Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Томсона принцип

    Соотношение (58) известно как принцип или правило Томсона. Принцип Томсона был сформулирован еще до разработки термодинамики электрохимических систе.м и служил основой для расчетов э.д.с. по значениям тепловых эффектов (или, наоборот, по известным э.д.с. — теплот реакций). Правило Томсона, однако, весьма приближенно и оправдывается, как это следует из уравне- [c.21]


    Докажем теперь, что в случае нарушения принципа Томсона принцип Клаузиуса также нарушается. При нарушении принципа Томсона возможно, как указывалось выше, получить положительное количество тепла ( 2 (< 2 > 0) от теплового резервуара i 2 и полностью преобразовать это тепло в работу (без других изменений системы). Объединим этот процесс с циклом Карно, нри котором от холодного резервуара берется количество тепла [c.91]

    Формулировки второго закона термодинамики. Второй закон (начало, принцип) термодинамики, как и первый, был установлен как постулат, обоснованный опытным материалом, накопленным человечеством доказательством второго закона служит то, что свойства термодинамических систем не находятся в противоречии ни с ним самим, ни с каким-либо из следствий, строго вытекающих из него. Второй закон был изложен в работах Клаузиуса (1850) и В. Томсона (Кельвин) (1851). Можно дать разные формулировки второго закона, ио существу равноценные. [c.212]

    Постулат В. Томсона определяет, что циклически действующая тепловая машина будет являться источником работы, если рабочее тело участвует в круговом процессе между нагревателем и холодильником, которые находятся при разных температурах. Рабочее тело тепловой машины принимает от нагревателя теплоту в количестве при температуре T и передает холодильнику теплоту в количестве Са при температуре Т2 (Т2<.Т ). Разность теплот С]— 2 определяет количество теплоты, пошедшее на производство работы, Численные значения КПД могут быть определены по формулам, приведенным выше. Объединяя формулы (4.4) и (4.5), можно для обратимого процесса из них получить соотношение, определяющее принцип существования энтропии. Однако вначале для выявления новой функции рассмотрим две теоремы Карно С. и Клаузиуса Р. [c.88]

    Эмпирическое обоснование первого закона термодинамики дается опытами Джоуля (1840—1845), который показал, что всегда требуется одна и та же механическая работа, чтобы нагреть определенное количество воды на 1°. Этот результат представляет собой так называемый принцип эквивалентности, который Томсон сформулировал следующим образом если из термических источников получается или в результате термических эффектов уничтожается одно и то же количество механической работы, то исчезает или возникает одно и то же количество теплоты. [c.17]

    Формулировка, использованная Томсоном и позднее Планком, гласит невозможно построить периодически действующую машину, которая бы только охлаждала тепловой резервуар и производила механическую работу (принцип невозможности вечного двигателя второго рода). [c.19]


    Рассмотрим сначала соотношение между принципами Каратеодори и Клаузиуса (соответственно Томсона) ( 4). Сразу видно, что принцип Каратеодори вытекает из принципа Клаузиуса. Обратное несправедливо, так как принцип Каратеодори ограничивается утверждением, что существуют вообще нереализуемые адиабатические процессы, в то время как принцип Клаузиуса указывает, какие процессы адиабатически нереализуемы. [c.46]

    Примерами таких процессов являются возникновение теплоты трения за счет механической работы или возникновение джоулева тепла за счет электрического тока. Очевидно, что в обоих случаях обратные процессы невозможны. Они противоречили бы принципам Томсона и Клаузиуса ( 4). Фактически приведенный эмпирический закон пред- [c.63]

    Анализируя поведение различных термодинамических систем при низких температурах вблизи абсолютного нуля. В. Нернст в 1906 г. сформулировал свою знаменитую тепловую теорему, которая и стала основой третьего начала термодинамики. В форме, первоначально предложенной Нернстом, теорема применялась только к конденсированным системам. Однако, несмотря на имеющиеся отступления (СО, стекла, аморфные твердые тела), можно считать, что теорема Нернста является законом, имеющим общее значение, а не только частное применение к некоторым системам или к отдельным химическим реакциям. К выводу тепловой теоремы Нернст пришел в связи с обсуждением вопроса о химическом сродстве при низких температурах. Как уже отмечалось (гл. VII), Томсоном и Бертло был установлен принцип, согласно которому возможность протекания реакции между конденсированными фазами определяется тепловым эффектом. Поскольку истинной мерой химического сродства в зависимости от условия протекания химической реакции является убыль либо свободной энергии Гиббса, либо свободной энергии Гельмгольца, то для изохорно-изо- [c.183]

    Поэтому Нернст предположил, что принцип Томсона и Бертло является граничным законом для низких температур, так что при температуре абсолютного нуля [c.184]

    В итоге получается, что, нарушив принцип Каратеодори, мы превратили в циклическом процессе теплоту, получаемую от термостата, в эквивалентное количество работы, что является нарушением второго закона термодинамики (противоречит постулату Томсона). [c.64]

    Томсон постулировал, что принцип максимума энтропии применим и для открытых систем, но лишь для виртуальных обратимых изменений. Рассмотрим систему, в которой имеется градиент температур и возникает постоянный градиент концентрации. Можно, по Томсону, считать, что виртуальное перемещение вещества всегда приводит к уменьшению энтропии системы, игнорируя параллельно протекающий необратимый процесс переноса тепла от более высокой температуры к более низкой. [c.414]

    При низких температурах или ири реакциях, сопровождающихся малым изменением энтропии (реакции между конденсированными фазами или с небольшим изменением числа молей газов), вклад произведения TAS в величину Д(7 невелик. Поэтому изменения энергии Гиббса и энтальпии реакции близки по величине и одинаковы по знаку, т, е. ДС= ДЯ. В таких случаях принцип Бертло — Томсена позволяет сделать качественно правильные выводы. Этим объясняется то, что несмотря на его ошибочность указанным принципом в течение многих лет руководствовались в химии и в металлургии. При высоких температурах (и больших AS) разница между ДО и АН может быть настолько большой, что знаки этих величин будут противоположными, и в этом случае принцип Бертло — Томсона приведет к ошибочным выводам. [c.69]

Рис. 27. Классические рисунки, поясняющие принцип Томсона — Рис. 27. Классические рисунки, поясняющие принцип Томсона —
    Гнббса-Дюгема уравнение 1/1064.127, 1014,1065 3/886 4/366, 373 5/500 Гиббса-Коновалова закон 2/899 Гиббса-Кюри условие 2/318 Гиббса-Кюри-Вульфа принцип. 1/1172, 1173 Гиббса-Плато канал 4/1206, 1207 Гиббса-Розебома треугольник 3/188 ГНббса-Смита условие 4/1206 Гиббса-Томсона эффект 2/319 Гиббса-Фольмера теория 2/317, 318 Гиббсит 1/211, 213 [c.578]

    Началом масс-спектрометрии как научного направления и как инструментального метода изучения органических веществ являются работы В. Вина (1898), который установил, что положительно заряженные частицы, перемещающиеся в электрическом и магнитном полях, отклоняются от прямолинейного направления, причем величина отклонения зависит от массы и заряда частицы. Этот принцип разделения ионов использовал Дж. Томсон (1912) для доказательства существования двух изотопов неона. Метод масс-спектрометрии основан на ионизации молекул, разделении ионов в газовой фазе, которое происходит в зависимости от соотношения их массы и заряда, и регистрации разделенных ионов. По физическому принципу метод масс-спектрометрии отличается от оптических методов спектрометрии (ИК-, УФ-, КР-) и ЯМР. При изучении вещества этими методами их молекулы сохраняются. Поглощая энергию электромагнитного излучения того или иного рода, молекулы переходят на более высокий энергетический уровень, в колеба-тельно-возбужденное, электронно-возбужденное или спиновое [c.3]


    В зтих работах Р. Клаузиуса и У. Томсона было сформулировано первое начало термодинамики, т. е. принцип эквивалентности теплоты и работы, а также и второе начало термодинамики — о невозможности перехода само собой теплоты от холодного к нагретому телу. При качественном анализе процесса перехода теплоты в работу Р. Клаузиус ввел особую функцию — меру эквивалентности (меру рассеяния энергии), получившую в 1865 г. название энтропия . Позднее были введены и другие термодинамические функции. [c.163]

    Принцип измерения коэффициента Томсона заключается в следующем  [c.605]

    В последние годы в качестве масс-спектрометров был использован ряд приборов, основанных на несколько различных принципах. В классическом масс-спектрометре, основанном на работах Томсона [45], Астона [4] и других исследователей [8, 19, 35, 44], используется магнитный анализатор. Более новый прибор [51, 52], в котором для разделения масс используется дрейфовая трубка, называется масс-спектрометром с разделением по времени пролета. Существует также много масс-спектрометров специального назначения [5, 6, 31, 51]. [c.209]

    Предложенный в 1845 г. Р. В. Томсоном принцип использования сжатого воздуха, заключенного в эластичную оболочку, для ам-мортизации толчков и ударов при дв ижении используется и в настоящее время. [c.9]

    В этой главе детально рассмотрена проблема получения информации о межмолекулярных силах из экспериментальных данных по вириальным коэффициентам (и коэффициенту Джоуля— Томсона). На основании самых общих наблюдений в отношении межмолекулярных сил можно сделать несколько качественных замечаний. Во-первых, тот факт, что газы конденсируются в жидкости, позволяет сделать предположение о существовании сил притяжения между молекулами на больших расстояниях. Во-вторых, очень сильное сопротивление жидкостей сжатию свидетельствует о том, что на небольших расстояниях действуют силы отталкивания, резко изменяющиеся с расстоянием. При условии парной аддитивности сил можно ожидать, что потенциальная энергия взаимодействия между двумя молекулами изменяется таким образом, как показано на фиг. 4.1. [Эта потенциальная энергия может зависеть также от ориентации, если молекулы не являются сферически симметричными, а в некоторых случаях иметь отклонения (на фиг. 4.1 не показаны), которые несущественны для общего рассмотрения.] Квантовая механика дает обширную информацию о форме кривой потенциальной энергии, однако точные расчеты на основании этой информации не всегда возможны. Не рассматривая эту дополнительную информацию, поставим перед собой следующий вопрос возможно ли в принципе однозначное определение межмолекулярной потенциальной энергии, если известна зависимость второго вириального коэффициента от температуры Этот вопрос был рассмотрен Келлером и Зумино [1] (см. также работу Фриша и Хелфанда [2]), которые нашли, что только положительная ветвь и г) определяется однозначно [2а], а отрицательная часть (потенциальная яма) может быть известна лишь частично, т. е. определяется ширина ямы как функция ее глубины. Таким образом, потенциальная яма на фиг. 4.1 может быть произвольно смещена вдоль оси г без изменения В Т), если ее ширина не изменяется при смещении. Поэтому для температур, при которых положительная ветвь ы(г) не дает большого вклада в В Т), значения В Т) будут определяться почти одинаково хорошо [c.168]

    Использование эффекта Джоуля — Томсона позволяет существенно понизить температуру газа, если перепад давления при дросселировании велпк, например давление газа снижается от 20-10 н/м (200 агп) до 9,81-10 н/м (1 ат). Значительно большее понижение температуры газа достигается при его расширении в детандере с совершением внешней работы. Однако для получения очень низких температур, соответствующих началу сжижения газа, обычно не применяют циклов, основанных только на принципе расширения газа в детандере. Это объясняется тем, что когда реальный газ находится при температурах, близких к температуре сжижения, его поведение сильно отклоняется от законов идеальных газов. Объем газа резко уменьшается, например, при —140 С он составляет лишь 1/4 объема, который занимад бы идеальный газ, и способность газа к расширению резко падает. Кроме того, в условиях начала сжижения [c.671]

    Возникновение и развитие масс-спектрометрического метода. Основой для создания и развития масс-спектрометрического метода анализа послужили работы по исследованию электрического разряда в газах при низком давлении. Принципы анализа положительных пучков, состоящих из ионов, возникающих при бомбардировке молекул вещества электронами, были изложены в 1910 г. Дж. Дж. Томсоном [1]. В его методе парабол положительные ионы, двигаясь в узкой трубке, подвергались действию параллельно расположенных электрического и магнитного полей и, попадая на фотопластинку, образовывали на ней серии параболических кривых. На каждую кривую укладывались частицы, характеризующиеся одинаковым отнощением массы к заряду (т/е), но различной скоростью. При исследовании многоатомных молекул получалось несколько парабол, что указывало на диссоциацию молекул с образованием различных положительно заряженных осколков. Так, молекула O U дает параболы, соответствующие ионам С+, 0+, С1+, С0+, U СС1+ и O I2+. При анализе углеводородов также наблюдались осколки молекул. [c.5]

    Однако из уравнений (V.71) и (VIII. 1) следует, что этот закон не выполняется как общий термодинамический принцип. Тем не менее приближение, выражаемое принципом Томсона и Бертло и уравнениями (VIII.6) и (VIII.7), реализуется даже при комнатной температуре для конденсированных систем, когда сродство реакции не слишком мало. Ричардсом (1903) были проведены обширные измерения по определению сродства для реакций в конденсированных системах. Оказалось, что разность A v—Qv действительно очень мала. [c.184]

    Справедливость принципа Каратеодори для любой системы можно доказать исходя из постулата Томсона. Достаточно доказать,. что если нарушается принцип Каратеодори, то не выполняется постулат Томсона. Рассмотрим два состояния а и Ь) системы в координатах (р, V) (рис. 2.16). Пусть переход системы из состояния а в состояние Ь происходит по изотерме асЬ за счет поглощенной из термостата теплоты Q, причем согласно первому закону термодинамики Q = AU+A, где А — работа, совершенная системой. Если принцип Каратеодори не является справедливым, можно вернуться в состояние а по адиабате Ьс1а. В этом процессе Рад = 0, а так как Сад = —Аи+А где Л —работа в адиабатическом процессе, то Q=A + A. Нарушив принцип Каратеодори, мы превратим теплоту термостата в эквивалентное количество работы в циклическом процессе, что является нарушением второго закона термодинамики (противоречит постулату Томсона). [c.55]

    Температурный коэффициент э. д. с. дЕ1дТ)р = О (линия /) тогда —ДС = Лмакс = —ДЯ, т. е. работа происходит за счет убыли энтальпии, поэтому элемент работает без теплообмена. Процессы, для которых ДЯ = 0 ( = 0) или ДЯ >0 ( -< 0), исключаются. Рассматриваемый случай отвечает правилу Томсона (1847 г.), установленному им на основании закона сохранения энергии. Ясно, что правило Томсона является принципом Вертело в применении к электрохимическим процессам оно так же, как и этот принцип, справедливо не только при Д5 = О, т. е. при дЕ1дТ)р .0, но и при Г->-0. [c.383]

    Под этим термином понимают способность данных веществ вступать в химическое взаимодействие между собой. До развития учения о химическом равновесии в науке длительное время господствовал принцип П. Вертело (1867), согласно которому все самопроизвольные процессы идут в сторону наибольшего выделения тепла. У. Томсон и П. Вертело считали, что чем больше выделяется теплоты при реакции, тем больше сродство между веществами. Такая точка зрения находится в противоречии с фактами существования реакций, сопровождающихся поглощением теплоты (эндотермические). Известно также, что по достижению состояния химического равновесия все реакции могут идти как в прямом, так и в обратном направлении, причем в одном из них они экзотермичны, а в другом эндотермичны. А. Л. Потылицин (1874) в ряде работ доказал, что принцип Вертело справедлив лишь как предельный закон в условиях, когда 7 = 0. Однако, несмотря на отмеченные недостатки, принцип Вертело соблюдается во многих случаях и важен потому, что является первой серьезной попыткой измерить сродство. Он вызвал к жизни много работ, позволивших установить правильный взгляд на химическое сродство. [c.128]

    В 19 в. установлены осн. количеств, закономерности П. я. закон капиллярного давления (П. Лаплас, 1806), постоянство краевого угла смачивания (Т. Юнг, 1804), зависимость давления насыщ. пара жидкости от кривизны пов-сти (У. Томсон, 1870) первые термодинамич. соотношения-ур-ние изотермы адсорбции Гиббса (1878), зависимость поверхностного натяжения от электрич. потенциала (Г. Липман, 1875), сформулирован принцип минимума площади пов-сти жидкости (Ж. Плато, 1843). Среди важнейших П. я.-наличие капиллярных волн на пов-сти жидкости (У. Рэлей, 1890), двухмерное состояние и независимость действия адсорбц. слоев на пов-сти раздела фаз (И. Ленгмюр, 1917), адсорбц. понижение прочности (П. А. Ребиндер, 1923), расклинивающее давление в тонких жидких пленках (Б.В. Дерягин, 1935). [c.591]

    Спектроскопическое изучение трехатомных молекул столь же важно и столь же интересно, как и анализ электростатических данных, которым мы сейчас и займемся. Как и в случае двухатомных молекул, спектры поглощения и испускания доставляют сведения о межатомных расстояниях и частотах колебаний, тогда как данные о диэлектрических свойствах и рефракции являются источником знания молекулярной поляризуемости и значений дипольных моментов. Так как поляризуемость является мерой деформации электронных орбит, она представляет свойство, общее для всех электронных систем и поэтому для всех типов молекул. Данные для трехатомных молекул включены в табл. 14. Существование постоянного электрического диполя как в случае трехатомных, так и двухатомных молекул обусловлено их асимметрией. Хотя и нет необходимости в привлечении новых принципов, следует отметить важное отличие, состоящее в том, что как поляризуемость, так и постоянный дипольный момент, наблюдаемые для трехатомных молекул, являются сложными величинами. Если геометрия молекулы известна, то обычно оказывается возможным, как показал Дж. Дж. Томсон, разложить вектор общего дипольного момента на составляющие для каждой связп. Однако для определепия удельных поляризуемостей, связанных с различными осями молекулы, требуется постановка специальных опытов. Мы ограничимся здесь рассмотрением вопроса об общей поляризуемости и о постоянном динольном моменте. [c.420]

    Дальнейшее развитие техники сжижения газов основано на эффекте Джоуля—Томсона, т. е. на принципе охлаждения газа путем его расширения ниже определенной температуры. На этом же принципе К. Линде (1842—1934) разработал способ сжижения газов (машина Линде). С помощью подобного же устройства Дж. Дьюар (1842—1923) впервые получил жидкий водород (1898). В 1908 г. Г. Камерлинг-Онесс (1853—1926) в Лейдене превратил в жидкое состояние гелий. Широко известный сосуд Дьюара рведен в практику в 1892 г. [c.161]

    Б. Клапейрон развил выводы Н. Карно (1834) и ввел ценный для практики метод графического изображения процесса теплопередачи в двигателе. Р. Клаузиус (1822—1888) провел широкие исследования о превращении теплоты в работу (1850). Он рассмотрел этот процесс не только с точки зрения принципа сохранения энергии, но и с качественной стороны на основе кинетической теории. Вслед за ним профессор из Глазго У. Томсон (Кельвин) (1824—1907) выступил с сообщениями о динамической теории теплоты. У. Томсон ввел шкалу абсолютной температуры (шкала Кельвина). В эти же годы вошло в обращение понятие энергия по предложению У. Томсона и шотландского инженера У. Ранкина (1820—1872). Это понятие более точно и конкретно выражает тепловые, электрические и механические, а [c.162]

    Деление адсорбции на положительную адсорбцию и сорбцию вообще составляет адсорбционный принцип Гиббса-Томсона. Содержание этого приннипа было расширено В. Оствальдом путем рассмотрения возможности всзникнсве-ния положительной адсорбции на границе раздела фаз в связи с существованием энергетического потенциала, уменьшающегося за счет изменений концентрации. Энергетические потенциалы, охватываемые понятием адсорбции, могут различаться по характеру, а именно, они могут быть типа поверхностного натяжения, электрического или химического типов. [c.88]

    В том же 1927 г. Томсон пропустил поток электронов С большой скоростью Чбрвз тонкую мвтэлличсскую фольгу на фотографическую пластинку. И в этом случае на пластинке вместо одного пятна была обнаружена типичная дифракционная картина из колец различной интенсивности, весьма сходная с картинами, получающимися при дифракции рентгеновских лучей на кристаллах (см. стр. 301). Вместе с тем эта картина не была обусловлена рентгеновскими лучами, которые могли бы возникнуть при соударениях электронов с металлом. Это было показано путем наложения магнитного поля, вызвавшего смещение дифракционной картины. Энергия электронов в опыте Томсона точно определялась по ускоряющему потенциалу, так что в соответствии с принципом неопределенности их положения оставались совершенно неопределенными. Это и имело место в действительности любой [c.20]


Смотреть страницы где упоминается термин Томсона принцип: [c.61]    [c.168]    [c.34]    [c.101]    [c.16]    [c.16]    [c.123]    [c.58]   
Теоретическая электрохимия (1965) -- [ c.14 ]

Теоретическая электрохимия Издание 2 (1969) -- [ c.14 , c.16 ]

Теоретическая электрохимия Издание 3 (1975) -- [ c.19 ]




ПОИСК





Смотрите так же термины и статьи:

Бертло—Томсона принцип

Джоуля—Томсона воздуха с частичным использованием каскадного принципа

Томсон

Томсона Кельвина принцип

Томсонит



© 2024 chem21.info Реклама на сайте