Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влияние нуклеофильных веществ

    ВЛИЯНИЕ НУКЛЕОФИЛЬНЫХ ВЕЩЕСТВ [c.170]

    Влияние нуклеофильных веществ [c.171]

    Влияние нуклеофильных веществ 175 [c.175]

    Добавление нуклеофильных веществ не оказывает большого влияния. Отсюда можно заключить, что ионная пара в данном случае не образуется. Так, в присутствии ацетат-ионов при [c.201]

    Катализируемый гидроксильным ионом гидролиз (или омыление) эфиров является одной из наиболее изученных органических реакций. Данные о влиянии структуры на реакционную способность, данные о положении расщепляемой связи, полученные как с помощью меченых соединений, так и в результате структурных исследований, а также данные по изотопному обмену дополняют друг друга и показывают, что механизм этой реакции соответствует нуклеофильному катализу. Нуклеофильный катализ можно определить как реакцию нуклеофильного вещества с субстратом, приводящую к образованию неустойчивого промежуточного продукта, который затем превращается в продукты реакции, регенерируя катализатор [1]. Гидроксильный ион выполняет все перечисленные выше функции за исключением последней, так как он расходуется при достижении конечного равновесия. Поэтому реакция должна быть, строго говоря, названа нуклеофильно-промотируемым гидролизом. Механизм этого процесса [уравнение (32а)] сходен с механизмом, предложенным для гидролиза эфиров, катализируемого ионом гидроксония. Ряд подобных [c.73]


    Механизм мицеллярного катализа сложен, зависит от специфики реагентов и ПАВ и выяснен далеко не в полной мере. Влияние мицелл на химические реакции определяется двумя основными факторами — изменением реакционной способности веществ при переходе их из воды в мицеллярную фазу и эффектом концентрирования реагентов в мицеллах, причем второй фактор во многих случаях является единственным источником мицеллярного катализа. Изменение реакционной способности вещества в мицеллах обусловлено совокупностью электростатических и гидрофобных взаимодействий между молекулами реагента и мицеллами, что приводит к изменению энергий основного и переходного состояний реагентов На роль электростатических взаимодействий указывает, в частности, тот факт, что обычно реакции нуклеофильных анионов с нейтральными молекулами ускоряются катионными мицеллами, замедляются анионными, а мицеллы НПАВ практически не оказывают на них влияния. Во многих случаях мицеллы влияют не только на кинетику, но и на равновесие реакций, что не свойственно истинным катализаторам. [c.86]

    Влияние растворителей также сказывается на ходе реакций нуклеофильного ароматического замещения, которые, как правило, проводят в растворителях. В качестве растворителей может выступать и избыток одного из реагентов. Растворители соль-ватируют растворенные вещества, существенно изменяя их реакционную способность. [c.161]

    В этой главе мы рассмотрим катализ химических реакций в присутствии веществ, характер взаимодействия которых с реагентами не удается определить однозначно, как это делалось выше. По этой причине данную разновидность катализа мы назовем катализом окружением . По существу, в настоящей главе речь идет о катализе солями и растворителями. И те и другие составляют окружение реагентов и могут приводить к существенному увеличению скорости реакции. В отличие от общих кислотно-основных (гл. 4) и нуклеофильно-элект-рофильных (гл. 7) катализаторов соли и растворители в явном виде в выражение для скорости реакции не входят. Тем не менее они влияют на стандартную свободную энергию исходного и (или) переходного состояния и потому могут оказывать значительное воздействие на константу скорости реакции. (Влияние на равновесие мы рассматривать не будем.) В отличие от многих катализаторов, упоминавшихся ранее, соли и растворители обычно не вносят изменений в механизм реакции, однако обусловленные ими эффекты при анализе ускорений химических реакций учитывать совершенно необходимо как с практической, так и с теоретической точки зрения. [c.39]


    Практически любая элементарная реакция сводится к электронному взаимодействию двух сталкивающихся частиц. При этом одна из них может обладать сродством либо к электронам, либо к атомным ядрам и, в соответствии с этим, притягиваться к центрам, богатым или бедным электронами. Существование таких центров в молекуле обусловлено взаимным влиянием атомов и способностью химической связи к поляризации. Такое рассмотрение химических реакций лежит в основе разделения химических веществ на нуклеофильные и электрофильные. [c.21]

    С момента выхода в свет первого Справочника химика накопилось огромное количество новых фундаментальных данных, касающихся теоретических и практических основ получения продуктов промышленности неорганических и органических веществ. Успехи в методах оценки свойств продуктов позволили более полно их охарактеризовать. Так, в области органических производств был достигнут значительный прогресс в исследовании механизма свободнорадикальных реакций в растворе, в изучении механизма электрофильного замещения у насыщенного атома углерода и нуклеофильного замещения в ароматическом ряду. В результате успешного изучения влияния растворителя на скорость реакций диполярные апротонные растворители стали широко применяться в производственной практике. [c.3]

    Нуклеофильное замещение как полярная реакция более или менее сильно подвергается влиянию растворителя. Вообще говоря, в условиях химической реакции ионы могут образовываться только в том случае, если имеется возможность их сольватации. Грубой мерой сольватационных свойств растворителя может служить его диэлектрическая постоянная. Однако она является макроскопической константой, тогда как специфическое взаимодействие между растворителем и растворенным веществом происходит в сфере действия сил межмолекулярного притяжения и отталкивания. [c.161]

    Часто наблюдают уменьшение бимолекулярной константы скорости реакции ароматического нуклеофильного замещения по мере того, как начальная концентрация одного из реагирующих веществ возрастает. Такое влияние на скорость является результатом образования молекулярного комплекса между реагирую- [c.170]

    Реакции присоединения могут протекать по радикальному и ионному механизмам, в зависимости, в первую очередь, от природы реагента, взаимодействующего с двойной связью, полярности растворителя, температуры и т.д. Радикальные реакции инициируются свободными радикалами, ионные протекают под влиянием электро-фильных реагентов (обладающие сродством к электронам) или нуклеофильных реагентов (обладающие сродством к ядру и отдающие свои электроны). Электрофильные реагенты имеют 1) электронный пробел, поэтому ими могут быть а) катионы (карбокатионы) и б) вещества, с незаполненными электронными оболочками (кислоты Льюиса), или 2) реакционный центр с пониженной электронной плотностью. Простейший электрофильный реагент — протон. [c.58]

    Известно большое число органических соединений со смешанными функциями, проявляющих противоположные тенденции развития в процессах превращения. Свойства подобных веществ, например аминоальдегидов и аминокетонов, в значительной мере обусловлены взаимным. влиянием противоположных нуклеофильной (—КНг) аминогруппы и электрофильной ( = С = 0) карбонильной группы. Этим объясняется многообразие их соединений. [c.128]

    Степень и легкость, с которой присоединяется нуклеофильное вещество, зависят от ряда факторов. Факторы, связанные с сами.м нуклеофильным реагентом, можно обобщить понятием нуклеофильности и характеризовать численным значением. Однако такие величины имеют лишь огран1 чекное значение, поскольку в них не учитываются очень существенные влияния со стороны субстрата и среды. [c.170]

    При действии на спирты галогенидов фосфора выделяется ННа1 и образуются эфиры, содержащие электроотрицательные группировки, под влиянием которых уменьшается электронная плотность на атоме углерода и повышается способность вещества к взаимодействию с нуклеофильным реагентом  [c.107]

    На реакции нуклеофильного замещения, подобно любой по.1, р-ной реакции, оказывает влияние растворитель, хотя степень эмдо злпяния может изменяться от реакции к реакции. Вообще гоы и, в процессе химической реакции образование нонов возможно ко в том случае, если оии сольватируются. Для грубой оЦ м ки сольватациониых свойств растворителя можио использовать - к диэлектрическую проницаемость. Однако последняя — макрг I пическая величина, тогда как специфическое взаимодействие М1 к-ду растворителем и растворенным веществом происходит в с- -ре действия сил межмолекулярного притяжения и отталкивания. [c.242]

    Полимеризация 1,3-диенов. Этот процесс, представляющий огромный промышленный интерес, под влиянием ряда реагентов может протекать полностью по типу 1,4-присоединения (под влиянием литийалкилов) или по смешанному 1,2- и 1,4-механизму — под влиянием инициаторов цепных реакций (веществ, генерирующих свободные радикалы, например перекисей, диазоамииосоединоний), а таюке металлического натрия. Металлоорганические инициаторы полимеризации типа ВЫ вызывают анионную полимеризацию, начинающуюся с нуклеофильной атаки алкил-аниона В на диен. Приводим суммарные уравнения анионной 1,4-полимеризации бутадиена [c.294]


    Взаимодействие спиртов с галогеноводородными кислотами представляет собой реакцию замещения, в которой активной частицей является сопряженная кислота спирта R—ОН2- Можно предполагать, что этот процесс будет аналогичен реакциям замещения атомов галогенов в органических галогенпроизводных при действии нитрата серебра и иодид-иона (опыты 16 и 17). Влияние структуры молекулы на реакционную способность органических соединений в этих реакциях совершенно одинаково. Так, первичные спирты не реагируют в заметной степени с соляной кислотой при обычной температуре даже в присутствии хлорида цинка. Это связано, с одной стороны, с тем, что хлорид-ион — слишком плохой нуклеофильный агент для того, чтобы эффективно участвовать В сопряженной реакции замещения, и, с другой стороны, со слишком малой стабильностью первичного карбониевого иона — промежуточного соединения при замещении по карбоний-ионному механизму. Бромистый и иодистый водород, имеющий более активные нуклеофильные анионы, реагирует с первичными спиртами значительно энергичнее. При этом иодистый водород оказывается более сильным нуклеофильным агентом. Именно такое соотношение способности к нуклеофильному замещению следует ожидать для этих веществ в гидроксилсодержащих растворителях. [c.174]

    В настоящее время избестно большое число ароматических и гетероциклических соединений с фторсодержащими заместителями. Выяснена электронная природа этих заместителей, их направляющее действие при электрофильных и нуклеофильных реакциях, влияние на силу кислот и оснований, цвет и физиологическую активность многих классов органических веществ. Особый интерес представляет возможность введения в ароматические соединения электроноакцепторных заместителей, значительно превосходящих по своей силе все известные ранее группировки, не содержащие фтор. Интерес к исследованию этого типа веществ возрастает, тем более, что среди них,уже найдены препараты, нашедшие применение в технике, медицине, сельском хозяйстве, например азоамины для светостойких красителей, гербицид — нитрофор, лекарственный препарат —трифтазин, эффективные фотосенсибилизаторы и др. [c.215]

    Па примере нуклеофильного замещения в активированных ароматических системах Баннет показал вероятность того, что дисперсионные силы имеют большое значение для легкости нуклеофильного замещения. Это становится ясным, если рассмотреть отношения скоростей реакции при воздействии тиофено-лята натрия и метилата натрия. Степень притяжения двух партнеров друг к другу за счет дисперсионных сил пропорциональна произведению величин поляризуемости обоих веществ поэтому тиофенолят, обладающий высокой поляризуемостью, реагирует тем быстрее, чем больше поляризуемость ароматической системы, которая в значительной степени зависит от заместителей. Напротив, метилат представляет собой вещество с у.меренной поляризуемостью, поэтому произведение К] 2 медленнее возрастает с увеличением поляризуемости ароматического партнера. Влияние обоих факторов — полярности и поляризуемости — ясно из данных табл. 65. [c.360]

    В действительности же, ориентирующее влияние заместителя зависит отнюдь не только от его принадлежности к группе электроподоноров или электроноакценторов, но и от того, участвует ли в реакции с ароматическим веществом электрофил или нуклеофил (подробнее см. [3]). Группы, которые направляют электрофильное замещение водорода в мета-поло-жение (например, нитрогруппа), ориентируют нуклеофильное замещение в орто- и пара-положение, и наоборот. Более того, относительные выходы изомеров при одном и том же заместителе могут значительно изменяться, даже если пользоваться однотипными реагентами. Например, в случае присутствия [c.323]

    Изменение химической природы реагента и свойств среды дает также возможность выявить разные стороны взаимного влияния атомов в молекуле одного и того же вещества. Так, при реакциях электрофильного замещения водорода в ароматических соединениях обычно превалирует эффект сопряжения, а при реакциях протофильного замещения водорода на первый план выступает эффект индуктивного сдвига электронов. Если заменить электрофильный реагент на нуклеофильный, то происходит обращение правил ориентации замещения водорода в ароматическом кольце мало того, они изменяются даже в том случае, когда резко повышается химическая активность pea гснтов данного типа. [c.370]

    Реакция гладко протекает в растворе хлороформа при температуре от —15° С до комнатной. Диеновые нитродибромиды, выделяемые с хорошим выходом, представляют собой тяжелые жидкости с резким запахом 1-нитр0-3,4-дибромпентадиен-1,3—кристаллическое вещество. 1 Нитроалкен-1-ины-3 легко присоединяют этилмеркаптан как в условиях нуклеофильного присоединения (в присутствии метилата натрия при — 5° С), так и в условиях радикальной реакции (под влиянием перекиси т-рет-бутила при нагревании в запаянных ампулах). Присоединение в том и другом случаях происходит по нитровинильной группе -с образованием [c.319]

    Поведение растворов сильных и слабых электролитов в жидком сернистом ангидриде было предметом обширных исследований с начала XX века [1]. Многие из них уже рассматривались в обзорах, опубликованных сравнительно недавно [2—4.1. Наиболее полным обзором химических процессов в этом растворителе является обзор Яндера [2]. В настоящем обзоре рассматриваются исключительно те работы последнего десятилетия, в которых измерение электропроводности в растворах ЗОг и теоретическое рассмотрение проводили с целью изучения зависимости равновесий ассоциации ионов от ионного строения ионофорных (имеющих ионное строение в кристалле) [5] веществ и — в более сложном случае — ионогенных (имеющих ковалентное строение в кристаллах) [5] веществ. Здесь коротко затрагиваются также несколько родственных вопросов, например влияние образования ионных пар на нуклеофильную реакционную способность аниона. [c.69]

    НЫХ олефинов, является способность к присоединению нуклеофильных реагентов — аминов, спиртов и тиолов. Вместе с тем тетрафторэтилен сравнительно легко полимеризуется под влиянием инициаторов радикального типа, а также вступает в реакции с электрофильны-ми веществами — галоидами, тетраокисью азота и фторга-логенидами, причем эти реакции протекают по радикальному механизму. [c.110]

    Можно обосновать и влияние заместителей на нуклеофиль-ность или электрофильность реагирующих веществ. Если, например, сравнить энергии ионизации (как меру взмо) различных замещенных бензолов, то можно заметить падение нуклеофильности в ряду диметиламинобензол (—7,51 эВ), бензол (—9,40эВ) нитробензол (—10,26 эВ). Качественно тот же самый ряд получают при рассмотрении мезомерного влияния замести- телей на молекулу бензола (разд. В,5), а также из величины и знака констант заместителей в уравнении Гаммета (табл. 25). [c.221]

    Очень интересно также и то, что при таких реакциях нитрозо-ацетанилида с СеНзН всегда имело место пара-замещение, даже в тех случаях, когда Н представляло собою столь различные группы, как СНз, С1, N 2 и СНО [38]. Эти, а также ранее представленные факты, касающиеся реакций диазобензол-основания, ясно показывают, что, когда в качестве реагирующих веществ в реакции частвуют свободные радикалы, мы можем ожидать, что вступающий заместитель будет подвергаться иному ориентирующему влиянию, чем при электрофильном или нуклеофильном замещении ионами [c.301]

    Для химика-органика подбор соответствующих растворителей для каждого органического синтеза является делом большой практической важности. Обычно такие проблемы химик-органик решает, обращаясь к помощи своего эмпирического опыта и чутья . Мы же обязаны ознакомиться с современными физико-химическими исследованиями и выяснить, в какой степени эти исследования разрешили вопрос о влиянии растворителей на положение равновесия, скорость и направление реакций. Кстати, нам было бы интересно выяснить, если это возможно, как может сказаться природа растворителя на индукционных и таутомерных эффектах и на электрофильной и нуклеофильной тенденциях реагирующих веществ. Наконец, так как в известной степени мы опирались на константы ионизации в качестве меры относительной электроотрицательностн, то необходимо вновь рассмотреть справедливость этой зависимости в свете исследований, проведенных с неводными растворами. [c.348]

    Эта книга адресована прежде всего студенту-органику. В ней сделана попытка возможно доступнее изложить современную теорию органических реакций. При этом автор не стремился подробно рассмотреть все множество органических реакций этот материал — неотъемлемая часть современных курсов органической химии, знание которых является предпосылкой для работы с данной книгой. Автор считает целесообразным главное внимание уделить влияниям и взаимодействиям, которые обусловливают существование определенных механизмов, всесторонне обсудить роль субстрата, реагента, растворителя. Именно понимание упомянутых влияний и взаимодействий позволяет правильно выбрать условия реакции и разумно планировать эксперимент. Для учащегося важно также, чтобы теория позволяла обобщить материал, представить его в единой удобообозримой форме. По этой причине в данной книге совместно представлены реакции карбонильных соединений (альдегиды, кетоны, карбоновые кислоты и их производные) и таких веществ, как азометины, нитрилы, нитро- и нитро-зосоединения. С опорой на принцип винилогии в это рассмотрение включено также присоединение по Михаэлю и нуклеофильное замещение в активированных ароматических соединениях. С общей точки зрения обсуждены также электрофильное присоединение к олефинам и электрофильное замещение в ароматическом ядре. [c.6]

    Следует назвать здесь и формально, относящиеся к первой группе трифторуксусную кислоту [80] и фторсульфоновую кислоту РЗОзН ( сверхкислота , магическая кислота [81]) из-за своей высокой кислотности они очень энергично вмешиваются в процесс, изображенный схемой (4.13). Способность стабилизовать катионы (нуклеофильное влияние) у этих веществ очень мала, поскольку основность кислородных атомов подавлена сильным —/-эффектом атома фтрра. [c.172]

    Переходное состояние подобных реакций сходно со строением реагирующих веществ, и стереохимическое направление определяется направлением подхода нуклеофильного партнера (steri approa hment ontrol). Правильные предсказания затрудняются тем обстоятельством, что не всегда удается без произвола установить соотношение эффективных объемов стоящих в а-положении заместителей, что не позволяет надежно определить наиболее вероятную конформацию. Отклонения от правила наблюдаются, кроме того, если заместители проявляют значительные электронные влияния (см. ниже). [c.380]

    Влияние на поляризацию сложноэфирной группировки молекулы путем введения электрофильных и нуклеофильных радикалов в кислотную и спиртовую части молекулы хо.линолитиков (холиномиметиков) может оказаться таким же плодотворным при изыскании веществ, действующих на рецептор, как и при изыскании ФОС антихолинэстеразного действия. [c.422]


Смотреть страницы где упоминается термин Влияние нуклеофильных веществ: [c.179]    [c.108]    [c.160]    [c.138]    [c.138]    [c.34]    [c.241]    [c.174]    [c.325]    [c.134]    [c.421]    [c.533]    [c.92]    [c.533]    [c.112]    [c.26]   
Смотреть главы в:

Введение в электронную теорию органических реакций -> Влияние нуклеофильных веществ




ПОИСК





Смотрите так же термины и статьи:

Влияние строения исходных веществ на механизм нуклеофильного замещения



© 2025 chem21.info Реклама на сайте