Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бутены Бутилены полимеризация

    В процессе полимеризации происходит соединение нескольких простых молекул в одну большую, в результате получают полимеры. При этом процесс можно ускорить с применением катализаторов. Путём дегидрирования (отщепления атомов водорода) из этана получают этилен, а из бутана — бутилен, т. е. более реакционноспособные вещества. [c.250]


    При синтезе таких каучуков, как дивинилстирольный, дивинил-нитрильный, хлоропреновый, и ряда других применяются процессы эмульсионной полимеризации с использованием воды в качестве дисперсионной среды. Ряд промышленных процессов, к которым относятся, например, производство дивинила из нефтяных газов (бутана, бутиленов), производство изоп рена методом каталитического дегидрирования изопентана, производство стирола и метилстирола алкилированием бензола соответственно этиленом или пропиленом, гидратация ацетилена в ацетальдегид осуществляются в присутствии большого избытка водяного пара. В присутствии водяного пара протекает также процесс пиролиза углеводородов при производстве этилена и пропилена. [c.12]

    Полагают, что высококипящие олефины должны образовываться в результате ступенчатого присоединения этилена. Этот катализатор показал слабую активность по отношению к димеризации -бутилена, но при полимеризации этилена всегда получается значительно больше гексена, чем октена, даже нри высоких степенях превращения его в бутилен. Добавление к этилену 50 % бутена-2 повысило на 50 % количество образовавшегося гексена на израсходованный этилен. Маловероятно, что этот результат был просто следствием чисто физического подавления десорбции бутилена с катализатора, так как при добавлении пропилена к сырью пентен составлял 30 % полимерного продукта. [c.206]

    Влияние примесей. Наличие бутиленов (1-бутен, 2-бутен) в изобутилене понижает молекулярную массу и выход бутилкаучука. Действие 1- и 2-бутена примерно одинаково. Бутены индукционного периода, не вызывают, полимеризация при наличии бутенов протекает более спокойно. Выход полимера при наличии бутенов может быть увеличен повышением количества катализатора. [c.345]

    ДЛЯ полимеризации бутиленов или алкилироваиия н-бутана. [c.33]

    Смесь бутан-бутиленов каталитического и термического крекинга составляется таким образом, чтобы соотношение изо- бутана и бутиленов в сырье, поступающем на алкилирование, в среднем составляло 1,2—1,25 1. При этом серной кислоты расходуется 21%. При уменьшении отношения изобутана к бутиленам в сырье расход серной кислоты повышается за счет побочных реакций (полимеризации и т. п.). [c.173]

    Смеси, из которых получается бутадиен, состоят из большого числа веществ. Основными компонентами этих смесей являются изобутан, н-бутан, изобутилен, бутилен-1, бутилены-2 и бутадиен-1,3. Большое значение имеет также примесь ацетиленовых углеводородов, оказывающих вредное влияние в процессе полимеризации бутадиена. Выделение бутиленов и бутадиена из этих смесей методами обычной ректификации невозможно, поэтому разделение производится с использованием обычной, а также азеотропной и экстрактивной ректификации. Наибольшее затруднение вызывает разделение смесей н-бутана и бутиленов-2, изобутана и бутилена-1, а также бутадиена и бутена-1. Оно осуществляется с помощью экстрактивной ректификации. В качестве разделяющих агентов для последней было испытано большое число полярных веществ в чистом виде и с добавкой воды [291], а также смесей различных веществ [292]. Наибольшее практическое применение в настоящее время получили фурфурол [258, 293—296], ацетон [297] и фенол, содержащий от 2 до 10% воды [298]. [c.277]


    Принципиальная схема процесса представлена на рис. 117. Реакция протекает в две ступени. Сначала смесь метанола и фракции С4 проходит паровой подогреватель 1 и реактор 2 трубчатого типа (катализатор — кислая ионообменная смола). Процесс протекает при невысокой температуре (ниже 100 °С) в жидкой фазе при этом в реакцию вступает большая часть изобутилена, а н-бутилен и бутаны уходят с образующимися продуктами. Реакция завершается в аппарате 3 шахтного типа. В обоих реакторах выделяющееся тепло снимают водой, так как повышение температуры приводит к полимеризации изобутилена. В ректификационной колонне 4 отделяется отработанная фракция С4 с низа уходит продукт, содержащий 60% целевого продукта (МТБЭ). Для получения более чистого (98—99%-ного) МТБЭ служит колон- [c.318]

    Установка предусматривает проведение полимеризации непредельной части исходного сырья (фракции до Сз), алкилирование изобутана бутиленами, изомеризацию н. бутана и самостоятельное выделение из системы газов, получаемых при изомеризации бутана. Схемы такой установки и динамики потоков для нее приведены на рис. 14. [c.50]

    Углеводородные газы из дебутанизатора установки для крекинга бутана содержали 27,7% бутиленов и пропилена. Этот газ был пропущен через установку для каталитической полимеризации и дал 27% каталитического полимер-бензина (по весу на исходный бутан) анализ этого бензина приведен в табл. 212. [c.707]

    Полимеризация бутиленов совместная полимеризация бутена-1 и изобутилена с 30% фосфорной кислотой Твердая ортофосфорная кислота на диатомовой земле 1913 [c.458]

    Бутилены. Серная и фосфорная кислоты — наиболее часто используемые катализаторы в процессах полимеризации бутиленов. Для процессов, которые обсуждаются в разделе Полимеризация олефинов в присутствии фосфорнокислотных катализаторов с целью получения бензиновых компонентов , предложено большое количество усовершенствований и модификаций. Большинство их касается процессов избирательной полимеризации [102, 103]. Очень чистые полимеры гомогенного состава из изобутилена и бутена-1 можно получить в присутствии алкилсульфокислоты, взятой в качестве катализатора [162]. [c.369]

    Сообщалось, что степень полимеризации бутена-1 над катализатором окись магния — окись алюминия — окись кремния при атмосферном давлении, температуре 250° и скорости 95 моль л час достигала 23% вес. на сырье, а получаемый жидкий продукт содержал главным образом углеводороды Се [114]. Хотя скорость такой реакции полимеризации очень высока и превышает скорость реакции изомеризации цепи, однако она гораздо ниже, чем скорость перемещения двойной связи. О полимеризации пропилена и бутиленов нри повышенных давлениях над некоторыми крекирующими катализаторами сообщалось в работе Томаса [106]. [c.411]

    Способы каталитического дегидрирования бутана и бутиленов могут быть применены и для дегидрирования изопентана и амиленов с целью получения изопрена — ценнейшего мономера, применяемого для производства полиизопренового синтетического каучука. Изопреновый каучук является аналогом натурального каучука и даже превосходит его по некоторым свойствам. Изопрен применяют также как компонент смешанной полимеризации для получения бутилкаучука. Главным источником изопрена служит фракция крекинга и пиролиза нефтяного сырья. Изопентан может быть выделен из газового бензина и из бензинов каталитического крекинга. [c.145]

    Как видно нз табл. 116, в указанных выше условиях изменения, претерпеваемые этиленом даже при 650°, невелики я в основном сводятся к образованию продуктов полимеризации и уплотнения (нронилен, бутилен, жидкие продукты). Начиная с 700°, наблюдается постепенное возрастание в газах водорода и метана одпако уголь появляется лишь при 750—800°. Количество этих продуктов распада с повышением температуры непрерывно возрастает, а содержание этилена в газе соответственно надает. Характерно нарастание выходов жидких продуктов до 800° (максимум), тогда как содержание пропилена и бути.пена возрастает лишь до 700°. Состав жидких продуктов разъясняет это кажущееся несоответствие в основной своей массе они состоят из ароматических у1"ле-водородов так, нанример, жидкие продукты, полученные пиролизом этилена при 700° примерно )та 50% состояли из бензола. [c.450]

    Бутилены серной кислотой абсорбируются легче, чем пропилен и этилен, и поэтому можно приготовить смесь бутил серных кислот [242], практически свободную от низших гомологов, применяя серную кислоту соответствующей концентрации. Изобутилен можно абсорбировать 65%-ной кислотой [243], а прочие бутилены—85%-ной кислотой при 30° или с концентрацией 88% и выше при температурах 3° и ниже [244]. Запатентована [245] абсорбция бутиленов в жидкой фазе под давлением при температуре 30—35°. При растворении в 78%-ной кислоте жидкий бутилен-2 образует ничтожное количество полимеров, тогда как абсорбция более концентрированной кислотой сопровождается значительной полимеризацией [233]. Бутилсерная кислота, полученная из бутилена-1 или бутилена-2, в результате омыления дает вторичный бутиловый спирт [246]. [c.46]


    Превращение газообразных углеводородов в устойчивое к детонации моторное топливо например смесь бутанов и бутиленов, содержащуюся в крекинг-газах, ожижают при нормальной температуре (увеличивая давление), очищают едким натром и пропускают при П5— 215° и давлении 33—51 ат через катализатор, в результате происходит полимеризация бутиленов в изооктилены затем продукт реакции отделяют от бутанов и несодержащие бутана продукты полимеризации подвергают фракционированной перегонке, при которой в виде остатка выделяются углеводороды, кипящие выше октилена чистые октилены подвергают каталитической гидрогенизации в две стадии и получают изооктан [c.493]

    Пропилен — н-бутилен. Чтобы заполимеризовать 53 % олефинов из ожиженной смеси, содержащей 24% объемн. к-бутилена, 32% пропилена и 44 % к-бутана, требовались значительно более жесткие условия полимеризации [19] 260° и 40 ат и постоянная объемно-весовая часовая скорость 0,5 на твердой фосфорной кислоте. Продукт содержал 6% гексенов, 30% гептенов, 24% октенов и 17% ноненов. Ббльшая часть гсптеновой фракции гидрировалась в 3-метилгексан. [c.198]

    Фосфаты металлов. Медная соль нирофосфорной кислоты. Промышленный процесс полимеризации осуществлялся с углеводородной фракцией Сз—С [65], содержавшей около 45% олефинов. В качестве катализатора использовалась медная соль нирофосфорной кислоты, приготовляемая смешением пирофосфата меди с равным объемом гранулированного древесного угля. Состав типичного сырья был следующий 0,7 % объемн. жидкого этилена, 3,2% этана, 10,6% пропилена, 17,8% пропана, 9,9% изобутана, 12,2 % изобутилена, 20,1 % / -бутиленов, 24,2 % и-бутана и 1,3% пентанов. При полимеризации этого сырья в одноступенчатом процессе при 205°, давлении 61 ат и скорости подачи сырья 0,7 л/час на 0,5 кг катализатора 88 % олефинов превращалось в жидкие продукты. [c.199]

    Взаимодействие в аналогичных условиях изобутана с октенами, полученными горячекислотной полимеризацией изобутилена и бутена-1, показывает, что наряду с реакцией перераспределения водорода протекает реакция деполимеризации олефинов, т. е. взаимодействие происходит таким образом, что реакции алкилирования предшествует деполимеризация димера бутилена и образовавшийся бутилен реагирует с изобутаном  [c.54]

    Под действием фосфорнокислотного катализатора изобутилен реагирует чрезвычайно легко, образуя при 30° исключительно диизобутилен. В присутствии бутенов-1 и -2 нроисходит смешанная полимеризация, но продукты реакции опять-таки состоят только пз олефинов. Бутен-2 реагирует быстрее бутена-1. Вследствие большой реакциошюй способности изобутилена был разработан способ его избирательно полимеризации. Условия процесса при. этом настолько мягкие, что из смесеИ олефинов реагирует только изобутилен, почти не образуя смешатгых полимеров с другими бутиленами. Преимущества этого процесса будут оппсапы позже. [c.296]

    Мейер [33] установил, что при обработке бутплена-2 хлористым алюминием хотя и имеется полимеризация, однако при температуре между —40 и + 10° не происходит изомеризации в бутилен- и наоборот. Такое заключение он сделал но свойствам соответствующего полимера. В полимере бути- [c.673]

    В последние годы уровень автоматизации процессов в нефтепереработке и нефтехимии значительно возрос. Разработаны и внедрены анализаторы качества продукции в потоке, уровнемеры, индикаторы составов, хроматографы, газоанализаторы, на многих предприятиях функционируют товарные парки с полной автоматизацией замера уровня и дистанционным управлением переключения, автоматизированы слив и налив сырья и продукции, разработаны и внедрены локальные системы автоматического регулирования различного назначения (системы автоматизации переключения контактных печей с контактирования на регенерацию, автоматического регулирования состава углеводородной шихты, оптимизации процессов дегидрирования бутана в бутилен и бутилена в бутадиен, автоматического управления процессом эмульсационной полимеризации и др.). [c.109]

    Рассмотрим теперь некоторые работы ио гетерогенно-катали-тическим процессам алкилирования под высоким давлением. В большой серии исследований Л. X. Фрейдлина, А. А. Баландина и И. ]И. Назаровой было изучено алкилирование (в присутствии окисно-алюминиевых катализаторов) н. бутана этиленом [436], пропиленом [437] и бутиленом [438], алкилирование н. пептана пропиленом [439], н. гептана пропиленом [438], пропана и изоиентана этиленом [440]. Авторами показано, что пропан алкилируется труднее других нормальных парафиновых углеводородов с большим молекулярным весом. Этилен оказывается в реакциях алкилирования более реакционноспособным, чем пропилен и бутилен. Для нолучения оптимальных выходов алкилатов и ожидаемых фракций, содержащих продукты первичного алкилирования, авторы проводили реакцию при температуре около 450 и давлениях 400—600 атм. При более низких давлениях и температурах превалируют реакции полимеризации, а при более высоких температурах все большую роль приобретают процессы крекинга. Указанными авторами установлено наличие последующего алкилирования образующихся парафинов. При гетерогенно-каталитическом алкилировании, как и при термическом процессе, олефин присоединяется иреимущественно ко второму углеродному атому парафина. [c.239]

    Как указывалось в главе 1, такие изоолефины, как изобутилен, особенно ценны для процесса полимеризации, давая высокооктановые топлива, в том числе и изооктан. Химический состав бутан-бути-лановой фракции газов стабилизации изменяется в широких пределах. Бутан-бутиленовая фракция из крекинг-бензинов при смешаннофаз-ном процессе содержит об ычно около 50% бутанов, 35% н-бутиленов и 15% изобутилена. Содержание бутанов в бутан-бутиленовой фракции может быть выше 50%, но отношение н-бутилена к изобутилену остается близким к 2 1. Содержание н-бутана обычно значительно выше, чем изобутана. [c.384]

    Бутадиен СН2=СН-СН=СН2 получают дегидрированием бутана и н-бутиленов, содержащихся в природном газе и газах нефтепереработки. При 20 °С 1,3-бутадиен представляет собой смесь i-цисоидного (3-5%) и i-трансоидного (95-97%) конформеров. Бесцветный газ, нерастворим в воде, плохо растворим в этаноле, растворим в диэтиловом эфире и бензоле. 1,3-Бутадиен применяют для производства каучуков. Первый промыщленный метод получения бутадиенового каучука был разработан С.В. Лебедевым в 1926-1928 гг. 1,3-Бута-диен для этой цели получали из этанола. Промышленное производство началось в 1932 г. В настоящее время 1,3-бутадиен применяют для получения бутадиенового, бутадиен-стирольного и бутадиен-нитрильного каучуков. На воздухе 1,3-бутадиен медленно образует пероксиды, которые инициируют его полимеризацию. ПДК ШОмг/м . [c.366]

    Ипатьев, Корзон и Эглофф [39] разработали три варианта процесса полимеризации газообразных углеводородов 1) полимеризацию сырья, состоящего лз газообразных углеводородов, содержащих пропилен и бутилен 2) пиролиа таких парафиновых углеводородов крекинга, как бутаны (а также пропан),, для получения олефиновых углеводородов, которые затем каталитически превращают в полимер-бензин 3) селективную полимеризацию нормальных бутиленов и изобутилена и последующую гидрогенизацию образующихся окте-нов для получения изооктана. [c.658]

    Продукты каталитической дегидрогенизации содержат преимущественно изобутилены и нормальные бутилены, непревращенные бутаны, водород и небольшое количество метана, этана, этилена, пропана и пропилена. Они непрерывно удаляются из реактора, в котором происходит дегидрогенизация, через соответствующий холодильник с помощью компрессора. После компримирова-ния газы дополнительно охлаждаются и поступают в сепаратор, в котором отделяется жидкая часть, состоящая в основном из бутиленов и непрореагировавших бутанов, от газообразной части, состоящей преимущественно из водорода и легких углеводородных газов. Газы из сепаратора поступают в абсорбер, в котором относительно тяжелые компоненты, включая несконденсировавшиеся бутаны и бутилены, отделяются посредством абсорбции от более легких газообразных фракций, богатых водородом и пригодных для гидрогенизации таких продуктов, как изооктен, который обычно готовят полимеризацией полученных в этом процессе бутиленов. Жидкая фракция из сеператора подается в соответствующее фракционирующее и стабилизующее устройство, где она в достаточной мере освобождается от растворенных в ней легких газов получающийся стабилизованный продукт может поступать на хранение или подвергаться каталитической полимеризации в высокооктановый бензин. Непроконвертированные бутаны можно направить обратно на дегидрогенизацию. [c.704]

    Ц—бутаны 2 — дегидрогенизация (550—600°С, 0,7—3,5 ат) 3—компрессоры 4 — адсорбер (7—15 ат) 5 и 6—водород 7—гидрогенизация (150— 175° С, 10—15 ат) Si—отпарная колонна 9 — бутан-бутилен 10 — селективная полимеризация (125—175° С, 30—100 ат) 11—рециркуляция 12 — дебутанизатор (5 ат), 13 — остаточный бутан и бутилен 14 — н-бутилен, селективная полимеризация (175—250° С, 50—100 ат) 15 — стабилизатор (5 ат) 16 — полимер н-бутилена 77—рециркулирующий бутан 18—авиационный бензин с октановым числом 85 79 — изоокган с октановым [c.704]

    Смесь бутанов, бутиленов и водорода, выходящая из дегидрогенизацион-ной секции установки, охлаждается и компримируется приблизительно до 7—15 ат и затем поступает в абсорбер, в котором отделяется водород. Для отгонки бутан-бутиленовой смеси абсорбционное масло отпаривается, затем охла,ж-дается и возвращается в абсорбер. Бутан-бутиленовая фракция перекачивается под высоким давлением в полимеризационную установку. В процессе используется катализатор, состоящий из твердой фосфорной кислоты. В установке для полимеризации поддерживается температура 120—180° и давление от 50 до 100 ат. Температура регулируется системой водяных рубашек вокруг реакционных труб. При повышенных температурах полимеризуется большее количество нормальных бутиленов, но получается продукт гидрогенизации с более низким октановым числом. Поэтому температура процесса определяется октановым числом, которое должен иметь получаемый продукт. Полимер дебутанизи-руется, перегоняется и каталитически гидрогенизируется в авиационной бензин с октановым числом приблизительно 97 получается около 10% остатка (тяжелые полимеры типа тримера). Непрореагировавшие нормальные бутилены подвергаются вторичной полимеризации, обычно при более высокой температуре (250°), чем в секции селективной полимеризации. Регулирование температуры производится так же, как и при селективной полимеризации. Продукт полимеризации нормальных бутиленов проходит через стабилизатор, где жидкие полимеры отгоняются от бутанов. Бутаны возвращаются на дегидрогенизацию. Этот лолимер после гидрогенизации и вторичной перегонки дает продукт с октановым числом приблизительно 85. [c.705]

    Влияние природы олефина. Влияние природы олефина, применяемого в алкилировании, связано почти полностью со строением его углеводородного скелета. Другими словами, все оле фины, за исключением изобутилена и этилена, не должны значительно различаться по скоростям полимеризации, легкости присоединения протонов или по другим подобным же свойствам, способным приводить к большим различиям в их поведении, чем только изменения структуры. Например, среди бутиленов не наблюдается большого различия в распределении продуктов реакции по молекулярному весу при коротких временах контакта. При алкилировании изобутиленом и бутеном в алкилате получают преимущественно триметилпентаны. Алкилат бутена-1 содержит преимущественно диметилгексаны. Иначе говоря, продукты реакции замечательно сходны между собой. Выход анормальных продуктов, или продуктов вторичных реакций, почти одинаков. Бутен-1 и бутен-2 могут давать одинаковые алкилаты, если олефин контактирует с кислотой до введения изопарафипа. В этом случае оба бутилена приближаются к равновесной смеси, которая и дает смешанный алкилат. [c.44]

    Дивинил является основным сырьем для крупнотоннажной промышленности искусственного каучука. В некоторых количествах он образуется при термической переработке нефтяных фракций за счет крекинга нафтенов и дегидрирования бутиленов. Термическое дегидрирование (пиролиз) бутиленов может дать довольно высокий выход бутадиена ири 700° С. Однако метод каталитического дегидрирования бутиленов заслуживает предпочтения. Условия процесса сходны с условиями получения бутиленов из бутана. Высокая реакционная способность бутадиена и склонность его к полимеризации заставляют прибегать к разбавлению исходной смеси водяным паром. Понижение иарциального давления бутиленов повышает степень их превращения и снижает скорость полимеризации бутадиена. Помимо того, применение водяного пара резко снижает закоксовывание катализатора в силу реакции [c.316]

    По кинетическим кривым, полученным при полимеризации бутан-бутй-леновой фракции (температура минус 15 °С, катализатор — порошкообразный хлористый алюминий), были вычислены константы скоростей полимеризации изобутйлена и нормальных бутиленов. Константа скорости полимеризации изобутилена Ki = 0,09 сев , а средняя константа скорости полимеризации всех нормальных бутиленов Kg = 0,019 сек . [c.109]

    В первый период — до п ска в эксплуатацию первой в СССР устаповки каталитического крекинга сырьем служила фракция С термокрекинга, отработанная в процессе каталитической полимеризации. В этом сырье было мало бутиленов, ощущался значительный недостаток изобутапа и, наоборот, количество нормального бутана и других инертных компонентов — пропана и пентапов доходило до 60 и более процентов. [c.452]

    Одним из ван нейших продуктов уплотнения этилена является бута диен (в табл. 116 не показан). Так как полимеризация этилена в наиболее уморенных условиях, в первую очередь, долн на приводить к бутилену, то, повидимому, бутадиен представляет собой не что иное, как продукт дегидрирования бутилена, так что образование этого диена можно представить следуюпдей схемой  [c.451]

    С4-основная сырьевая база изобутилена. После очистки от каталитических ядов (бутадиен, соединения серы и др.) она содержит изомеры бутана и бутиленов, небольшие количества углеводородов С2, С3 и С5, соотношение между которыми изменяется в зависимости от условий получения фракции [265]. При полимеризации изобутилена из фракций С4 в присутствии А1С1з получаются существенно низкомолекулярные ПИБ или продукты смешанной полимеризации ненасыщенных углеводородов [266]. [c.158]

    При производстве синтетического каучука, синтетического спирта и исходных продуктов органического синтеза широко применяется оборот воды. Так, ири производстве яатрий-диви-нильного каучука часть вод, отходящих из процесса ректификации спирта, используется для отмывки спирта и альдегидов 6т эфироуглеводородной фракции. При производстве дивинилсти- рольных каучуков оборот воды применяется как на стадии получения исходных мономеров, так и в процессах полимеризации и выделения каучука. При получении дивинила из бутана оборот воды используют в процессах дегидрирования бутана в бу-тилены, бутиленов в дивинил и т. д. Применение оборота воды при производстве синтетического каучука и синтетического спирта позволяет значительно сократить количество сточных вод. Так, из процесса мокрого охлаждения контактного газа дегидрирования бутиленов В канализацию сбрасывают только избыток химически загрязненной воды, составляющий менее 10% от расхода воды, находящейся в обороте, а из процесса водной очистки и охлаждения нирогаза на заводах синтетического этилового спирта-—менее 5% (рис. 1). [c.28]


Смотреть страницы где упоминается термин Бутены Бутилены полимеризация: [c.313]    [c.123]    [c.195]    [c.225]    [c.93]    [c.85]    [c.724]    [c.217]    [c.626]    [c.118]    [c.161]   
Теоретические проблемы органической химии (1956) -- [ c.207 ]

Основные начала органической химии том 1 (1963) -- [ c.376 ]

Основные начала органической химии Том 1 Издание 6 (1954) -- [ c.333 , c.371 ]




ПОИСК





Смотрите так же термины и статьи:

Бутилен

Полимеризация бутиленов



© 2025 chem21.info Реклама на сайте