться на поверхности опсина. Лишь изогнутый 11-4<ис-ретиналь вписывается в белок. Поглощение кванта света приводит к фотоизомеризации и тем самым к напряженным структурам, а в конце концов — к расщеплению химической связи между белком и хромофором. Переход к батородопсину влечет за собой изомеризацию ретиналя с образованием почти аИ-граис-формы, но такой, которая еще не релаксировала к самой низкоэнергетической геометрии. Более сильно релаксировавший а11-гранс-изомер появляется на стадии люмиродопсина. На каждой стадии белковый скелет перегруппировывается заметно выраженные изменения, связанные одной или более углубленными внутрь карбоксильными группами, становятся видимыми в метародопсине I. Образование метародопсина И сопровождается депротонированием шиффова основания, а также существенными изменениями липидной структуры. Именно метародопсин II з Jпy кaeт следующий набор биохимических стадий, которые мы коротко рассмотрим. Изменения оптического поглощения, по-видимому, согласуются с представленной картиной. Понижение энергии возбужденного состояния вследствие взаимодействия ретиналя с опсином приводит к длинноволновому сдвигу соответствующей полосы поглощения, причем чем сильнее взаимо-дейс№ие, тем сильнее сдвиг. Когда последовательно образуют- [c.239]

    Ионообменную хроматографию широко применяют в медицине, биологии, биохимии [11—15], для контроля окружающей среды, при анализе содержания лекарств и их метаболитов в крови и моче, ядохимикатов в пищевом сырье, а также для разделения неорганических соединений, в том числе радиоизотопов, лантаноидов, актиноидов и др. Анализ биополимеров (белков, нуклеиновых кислот и др.), на который обычно затрачивали часы или дни, с помощью ионообменной хроматографии проводят за 20-40 мин с лучшим разделением. Применение ионообменной хроматографии в биологии позволило наблюдать за образцами непосредственно в биосредах, уменьшая возможность перегруппировки или изомеризации, что может привести к неправильной интерпретации конечного результата. Интересно использование данного метода для контроля изменений, происходящих с биологическими жидкостями [11]. Применение пористых слабых анионообменников на силикагелевой основе позволило разделить пептиды [12]. [c.32]

    Каков возможный механизм инициации нервного импульса последовательностью реакций, приведенных на схеме (13-35) Проще всего предположить, что коиформационное изменение в молекуле ретиналя в процессе изомеризации 11-г Ыс-ретиналя в полностью гранс-ретиналь [схема (13-34)] индуцирует изменение конформации белка, что приводит к появлению у последнего ферментативной активности. Ферментом, инициирующим каскад химических превращений, кульминацией которых является нервный импульс, мог бы быть метародопсин П, но в пользу этого предположения нет никаких экспериментальных данных. Не исключено, что индуцированные конформационные изменения в молекуле белка открывают канал в мембране диска и какое-то вещество диффундирует по этому каналу наружу. В качестве возможного кандидата на роль указанного вещества все чаще рассматривается Са +. Расстояние от мембран дисков до плазматической мембраны палочки таково, что высвободившееся вещество успеет достичь плазматической мембраны (где и возбуждается нервный импульс) за счет диффузии. [c.66]

    Электромагн. излучения еще более высокой энергии (рентгеновское и у-излуче-ние) способны ионизовать в-во. Ионизация происходит случайным образом, поэтому молекулы, являющиеся наяб. распространенными в объекте, больще других подвергаются ионизации. При облучении живой материи, на 70-90% состоящей из воды, б. ч. энергии будет поглощена молекулами воды и поэтому мутагенный эффект при действии этих агентов возникает гл. обр. вследствие модификации ДНК продуктами радиолиза воды. Наиб, вклад в развитие радиац. поражения ДНК вносит радикал ОН . При взаимод. с ДНК 80% всех радикалов ОН атакуют основания ДНК, остальные-дезоксирибозную часть молекулы. Возникающие первичные продукты затем вступают в разнообразные вторичные р-ции как с теми же продуктами радиолиза воды, так и с кислородом, белками, низкомол. компонентами клетки, а также подвергаются диспропорционированию, изомеризации, гидролизу. Возникает широкий спектр разнообразных изменений первичной и вторичной структуры ДНК измененные основания, апури-новые я апиримидиновые сайты (участки с удаленными основаниями), разрывы связей в дезоксирибозе, одно- и двунитевые разрывы цепей ДНК. Точная роль каждого из возникающих повреждений структуры ДНК в формировании мутагенного эффекта все еще остается невыясненной. Предполагают, что ключевую роль в этом процессе играют продукты радиолиза тимина. [c.153]


    Биохимические процессы в клетке контролируются специальными белками -ферментами. Ферменты являются биокатализаторами с очень высокой эффективностью и специфичностью. Они могут увеличивать скорость реакций в 10 и более раз. Очень часто ферменты называют по субстрату с окончанием аза . Так, фермент цел-люлаза катализирует гидролиз целлюлозы. Используются также названия ферментов по катализируемой реакции. Например, гидролазы катализируют гидролиз, дегидрогеназы - отрыв водорода и т.д. В связи с увеличением числа известных ферментов в настоящее время по катализируемым реакциям все ферменты разделены на шесть классов оксидоредуктазы, трансферазы, гидролазы, лиазы, изомеразы и лигазы. Ок-сидоредуктазы катализируют обратимые окислительно-восстановительные реакции, в которых происходит перенос водорода, электронов или гидрид-нонов. Трансферазы переносят группы атомов от одного соединения к другому. Гидролазы катализируют гидролитическое расщепление различных связей (гликозидных, пептидных, эфирных и др.). Лиазы катализируют реакции, в которых происходит расщепление химических связей с образованием двойных связей илн присоединение по двойным связям. Изомеразы воздействуют на процессы изомеризации. Л и газы (син-тетазы) катализируют образование связи между двумя соединениями, используя энергию АТФ и других высокоэнергетических соединений. [c.327]

    Большинство витаминов в составе ферментных систем катализируют реакции превращения аминокислот и белков, жиров, стероидов, углеводов и нуклеиновых кислот в животном организме к таким химическим процессам относятся реакции окисления и восстановления, переноса электрона, переаминирования, трансметилнрования, изомеризации, карбоксилирования, декарбоксилирования, переноса ацильных и одноуглеродных групп, реакции, в частности, связанные с кроветворением, с кальцификацией костей и др. При участии витаминов обеспечивается нор1мальное функционирование всех животных тканей, органов и желез внутренней секреции, нормальные процессы обмена веществ [И, 12, 14—21]. [c.12]

    Конформация, принимаемая опсином в результате различных нековалентных взаимодействий, позволяет связываться с ним лишь небольшому числу изомеров ретинальдегида и его аналогов. В природном родопсине с белком связан только 11-Ч с-ретинальдегид (по-видимому, может связываться также его искаженный 6-5-ч с-изомер). Результаты, полученные с помощью резонансной рамановской спектроскопии и кругового дихроизма, свидетельствуют против считавшегося ранее вероятным связывания 12-5-к с-изомера (9.6). Полностью транс-ре-тинальдегид не связывается с опсином, и изомеризация связанного 11-г с-ретинальдегида в полностью транс-изомер в процессе зрительного цикла (разд. 9.4) приводит к отщеплению ретинальдегида от опсина. [c.307]

    Зрительный процесс начинается с поглощения света хромофорами палочек и колбочек сетчатки глаза. Происходящие при этом молекулярные события описываются циклом Вальда — последовательностью реакций обесцвечивания и регенерации родопсина. Родопсин состоит из 11-цис-ретиналя, образующего основание Шиффа с опсином — белком с Л141000. Свет вызывает изомеризацию 11-г с-ретиналя до полностью-транс-рети- [c.33]

    Декарбоксилазы аминокислот в большинстве своем являются пиридоксалевы-ми ферментами. Выделение СО2 происходит через такое же промежуточное образование основания Шиффа между пиридоксальфосфатом и аминокислотой, как в случае реакций переаминирования (см. 4.2). Направление химического превращения — отщепление СО2 либо изомеризация с образованием основания Шиффа — производного пиридоксамина и а-кетокислоты — определяется природой белка, т. е, апофермента. На этом примере можно еще раз убедиться в том, что белковый компонент комплекса организует и направляет работу кофермента. Здесь уместно добавить, что и серингидроксиметилтрансфераза, рассмотренная в 4.2, также являете пи )идоксалевым ферментом, но структура апофермента предопределяет течение процесса в направлении разрыва связи С —С . [c.146]

    Как же бактериородопсин работает В ответ на поглощение кванта света бактериородопсин вступает в цикл фотохимических превращений. При этом происходит обратимая изомеризация ре-тнналя с последующим выбросом протона из молекулы белка и его [c.609]

    При попадании света в глаз фрагмент г ис-иминоретиналя претерпевает цис,транс-изомеризацию относительно двойной связи =0 . Это приводит к выпрямлению молекулы ретиналя, а тем самым и к изменению формы родопсина. Геометрические изменения белка вызывают целый ряд биохимических реакций. В частности, при этом открывается путь ионам кальция Са " , ответственным за передачу соответствующих нервных импульсов в мозг. [c.376]

    Реакциям в пленках посвящено очень много работ, мы рассмотрели только немногие из них. Другими примерами таких реакций являются реакции полимеризации, например полимеризация альдегида стеариновой кислоты [154], фотохимические процессы и различные биологические реакции. К фотохимическим реакциям, в частности, относятся разложение монослоев стеариланилида светом длиной волны 240 нм [155], фотохимическое превращение пленок эргостерола в витамин D [156], различные фотохимические реакции монослоев белков [159], фоторазложение и тушение флуоресценции в моиослоях хлорофилла [144, 158]. В очень интересной работе Виттена [159] описано частичное уменьшение площади смешанных пленок трипальмитина и цис-тио-индигового красителя вследствие изомеризации последнего в транс-форму под действием ультрафиолетового излучения. Субмонослойные пленки ненасыщенных жирных кислот и их сложных эфиров на силикагеле подвергаются самоокислению со скоростью более низкой, чем скорость аналогичной реакции в гомогенном растворе (самоокисление сопровождается хемилюминесценцией) [159а]. [c.136]

    Выражения (1У.4б, IV.47) для статистических моментов позволяют определять константы, характеризующие скорость реакции изомеризации белков. С этой целью в формулы (IV.46, IV.47) следует подставить значения моментов, найденные с помощью стандартной процедуры по хроматограммам с х, 1), а также определить из независимых хроматографических экспериментов параметры 5,-, и разрешить получившиеся таким образом уравнения относительно ку и к . Эксперименты, в которых определяют параметры Ь , 7 , следует проводить в условиях, когда равновесие смещено в сторону одного из компонентов. При этом изомерная смесь вырождается в однокомпопентный раствор, состоящий из изомеров только одного типа. В слз ае, когда параметры каждого из изомеров изменяются под действием внешних условий (например, pH), необходимо провести экстраполяцию значений этих параметров к условиям эксперимента. Хроматограммы с х, удобно получать сканированием хроматографической колонки в фиксированный момент времени с помощью УФ-спектрофото-метра [89]. При отсутствии такой возможности можно использовать для расчетов элюционные кривые с х, t), полученные при детектировании раствора на выходе из колонки и дающие распределение вещества во времени в подвижной фазе хроматографической системы при фиксированном значении х, равном длине колонки Ь. Однако такая постановка эксперимента дает возможность получить только временные статистические моменты распределения с х, 1) при х — Ь. Строгие аналитические выражения для них получить трудно, но можно использовать простые соотношения, достаточно точно связывающие временные моменты t и 0 с пространственным хжа -. [c.175]

    При возбуждении молекулы родопсина видимым светом его простетическая группа 11-1 ис-ретиналь поглощает световую энергию и в результате изомеризации, состоящей из нескольких стадий, превращается в полностью траис-ретиналь. Этот процесс возбуждает нервный импульс. Поскольку структура полностью транс-ретяиаля не соответствует конформации активного центра белка опсина, ретиналь отщепляется от него. [c.290]

    Мочевина — диамид угольной кислоты — нормальный продукт дезассимиляции азотсодержащих веществ (белков) в организме животных. Синтетически мочевина может быть получена всеми общими способами, известными для амидов карбоновых кислот (стр. 162). Впервые мочевина была синтезирована Ф. Велером в 1828 г. изомеризацией циановокислого аммония при нагревании. [c.294]

    Можно понять специалистов в области координационной химии, полагающих, что, хотя чисто органические ферменты — замечательные катализаторы сами по себе, однако в присутствии ионов металла их химическая активность существенно повышается, вследствие чего возрастает интерес к ним с точки зрения химии. Известно много примеров различных ферментов, содержащих и не содержащих металла, которые катализируют одну и ту же реакцию, действуют на один и тот же субстрат или образуют один и тот же продукт. Так, например, электрон-транспортные белки могут содержать флавины, железопорфирины или ферредоксины, а ферменты, катализирующие восстановление перекиси водорода органическими субстратами, могут также содержать или флавины, или железопорфирины (разд. 8.1). Однако есть и другие реакции, которые, насколько это известно в настоящее время, могут происходить только в присутствии ферментов, содержащих переходные металлы это фиксация азота (разд. 9.2), восстановление нитрата до нитрита (см., в частности, 132]) и некоторые реакции изомеризации, в которых участвуют кобальткорриноиды (разд. 10.2) [18, 1811. И несомненно, должны существовать многие реакции, которые более эффективно катализируются ферментами, содержащими переходные металлы. Эти металлобелковые комплексы или металлоферменты участвуют во многих процессах биологического обмена веществ, однако две реакции заслуживают специального упоминания по двум причинам. Во-первых, эти реакции представляют основной путь, по которому молекулярный азот или нитрат-ионы включаются в биологический обмен. Во-вторых, они тесно связаны с основными способами генерации и конверсии энергии в биологии как переносчики электронов и, возможно, в процессе выделения кислорода в хлоропластах как переносчики электронов и в реакции с кислородом, сопряженной с фосфорилированием и, наконец, при выделении водорода и метана при анаэробной ферментации. [c.134]

    Можно привести немало примеров, когда одна и та же реакция наблюдается в присутствии простого низкомолекулярного комплекса металла и в присутствии комплекса металла с белком, однако скорости процесса при этом могут быть весьма различны. Например, скорость каталитического распада перекиси водорода при pH 7 возрастает в 10 и 10 раз в присутствии эквимолярных количеств простых железо(П1)порфириновых комплексов и фермента каталазы соответственно по сравнению со скоростью распада в присутствии аквокомплекса железа(П1) (разд. 8.7). Однако некоторые ферментативные реакции не имеют аналога среди небелковых комплексов. К ним относятся, например, процессы изомеризации, которые происходят в присутствии ферментов, содержащих кобальткорриноиды и катализирующих перестройку связей углеродного скелета органических молекул (разд. 10. 2) [18, 181]. По-видимому, до сих пор химикам не удалось обнаружить и настоящих аналогов [c.134]

    Теперь мы суммируем приведенные ранее экспериментальные данные (и по ходу дела приведем некоторые дополнительные примеры и теоретические соображения), касающиеся механизмов влияния белка на термодинамические и кинетические свойства комплексов переходных металлов (разд. 10.1), а затем рассмотрим в свете изложенных соображений реакции изомеризации, катализируемые кобальткорриноидами. [c.238]


Смотреть страницы где упоминается термин Белки изомеризации: [c.413]    [c.209]    [c.64]    [c.69]    [c.289]    [c.32]    [c.723]    [c.312]    [c.313]    [c.69]    [c.289]    [c.11]    [c.38]    [c.24]    [c.27]    [c.180]    [c.199]    [c.408]   
Хроматография полимеров (1978) -- [ c.169 , c.176 ]




ПОИСК







© 2025 chem21.info Реклама на сайте