Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектры поглощения ядерный магнитный резонанс

    Детектором, указывающим на разделение, в колоннах создателя хроматографии служило поглощение разделяемыми компонентами света в видимой области света, т. е. цвет компонента. В случае бесцветных соединений для их детектирования используют другие свойства и методы поглощение в ультрафиолетовом и инфракрасном свете, показатель преломления света, различные ионизационные, химические й электрохимические методы, масс-спектр, спектры флуоресценции, ядерный магнитный резонанс и до. [c.8]


    Пики поглощения ядерного магнитного резонанса в случае жидкостей очень резкие, в противоположность тому, что наблюдается для инфракрасных и ультрафиолетовых спектров. Это различие объясняется тем, что время жизни энергетического состояния ядерного спина очень велико по сравнению с временем жизни электронного и колебательного состояния. Поэтому влияние взаимодействия с соседними. молекулами в жидкостях, которое хаотически искажает энергию данного состояния, усредняется до постоянной величины за время жизни определенного состояния ядерного спина, в то время как в случае электронных или колебательных энергетических состояний этого не происходит. Для аморфных твердых веществ пики поглощения будут такими же резкими, как и для жидкостей. Однако для кристаллических твердых тел, в которых молекулы упорядочены и неподвижны, соответствующее усреднение взаимодействий не имеет места, и в этом случае происходит расширение полос поглощения. Этот эффект играет важную роль при исследовании твердого состояния макромолекул и дает, например, возможность использовать ядерный магнитный резонанс для определения степени кристалличности твердых полимеров.  [c.119]

    Линии поглощения ядерного магнитного резонанса в спектрах твердых тел имеют довольно большую ширину, и соответственно эту область применения ЯМР обычно называют ЯМР широких линий . Однако было бы ошибкой считать, что метод ЯМР широких линий хуже, чем, например, метод ЯМР высокого разрешения . Действительно, спектры ЯМР жидких веществ состоят из очень узких линий, что позволяет наблюдать малые, но очень важные эффекты, обусловленные химическим сдвигом или спин-сниновыми взаимодействиями однако при этом усредняются до нуля другие, анизотропные взаимодействия. Последние взаимодействия изучают как раз по спектрам твердых веществ, поскольку в этом случае они определяют ширину линии ЯМР. [c.46]

    Качественная идентификация компонентов анализируемой смеси производится одним из следующих методов химическим микроанализом по характерным окраскам, появляющимся в результате взаимодействия анализируемого вещества с добавляемым реагентом, по спектрам поглощения в ультрафиолетовой или инфракрасной областях по спектрам флуоресценции по масс-спектрам или же по спектрам ядерного магнитного резонанса. [c.98]

    Ко второй группе относятся радиоспектроскопические методы (исследование поглощения радиоволн в веществе, помещенном в магнитное поле), методы электронного парамагнитного резонанса (ЭПР) и ядерного магнитного резонанса (ЯМР), исследующие значительно более длинноволновые участки спектра, линии которых обусловлены энергетическими различиями молекул вещества в магнитном поле. [c.50]


    Эффективный заряд определяют различными методами на основании изучения оптических спектров поглощения, рентгеновских спектров, ядерного магнитного резонанса и др. [c.78]

    Величина магнитного момента всех ядер одного изотопа строго одинакова и поэтому на первый взгляд кажется, что в спектре должна присутствовать только одна линия поглощения. На самом деле это не так. Кроме внешнего магнитного поля, в любой молекуле имеются внутренние поля, обусловленные движением электронов. В зависимости от положения, которое занимает данный атом и его ядро в молекуле, оно окажется в определенном внутреннем поле. Поэтому для ядер, находящихся в молекуле в различных положениях, условие резонанса будет наступать при различных значениях внешнего поля в зависимости от того вклада, который вносит в данном месте внутреннее поле. Этот вклад очень мал обычно внутренние поля примерно в миллион раз слабее внешнего. Однако современные спектрометры ядерного магнитного резонанса имеют очень высокую разрешающую способность и дают отдельные линии поглощения для ядер, которым соответствует разница в напряженности внутренних полей, меньшее одной стомиллионной доли от напряженности внешнего поля. [c.343]

    Сущность метода ядерного магнитного резонанса (ЯМР) заключается в том, что, помещая вещество, содержащее атомы (водорода), ядра которых обладают магнитным моментом, в сильное постоянное магнитное поле и накладывая на эту систему значительно более слабое высокочастотное электромагнитное излучение, можно ири соблюдении определенных условий наблюдать резонансное поглощение энергии, происходящее на строго определенной частоте, зависящей от положения атома (водорода) в молекуле вещества. По спектрам ядерного магнитного резонанса в компонентах битума можно определить относительное количество протонов, находящихся в ароматических кольцах, в метиленовых и метильных группах, а также при насыщенных атомах углерода, непосредственно связанных с кольцом ( бензольный водород ). Используя эти данные и данные [c.25]

    ХИМИЧЕСКАЯ ПОЛЯРИЗАЦИЯ ЯДЕР, появление не равновесной ядерной намагниченности диамагнитных молекул, образующихся в результате радикальных р-ций. В спектрах ЯМР этих молекул наблюдается усиление линий испускания или поглощения энергии перем. магн. поля, обусловленное неравновесной заселенностью зеемановских энергетич. уровней (см. Ядерный магнитный резонанс). X. п. я. объясняется тем, что суммарное спиновое состояние неспаренных электронов радикальной пары зависит [c.644]

    Спектроскопия ядерного магнитного резонанса (ЯМР) представляет собой метод, фиксирующий переходы между энергетическими уровнями магнитных ядер во внешнем магнитном поле. Спектроскопия ЯМР связана с поглощением образцом, помещенным во внешнее магнитное поле, энергии электромагнитного излучения в области радиочастот. Поглощение является функцией магнитных свойств некоторых атомных ядер, содержащихся в молекуле. Кривая зависимости поглощения энергии радиочастот от внешнего магнитного поля дает спектр ЯМР. [c.308]

    В опыте по ядерному магнитному резонансу помещают образец в стеклянной трубке диаметром около 5 мм в датчик спектрометра между полюсными наконечниками магнита (рис. 1.5). Его подвергают воздействию электромагнитного излучения, частоту которого можно менять, так что ядра возбуждаются, когда накладываются соответствующие резонансные частоты- Как источник возбуждающего излучения используется радиочастотный генератор, или передатчик, а поглощение ядрами энергии передатчика можно зарегистрировать с помощью радиочастотного моста. Сигнал, выделенный мостом, усиливается и записывается самописцем. Так получается спектр, по которому методом калибровки можно определить резонансную частоту. Таким образом, спектрометр ЯМР включает все элементы, которые есть и [c.22]

    Радиочастотная область спектра в сочетании с магнитным полем используется в методе ядерного магнитного резонанса (ЯМР). ЯМР наблюдается у веществ, содержащих атомы, ядра которых обладают магнитным моментом (ядра и др.). В спектроскопии ЯМР образец вещества помещают между полосами магнита и подвергают радиочастотному облучению. При определенной частоте облучения и напряженности магнитного поля наблюдается резонансное поглощение энергии, которое может быть обнаружено. Ядра атомов, имеющие различное химическое и магнитное окружение, дают сигнал при различных значениях приложенного магнитного поля. По положению и интенсивности сигналов в спектре ЯМР судят о строении [c.213]

    Здесь же достаточно сказать, что ультрафиолетовые спектры и спектры ядерного магнитного резонанса простейших гетероароматических систем в ряде случаев указывают на их ароматический характер, а теоретически рассчитанные характеристики электронного поглощения находятся в полном соответствии с экспериментальными данными. [c.27]


    В принципе можно поместить вещество в магнитное поле постоянной напряженности и затем наблюдать спектр так же, как инфракрасный или ультрафиолетовый, пропуская через вещество излучение постепенно меняющейся частоты и отмечая частоту, при которой происходит поглощение. На практике, однако, оказалось более удобным сохранять постоянной частоту излучения и изменять напряженность магнитного поля при какой-то напряженности магнитного поля энергия, необходимая для поворота протона, соответствует энергии излучения, происходит поглощение и наблюдается сигнал. Такой спектр называется спектром протонного магнитного резонанса (ПМР), а в общем случае — спектром ядерного магнитного резонанса (ЯМР) (рис. 13.3). [c.404]

    Итак, частота, при которой происходит поглощение, называется резонансной, а само явление — ядерным магнитным резонансом. При постепенном изменении частоты специально наложенного на образец электромагнитного поля при некотором значении V начинается поглощение, интенсивность которого зависит от концентрации протонов в образце. При дальнейшем повышении частоты энергия квантов возрастает выше необходимого значения, и поглощение прекращается. Таким образом, спектр ЯМР должен иметь форму узкого пика. [c.597]

    Для характеристики чистоты вещества используют следующие константы и методы температура плавления, температура кристаллизации, температура кипения, коэффициент преломления света, плотность, данные спектров поглощения (коэффициент интенсивности поглощения в электронных и инфракрасных спектрах), данные спектров ядерного магнитного резонанса (ЯМР), масс-спектро-метрии, хроматографический анализ, люминесцентный анализ и др. [c.15]

    Наличие локального поля приводит к расщеплению энергетических уровней и к размытию спектра поглощения при резонансе. Хотя напряженность локального поля невелика и составляет 5—10 Э при напряженности внешнего поля Яо 10000 Э, тем не менее ввиду очень большого числа взаимодействующих между собой протонов (а также изолированных групп протонов) локальное поле приводит к появлению спектра поглощения, имеющего сложную форму и конечную полуширину. Обычно эксперимент по наблюдению ядерного магнитного резонанса проводят таким образом, что частота электромагнитной волны V, распространяющейся в полимере, остается постоянной (и составляет несколько десятков МГц), а напряженность магнитного поля Яо плавно изменяется в сравнительно узких пределах, достаточных для того, чтобы выполнялось условие резонанса (6.3), В общем случае кривая резонансного поглощения может иметь сложную форму (рис. 49). Чаще всего регистрируется не сама кривая поглощения, а ее первая производная по напряженности магнитного поля (рис, 49). [c.207]

    Книга представляет собой очередной том серии Катализ , хорошо известной советскому читателю. В настоящий, двенадцатый, том включено шесть обзорных статей, посвященных новым теоретическим и экспериментальным методам изучения катализа. В них рассматриваются следующие вопросы использование краев полосы поглощения К-серии рентгеновского спектра для изучения каталитически активных твердых веществ, применение нового метода дифракции электронов для изучения катализаторов, молекулярная специфичность в физической адсорбции. Весьма интересна статья, посвященная технике магнитного резонанса в каталитическом исследовании автор рассматривает отдельно ядерный магнитный резонанс и электронный парамагнитный резонанс — методы, которые позволяют получить ценные сведения о микроскопических свойствах твердых тел. [c.4]

    Любое соединение, молекула которого имеет ядро, обладающее спином, может давать ядерный магнитный резонанс. К таким ядрам относятся протон, ядра обычных изотопов азота и фтора и менее распространенных изотопов углерода и кислорода, но не или Ядро со спином, как и электрон, имеет магнитный момент, связанный с осью спина, и в магнитном поле он будет располагаться в какой-то степени подобно магнитной стрелке, причем его момент займет одну из некоторых определенных ориентаций по отношению к полю. Эти ориентации различаются энергиями. Можно перевести ядро из одной ориентации в другую, прикладывая второе магнитное ноле, обычно перпендикулярное первому, меняющееся с определенной резонансной частотой. Если основное поле имеет напряженность порядка 10 гаусс, резонансная частота находится в радиодиапазоне. Такой ядерный магнитный резонанс аналогичен электронному парамагнитному резонансу (гл. 10). Как и в случае ЭПР, по данным ЯМР можно определить структуру спектра поглощения и ширину линий. Они зависят от времени жизни протона (или другого ядра) в данном окружении и меняются, если соединение участвует в реакции, которая меняет это время жизни. Типичное время реакции, определенное этим методом, равно примерно 1—10 сек . Следовательно, можно вычислить константы скорости были определены константы вплоть до 10 л- моль -сек . [c.219]

    В благоприятных случаях можно получить очень точные сведения о расположении протонов и одного или обоих других изотопов водорода. Это достигается исследованием спектров поглощения ядерного магнитного резонанса кристаллов (сравни Smith, 1953). Измеряемый эффект скорее зависит от величины и направления отрезков, связывающих все возможные пары соседних протонов, чем от их истинных положений но из этой векторной картины зачастую можно с большой точностью найти положения протонов. Ядерный магнитный резонанс, в частности, может быть использован для решения таких химических задач, [c.71]

    В то время как потенциометрическое определение константы ионизации занимает всего лишь 20 мин, применение спектрофотометрического метода в ультрафиолетовой области спектра для той же цели требует большую часть рабочего дня. Тем не менее, этот метод оказывается удобным для определения кон- стант плохо растворимых веществ, а также для работы при очень малых или очень больших значениях pH, когда стеклян-ный электрод непригоден. Спектрофотометрический метод может быть использован лишь в тех случаях, когда вещество поглощает свет в ультрафиолетовой или видимой области и максимумы поглощения соответствующих ионных форм находятся на различных длинах волн. Спектрофотометрические определения всегда связаны с потенциометрическими, поскольку спектральные измерения проводятся в буферных растворах, значения pH которых определяются потенциометрически. Потенциометрическое определение констант ионизации путем измерения концентрации ионов водорода не связано непосредственно с определением неизвестных (исследуемых) веществ. При спектрофотометрическом же методе измеряются сдвиги спектральных линий, обязанные присоединению протона к неизвестному (исследуемому) веществу (глава 4). Рамановские спектры и ядерный магнитный резонанс позволяют определять константы ионизации даже таких сильных кислот, как азотная и трифторуксусная [c.17]

    Изучение конкурентной способности может быть также по-лезны.м в тех случаях, когда сольватация ионной пары не приводит к изменению спектра поглощения (так как контактные и рыхлые ионные пары могут иметь одинаковые спектры) или когда связь комплексообразующего агента с ионом или ионной парой не влияет существенно на спектр его ядерного магнитного резонанса. Например, при комплексообразовании МаВРЬ4 с глимами не наблюдается изменений в оптическом спектре, а протонные сдвиги в спектре ЯМР очень малы. Тем не менее, добавляя к системе МаВРЬ4—глим соль, оптический спектр которой при комплексообразовании с глимом изменяется, можно получить сведения о процессе комплексообразова- [c.149]

    Среди спектроскопических методов для исследования химического состава нефти наибольшее значение получили анализы по спектрам комбинационного рассеяния света, по спектрам поглощения в инфракрасной и ультрафиолетовой области, масс-спек-троскопия, а в последнее время и спектроскопия ядерного магнитного резонанса (ЯМР-спектроокопия). [c.61]

    Физические методы анализа. Определение состава самых ра,знооб-разных веществ можно осуществить, не прибегая к химическим или элекгрохимическим реакциям (см. книга 2, Введение , 3). Такого рода методы определения основываются на изучении физических свойств илп измерении физических констант исследуемого вещества, например эмиссионных спектров поглощения, электро- или теплопроводности, потенциала электрода, погруженного в раствор, диэлектрической проницаемости, вращения плоскости поляризации света, показателя преломления, флуоресценции, ядерного магнитного резонанса, радиоактивности и т. п. [c.17]

    Оптические методы анализа основаны на измерении характе]5истик оптических свойств вещества (испускание, поглощение, рассеивание, отражение, преломление, дифракция, интерференция, поляризация света), проявляющихся при его взаимодействии с элекгромагнитшш излучением. По характеру взаимодействия электромагнитного излуч(шия с веществом оптические методы анализа обычно подразделяют на эмиссионный спектральный, атомно-абсорбционный, молекулярный абсорбционный спектральный (спектрофотометрия, фотоэлектроколориметрия), люминесцентный, нефелометрический, турбодиметрический, рефрактометрический, интерферометрическиг поляриметрический анализ, а также спектральный анализ на основе спектров комбинационного рассеяния (раман-эффект) и некоторые другие методы, также использующие взаимодействие электромагнитного поля с веществом — ядерный магнитный резонанс (ЯМР), электронный парамагнитный резонанс (ЭПР), ядерная гамма-резонансная спектроскопия (эффект Мессбауэра) и т. д. [c.516]

    Данные ИК-спектра и спектра ядерного магнитного резонанса показывают, что это соединение в хлороформном растворе находится преимущественно в дикетонной форме III, а в полярных растворителях в значительной степени существует в виде енола IV. О присутствии внольной формы свидетельствуют, кроме того, быстрое поглощение брома, реакция с диазоэтаном, приводящая к исходному веществу I, и образование окрашенного комплекса с хлорным железом в водном растворе. Величина рКк этого дикетона близка к трем. [c.36]

    Спектроскопия ядерного магнитного резонанса (ЯМР-спектроскопия) представляет собой особый вид абсорбционной спектроскопии. Явление резоиаиса в спектре ЯМР наступает лри поглощении электромагнитного излучения парамагнитными ядрами, находящимися в однородном внешнем магнитном поле. Маг-иитиы.м моментом обладают ядра, в состав которых входнт нечетное число нен- ронов или протонов (табл. 13). [c.137]

    Баргон И., Фишер X. и Йонсен Ю., изучая спектры ядерного магнитного резонанса (ЯМР) диамагнитных продуктов сразу после их образования, впервые наблюдали химически индуцированную неравновесную поляризацию ядерных спинов [5] интенсивность линий в спектре существенно превосходила соответствующую величину в условиях термодинамического равновесия. Вскоре было показано, что химически индуцированная поляризация ядер может привести и к эмиссии на резонансных частотах ЯМР. В продуктах химических реакций спектры ЯМР обнаруживают два типа эффекта ХПЯ - интегральный и мультиплетный. Интегральный эффект характеризует суммарную интенсивность отдельных мультиплетов в спектре ЯМР, которые возникают благодаря спин-спиновому взаимодействию ядер. Мультиплетный эффект характеризует появление эмиссии и усиленного поглощения линий внутри мультиплетов. Для иллюстрации на рис. 2 приведены Фурье-образы спада сигнала свободной индукции, полученные после действия 7г/4 и 37г/4 импульсов (два верхних спектра, соответственно). Эти результаты получены для фотолиза ди-терт-бутил кетона. Их сумма дает интегральный эффект ХПЯ, в то время как их разность (нижний спектр на рис. 2) дает мультиплетный эффект ХПЯ. [c.6]

    Явление ядерного магнитного резонанса (возбуждение на более высокий энергетический уровень) можно наблюдать в том случае, если при постоянном Яо свипировать в определенном интервале радиочастоту, до тех пор пока она не достигнет значения, соответствующего АЕ. (При этом происходит поглощение излучения с последующим возбуждением.) Однако, поскольку V и Яо связаны между собой (V = уН. 1 2п), резонанса можно достигнуть другим путем сохраняя V постоянной, изменять приложенное магнитное поле, пока оно не станет равным Яо- Во многих спектрометрах ЯМР используют генератор фиксированной радиочастоты (обычно СО или 100 МГц) и свипируют приложенное магнитное поле. Однако, каким бы способом ни был получен спектр, он всегда представляет собой график зависимости интенсивности поглощения радиочастотного излучения от частоты излучения. [c.540]

    Измерения отношения Н Н в продукте методом ядерного магнитного резонанса показывают, что содержание дейтерня составляет 24,4 1 ат. %. Спектр поглощения в ультрафиолетовой области идентичен спектру нормального стирола, если не считать, что пик 2820 А смещается к 2825 А. [c.284]

    Поскольку радиоспектры ядерного магнитного резонанса столь чувствительны к природе химической связи и строению атомной группы, в которую входит протон, то мы имеем здесь исключительную возможность для изучения структуры сложных органических молекул с помощью линейчатого спектра. Для идентификации тех или иных групп необходимо изучение модельных соединений и составление каталогов, характеризующих изменение положения линий поглощения нри изменении структуры молекулы (так называемых химических сдвигов, рис. 54). Метод ядерного магнитного резонанса применительно к химии переживает еще период первоначального накопления фактов. Составление каталогов частот еще только началось. Однако уже имеются примеры, когда с его помощью удалось блестяще справиться с проблемой расшифровки строения очень сложных органических соединений (макроциклические терпены, фтороорганические соединения и т. д.) при относительно малой затрате труда. Ясно, что для дальнейшего изучения структуры сложных молекул этот метод представляет собой весьма совершенное орудие. [c.178]


Смотреть страницы где упоминается термин Спектры поглощения ядерный магнитный резонанс: [c.259]    [c.12]    [c.217]    [c.521]    [c.311]    [c.24]    [c.379]    [c.232]    [c.322]    [c.85]    [c.130]    [c.311]    [c.392]    [c.416]    [c.105]   
Органическая химия (1964) -- [ c.634 ]

Органическая химия (1964) -- [ c.634 ]




ПОИСК





Смотрите так же термины и статьи:

Резонанс г ядерный магнитный

Спектр ядерные



© 2025 chem21.info Реклама на сайте