Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Титан от анионов

    Для пробивания анодной окисной пленки на титане анионами фтора требуется намного большая поляризация. [c.51]

    Титан имеет довольно высокую (1668 °С) температуру плавления и плотность 4,5 г/см . Благодаря высокой удельной прочности и превосходным противокоррозионным свойствам его широко применяют в авиационной технике. В настоящее время его используют также для изготовления оборудования химических производств. В ряду напряжений титан является активным металлом расчетный стандартный потенциал для реакции Т + + 2ё Л составляет —1,63 В . В активном состоянии он может окисляться с переходом в раствор в виде ионов Т " [1]. Металл легко пассивируется в аэрированных водных растворах, включая разбавленные кислоты и щелочи. В пассивном состоянии титан покрыт нестехиометрической оксидной пленкой усредненный состав пленки соответствует ТЮ . Полупроводниковые свойства пассивирующей пленки обусловлены в основном наличием кислородных анионных вакансий и междоузельных ионов Т , которые выполняют функцию доноров электронов и обеспечивают оксиду проводимость /г-типа. Потенциал титана в морской воде близок к потенциалу нержавеющих сталей. Фладе-потенциал имеет довольно отрицательное значение (Ер = —0,05В) [2, 3], что указывает на устойчивую пассивность металла. Нарушение пассивности происходит только под действием крепких кислот и щелочей и сопровождается значительной коррозией. [c.372]


    Полимеризацию непредельных углеводородов с сопряженными двойными связями, протекающую под действием металлорганических соединений, также можно считать анионной реакцией с этим согласуется торможение реакции СО2 или иными электрофильными агентами. Анионной реакцией, вероятно, является также гетерогенная полимери зация ненасыщенных углеводородов, например, полимеризация этилена, катализируемая треххлористым титаном при добавке триэтилалюминия (Циглер) аналогичные катализаторы образуются из четыреххлористого титана и триэтилалюминия. [c.936]

    Для разделения никеля, титана и алюминия применяют следующий способ . Сначала все три компонента поглощают в колонке с зернами катионита. Затем колонку промывают раствором, содержащим 0,8 моля HF и 0,01 моля НС1 в 1 л. В этих условиях никель остается в виде простого катиона, алюминий дает незаряженную молекулу A1F,, а титан образует комплексный анион TiF (Г- Таким образом, никель остается в колонке с катионитом. Вытекающий раствор пропускают через колонку с анионитом, где задерживается титан, а алюминий проходит. [c.74]

    Амперометрическое титрование применяют часто для определения анионов. Практическое значение имеет также определение катионов по методу осаждения с применением органических реактивов. Так, раствором купферона титруют титан, цирконий, раствором оксихинолина — кадмий, цинк, алюминий. Известны, кроме того, методы определения катионов посредством титрования раствором комплексона. [c.439]

    При увеличении числа связей, образуемых данным ионом металла с соседями, возрастает прочность металла и повышается энтальпия испарения (сублимации). Полинг, рассматривавший структуры решеток металлов с позиций теории ВС, отметил, что прочность металлов возрастает при переходе от металлов, имеющих малое число валентных электронов, к металлам переходного характера с его точки зрения металлы, имеющие частично незаполненные d-зоны, располагают большим числом электронов для осуществления межионных связей, а потому и должны быть прочнее. Энтальпия сублимации, отнесенная к одному электрону, действительно изменяется в ряду металлов от I до V группы таким образом, что ее максимальное значение приходится на титан, цирконий и гафний, а энергия, отнесенная к одному электрону, колеблется в пределах 84—168 кДж/моль, что близко к обычным энергиям химической связи. Необходимо, конечно, учитывать, что распределение энергии по большему числу связей скажется на падении ее значения на одну связь. Значение энтальпии испарения металлов имеет, в общем, тот же порядок, что и у ионных кристаллов, однако проводить сравнения трудно из-за влияния природы анионов. Соответствующие значения для хлоридов калия, натрия, магния лежат в пределах 125—168 кДж/моль, а энтальпия испарения металлического натрия равна 100,3. [c.285]


    Титан, цирконий и гафний практически никогда в соединениях не присутствуют в виде одноатомных ионов и не образуют типичных ионных связей. Их соединения имеют преимущественно неионный характер и в большинстве случаев являются комплексными. Т1, Zr и Hf могут быть центральными атомами как сложных катионов, так и сложных анионов, [c.213]

    Гидроокись титана (IV) может быть получена осаждением аммиаком и другими основаниями из растворов солей титана, разложением ти-танатов щелочных металлов разбавленными кислотами и гидролизом растворов, содержащих титан. Состав и свойства образующихся при этом гелеобразных осадков зависят от многих факторов концентрации растворов, природы аниона, природы осадителя, температуры. [c.217]

    Диоксид свинца принадлежит к классу полупроводников, обладающих проводимостью, близкой к проводимости металлов. Аноды из диоксида свинца обладают высокой стойкостью и могут быть использованы для проведения реакций электрохимического окисления при высоких положительных потенциалах. Получают такие аноды электроосаждением при электролизе кислых или щелочных растворов солей свинца. В результате анодного окисления двухвалентного свинца, являющегося катионом при электролизе кислых растворов или входящего в состав анионов при электролизе щелочных растворов, образуется РЬОа. В качестве основы, на которую производится электроосаждение диоксида свинца, с наибольшим успехом используется титан, поверхность которого обрабатывают механически (например, фрезерованием) для улучшения сцепления покрытия путем нанесения сетки канавок или выступов. [c.13]

    Такие комплексы выделены и мостичные связи доказаны. Титан, имея положительный заряд, поляризует 5 группу № Скоординированный олефин активируется 1 и встраивается по связи Т —СН2, а конец растущей макромолекулы остается отрицательно заряженным- (анион). I [c.144]

    В одном из вариантов [86] процесса фиксации атмосферного азота генерированные на катоде анион-радикалы нафталина используются для восстановления титана (IV) и первоначально образующегося комплекса титан(II)—азот. Электрохимическое восстановление регенерируемого нафталина придает этому процессу каталитический характер. [c.257]

    Зависимость электрохимических свойств титана от состояния его поверхности особенно сильно сказывается при низких плотностях тока. В присутствии хромата нри низких плотностях тока снижается перенапряжение выделения водорода, облегчается восстановление окисной пленки на титане и затрудняется восстановление гипохлорита. Это объясняется адсорбционными явлениями. Адсорбция хроматов на аноде, по-видимому, изменяет механизм восстановления окисной пленки и затрудняет доступ анионов гипохлорита к поверхности катода. [c.258]

    Определение ванадия в четыреххлористом титане [353]. Анионный комплекс V(V) с ПАР в присутствии нитрона экстрагируется хлороформом. Определению не мешают А1, Са, Сг, К, Mg, Мп, Na, W, Zr, SO4", N-, 50-кратные количества Мо, 25-кратные — Nb, Sn, Та. Титан маскируют гидрофторидом аммония, Ре(П1) — тиомоче-виной. В этом случае не мешает 0,35 мг железа. Метод позволяет определять 10- % ванадия. [c.124]

    Титан. В последние годы аналитической химии титана уделяется много внимания, что связано с возросшим значением соединений и сплавов на основе титана в технике. Находящий все большее аналитическое применение диантипирилметан описан как чувствительный реагент на титан в I—QN НС1 [125]. Используются также тройные комплексы диантипирилметан — титан — пирокатехиновый фиолетовый, роданиды или другие соединения, образующие с титаном анионные комплексы [122, 123]. Триоксифлуороны описаны как наиболее чувствительные реактивы на титан [30]. Находит применение также хромотроповая кислота и ее производные, в частности дихлорхромотроповая кислота [109], а также N-бензоилфенил-гидроксиламин [140]. [c.133]

    Второй метод получения полипропилена с высоким молекулярным весом предложен Дж. Натта. Он установил, что в присутствии смеси металлалкилов (металлы 11 и III г )упп) и галогенидов металлов переменной валентности (металлы IV, V и VI групп) происходит полимеризация пропилена с образованием высокомолекулярного полимера. Компоненты катализатора образуют нерастворимый комплекс, на поверхности которого протекает анионная полимеризация пропилена. Получ емый полимер имеет стереорегулярную структуру. В качестве каталитического комплекса применяют смеси 1лкилалюминия (например, триэтил-или трипропилалюминия) и треххлористого титаня. Триэтилалю-мипий применяют в виде раствора в гептане (молярность раствора [c.200]

    Аналогичные явления наблюдаются и для пассивирования тантала в растворах 10 г/л НгЗО, или 30 г/л СгОз, 1 г/л КгЗОз с гой лишь разницей, что процесс проходит в значительно меньшие промежутки времени, прн меньших силах тока, а предельные напряжения достигают 1000 в. Титан ста новится пассивным на аноде в кислых растворах с кислородным анионом и нейтральным с любЫ М анионом. [c.118]


    Титан и его аналоги покрываются на воздухе чрезвычайно прочной защитной пленкой ЭО2. Поэтому при обычной температуре они коррозионно-устойчивы в атмосферных условиях и химически устойчивы во многих агрессивных средах. Так, коррозионная стойкость титана превышает стойкость нержавеющей стали, В азотной кислоте Ti, Zr и Hf пассивируются. Цирконий и гафний (титан в меньшей степени) устойчивы в растворах щелочей. Концентрированная H I растворяет при нагревании только титан (образуется Ti b), цирконий и гафний в соляной кислоте не растворяются. Они растворяются лишь в тех кислотах, с которыми образуют в процессе взаимодействия анионные комплексы . Например, Zr и Hf можно растворить в плавиковой кислоте или в царской водке  [c.316]

    Комплексные соединения. Титан образует целый ряд комплексных соединений, входя в состав как комплексных анионов, так и катионов. Например, [Т10]804, [Т10]С12 (титанилы) и К2[Т1Рв), Кз[Т1(5СМ)б1 6Н2О. Из них соли гексафторотитановой кислоты применяются в качестве протрав при крашении тканей. [c.299]

    Для окисления Fe (И) в Ре (П1) используют азотную кислоту, а также другие окислители в зависимости от природы анализируемого объекта пероксидисульфат аммония, перманганат калия. Проведению реакции мешает ряд веш,еств. Прежде всего должны отсутствовать анионы кислот, которые дают более прочные ко1 шлексиые соединения, чем роданиды железа фосфаты, ацетаты, арсенаты, фториды, бораты, а также значительные количества хлоридов и сульфатов. Также должны отсутствовать элементы, ионы которых дают комплексные соединения с роданидом кобальт, хром, висмут, медь молибден, вольфрам, титан (III, IV), ниобий, палладий, кадмий, цинк, ртуть. [c.151]

    К числу металлов с низкой электронной проводимостью окислов принадлежат алюминий, титан, цирконий, тантал, известные своей способностью подвергаться оксидированию при высоких анодных потенциалах (см. 6 этой главы). Что касается растворения металла в пассивном состоянии, то оно существенно отличается от перехода в раствор ионов металла на активном участке поляризационной кривой. Это отличие прежде всего количественное. При сохранении постоянного потенциала анодной ток в пассивной области обнаруживает тенденцию к постепенному и очень медленно идущему уменьшению, снижаясь до крайне низких значений порядка Ь "а/см . Такой спад тока растягивается на длительные промежутки времени. Поэтому приводимые значения плотности тока в пассивном состоянии следует рассматривать как довольно условные величины, относящиеся к какой-либо определенной выдержке металла при заданном потенциале. Отличие процесса перехода в раствор ионов металла в пассивной области от активного растворения заключается в том, что такой переход протекает в три последовательные стадии. Одной из них является переход катионов металла в окисную пленку. Далее следует миграция ионов под действием электрического поля катионов — к раствору, а анионов кисло-юда или ионов гидроксила — к границе раздела окисел — металл. Наконец, последняя стадия представляег переход катионов из окисной пленки в раствор, т. е. самый процесс растворения пленки. Скорость каждой из трех этих стадий зависит от потенциала, и на этом основании процесс растворения металла в пассивном состоянии можно рассматривать как электрохимический. В противоположность этому в классической теории пассивности принимается, что ионы пассивного металла поступают в раствор в результате химического растворения материала пассивирующей окисной пленки в окружающем электролите. [c.202]

    Исследовано электрохимическое поведение сплавов титана с алюминием в растворах карбонатов щелочных металлов. Обнаружено, что введение в указанные растворы галогенид-ионов вызывает резкое понижение коррозионной стойкости титан-алюминиевых сплавов вследствие питтин-гообразования. Введение в растворы карбонатов анионов кислородсодержащих кислот не оказывает заметного влияния ни на потенциал коррозии, ни на критическую плотность тока. [c.27]

    При питтинговой коррозии основное коррозионное разрушение локализуется на отдельных небольших участках металла (магний, алюминий, железо, никель, титан и др.) и протекает с большой скоростью, что может приводить к сквозной точечной коррозии металла. Питтинговая коррозия наблюдается, обычно, когда основной металл находится в пассивном состоянии. Ионы-активаторы (СГ, Вг , I") адсорбируются в основном на участках поверхности, где плеяка оксида несовершенна (металлические или неметаллические включения, искажающие или нарушающие кристаллическую структуру оксида) [22]. Анионы частично замещают кислород в оксиде и образуют хорошо растворимые поверхностные комплексные ионы. Пассивная пленка нарушается, и металл начинает непосредственно контактировать с раствором. Потенциал металла на этих участках имеет более отрицательное значение, чем потенциал основного металла, покрытого оксидной пленкой, что приводит к возникновению локальных токов. Если пассивная пленка не обладает большим омическим сопротивлением, то система заполяризовывается и на участках питтингообразования в основном протекает интенсивно анодный процесс, а катодный процесс восстановления окислителя идет на пассивной поверхности металла. При этом миграция анионов-активаторов идет в основном к участкам питтингообразования. [c.38]

    В водных растворах восстановление ионов водорода и воды до газообразного водорода является возможным при восстановлении катионов или анионов металла, которые осаждаются на металле. Причем, чем отрицательнее потенциал у системы М +/М, тем больше тенденция к выделению водорода. У цинка и марганца самые отрицательные потенциалы из числа тех металлов, которые на практике могут быть осаждены из водных растворов. Для металлов с более отрицательным потенциалом необходимо использовать расплавленные соли или растворы, не содержащие воды. Алюминиевое покрытие можно получить гальваническим способом из раствора смеси А1С1з и Ь1С1 в безводном эфире, а титан может служить для нанесения покрытия из расплавленных солей. [c.86]

    Титан очень слабо поглощается на анионитах в виде хлоридного комплекса прибавление HjOa не повышает сорбции 1580]. Таким образом, титан от алюминия отделить в виде хлоридного комплекса невозможно. Плутоний отделяют на анионите дауэкс-1 из 8 Ai H l [979] или 12 Ai H l [705]. Коэффициент распределения плутония из 8 AI H l равен 1400, из 12 Ai H l — 8000 [979]. Уран отделяют на сильноосновном анионите деацидит-FF из 8 М НС1 [1237] или из 10—11 Ai H l в присутствии HJ [572]. Теллур от алюминия отделяют на анионите ЭДЭ-ЮП из 6 7И НС [382]. [c.187]

    Из водного раствора может быть осажден TiOiOH -lHiO -гидроксид с преобладанием основных свойств. Состав катионов и анионов титана, образующихся в растворах, очень сложен и зависит от условий растворения. Считается, что титан находится преимущественно в виде ионов  [c.132]

    Изучено [338] отделение цинка от ряда элементов при помощи анионного обмена. 5—50 мг цинка в 2 н. НС1 полностью адсорбируются на 15-сантиметровой колонке, содержащей 3 з сильноосиовного анионита амберлит IPiA-400 (в С1-форме). При последующем пропускании 50 мл 2 н. НС1 практически весь алюминий, магний, медь, кобальт, никель, марганец, хром, трехвалентное железо, торий, цирконий, четырехвалентный титан,шестивалентный уран, бериллий и кальций находятся в элюате. Кадмий, четырехвалентное олово, трехвалентная сурьма и висмут ведут себя подобно цинку. Удерживается некоторое количество свинца и индия. Цинк, кадмий и индий элюируются водой и 0,25 н. азотной кислотой, которая также удаляет 20% олова и некоторое количество сурьмы, висмута и свинца. Если применять только воду, то на колонке упорно удерживается небольшое количество цинка. Описаны методы выделения цинка из растворов, свободных от индия и кадмия. [c.86]

    Титан, цирконий и гафний легко сорбируются сильноосновными анионообменниками из растворов фтористоводородной кислоты. Сорбция уменьшается с повышением концентрации кислоты [12]. Коэффициенты распределения в 1MHF приблизительно в 100 раз выше, чем в концентрированной HF (24 М). Введение HF в 1М раствор НС1, содержащий Zr и Hf, устраняет трудности, связанные с полимеризацией и гидролизом этих катионов. Очень прочные фторидные анионные комплексы Zr и Hf использованы Краузом и Мором [13], а также Гуфманом и Лилли [14] в их ранних исследованиях. [c.229]

    Перхлорат титана. Эта соль не была выделена. Трехвалентный титан восстанавливает анион перхлората в разбавленных растворах. Кинетика реакции, протекающей постепенно через ряд стадий образования основных солей, исследована Дюке и Кинеем . [c.62]

    Антрахинон и его производные обладают электрохромными свойствами - способностью к обратимому изменению окраски под действием электрического тока. При одноэлектронном электрохимическом восстановлении бледно-желтого антрахинона образуется красный анион-радикал антрасемихинона. В апротонной среде эта реакция полностью обратима - в отсутствие электрического тока регенерируется антрахинон. Это позволяет использовать антрахиноны в электрохромных материалах, применяемых в дисплеях, цифровых индикаторах, в системах для записи и воспроизведения оптической информации, управляемых светофильтрах и пр. Например, 2-отреот-бутилантрахинон в ди-метилформамиде, смешанный с титан-алюминиевым наполнителем, предложен [202] для электрохромной ячейки дисплея, меняющей окраску от белой до красной. В составе электрохромных ячеек использованы также незамещенный антрахинон [203] и замещенные, содержащие (алкил,арил,алкокси)карбонильные фуппы [204]. [c.57]

    Са, Ва, g и Мп не мешают при титровании в растворах с pH 3 и ниже. 2п, Сс1, РЬ и Со в растворах с pH 3 частично титруются вместе с галлием, при дальнейшем снижении pH их влияние уменьшается. При pH 2 эти элементы не мешают. Не мешают также Ое, 8Ь (V), Аз (V), и (VI). Титан, хотя и образует малоустойч1ивый комплексонат, из которого он вытесняется торием, но реакция замещения идет очень медленно и конец, титрования неотчетлив. V (V) частично титруется вместе с галлием при pH 2, при более высоком значении pH ванадий не мешает. Мо (VI) влияет на определение. Анионы С1" и N0 " не мешают 80 , р-, тартрат- и оксалат-ионы влияют, даже [c.95]

    Из них в первую очередь надо назвать купферон О применении купферона для амперометрического титрования по методу осаждения уже упоминалось в разделах Гафний , Галлий и Титан . Ольсон и Эльвинг в ряде работ показали, что титрование купфероном с ртутным капельным электродом по току восстановления купферона при —0,84 в (Нас. КЭ) может быть при-менено в присутствии многих других катионов и анионов, в частности фторидов и фосфатов. Фториды часто присутствуют в растворах циркония, поскольку переведение металлического циркония в раствор производится обычно при помощи фтористоводородной кислоты, а фосфат применяется для отделения циркония и гафния от тория [c.352]

    Алюминий-, титан-, литий-, натрий- и кальцийоргани-ческие соединения применяются в промышленности в качестве катализаторов анионной и координационной полимеризации олефинов, алкадиенов, пол) ения алкенов-1 — исходного сырья в синтезе жирных спиртов и в других реакциях [c.944]


Смотреть страницы где упоминается термин Титан от анионов: [c.514]    [c.38]    [c.609]    [c.38]    [c.234]    [c.292]    [c.392]    [c.224]    [c.228]    [c.193]    [c.271]    [c.244]    [c.124]    [c.271]    [c.124]    [c.163]    [c.123]   
Ионообменные разделения в аналитической химии (1966) -- [ c.225 ]




ПОИСК







© 2024 chem21.info Реклама на сайте