Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Этерификация каталитическая

    Получение этиленгликоля из формальдегида организовано в США фирмой Е. I. du Pont de Nemours and o. По этому способу смесь паров формальдегида и воды (объемное соотношение 1 1) абсорбируется водным раствором гликолевой кислоты (мольное соотношение 1 2) с примесью каталитических количеств серной кислоты и затем пропускается через реактор вместе с избытком окиси углерода при 200 "С и 70 МПа (время контакта 5 мин). В результате образуется гликолевая кислота (выход 90—95%), выделяемая перегонкой прн пониженном давлении. После этерификации гликолевой кислоты метиловым спиртом и очистки зфира перегонкой, проводится гидрирование метилового эфира гликолевой кислоты при 200 °С и 3 МПа в присутствии катализатора медь—хромат бария. На стадии восстановления получают этиленгликоль с выходом 90%. Данный метод не получил широкого распространения вследствие многостаднйности и высокой коррозионности среды, но может быть перспективным при снижении стоимости и расщирении производства синтез-газа. [c.274]


    В 1867 г. Г. Дикон разработал получивший всемирную известность хлорный процесс—получение хлора окислением НС1 воздухом над медными соединениями. В 1867 г. А. Гофман получил впервые формальдегид окислением метилового спирта воздухом над платиной. В 1871 г. М. Г. Кучеров открыл замечательную реакцию гидратации ацетилена разбавленной серной кислотой в присутствии ртутных солей, которая лежит в основе многих каталитических превращений ацетилена, его гомологов и производных. В 1875 г. Кл. Винклер разрешил, наконец, проблему каталитического окисления SO, в SO3 воздухом в присутствии платинового катализатора, разработав промышленный способ контактного синтеза серной кислоты. Этот вопрос имеет многолетнюю интересную историю, начиная с работ И. Деберейнера и патента П. Филлипса в 1831 г., рекомендовавшего также платиновый катализатор, по потерпевшего неудачу из-за неумения проводить очистку сернистого газа от контактных ядов. В 1877 г. М. М. Зайцев опубликовал свои исследования по восстановлению различных органических соединений водородом в гетерогенной фазе над платиной или палладием, предвосхитив по существу методику гидрирования, разработанную гораздо позднее. В том же 1877 г. Н. А. Меншуткин начал свои классические исследования по приложению химической кинетики к органическим ссединениям в области изучения скоростей этерификации различных карбоновых кислот спиртами. В 1878 г. А. М. Бутлеров открыл реакцию уплотнения олефинов под действием серной кислоты, что явилось преддверием к синтезу высокомолекулярных соединений и процессов алкили-рования, имеющих сейчас огромное значение. Г. Г. Густавсон провел ряд исследований по каталитическому действию галогенидов алюминия на органические соединения, несколько опередив работы Ш. Фриделя и Дж. Крафтса. [c.15]

    Низшие кислоты находят себе различное применение. Муравьиную кислоту, например, используют при силосовании зеленых кормов. Уксусную и масляную кислоты применяют для этерификации целлюлозы. Пропионовая кислота в виде кальциевой соли является отличным средством для консервирования хлеба. Кислоты s— g предпочитают каталитически восстанавливать в спирты, адипаты и фталаты которых служат превосходными пластификаторами поливинилхлорида. Кар боновые кислоты С —Сд можно с успехом применять в виде натровых солей в пенных огнетушителях кислоты Сд—Сц можно использовать для флотационных целей. Кислоты С12— ie поставляют мыловаренной промышленности. Для получения синтетического пищевого жира используют кислоты Сд—С в, предварительно освобожденные от всех дикарбоновых кислот. Высокомолекулярные кислоты is—Сг1 могут быть применены для производства смазочных масел и мягчителей для кожевенной промышленности (в комбинации с триэтанолами- ном). Кубовые остатки от перегонки превращают после кетонизации и восстановления в смеси углеводородов типа вазелина. Эти немногие примеры ири желании можно умножить, так как патентная литература по этому вопросу чрезвычайно обширна. [c.470]


    ВЛИЯНИЕ НАБУХАНИЯ В РАЗЛИЧНЫХ РЕАГЕНТАХ КАТИОНИТА КУ-2 НА ЕГО КАТАЛИТИЧЕСКУЮ АКТИВНОСТЬ В РЕАКЦИИ ЭТЕРИФИКАЦИИ [c.111]

    Гомогенных каталитических реакций в растворах, ускоряем мых ионами гидроксила и водорода, довольно много. К реакциям этого типа относятся этерификации кислот и спиртов, инверсия сахаров, галоидирование соединений, содержащих карбонильную группу, омыление сложных эфиров и др. [c.286]

Таблица 153. Характеристика исходной фракции бензина каталитического крекинга (н.к.-120°С) и продукта его этерификации Таблица 153. <a href="/info/1461188">Характеристика исходной фракции</a> <a href="/info/189183">бензина каталитического крекинга</a> (н.к.-120°С) и продукта его этерификации
    Производство высших жирных спиртов каталитическим восстановлением эфиров синтетических жирных кислот осуществлено в ряде стран, в том числе в ГДР и в СССР [58]. Основными технологическими стадиями процесса являются этерификация кислот, очистка эфира, восстановление эфиров кислот и ректификация гидрогенизата. [c.93]

    Еще Оствальд заметил, что для этой и аналогичных реак-ций между каталитической активностью системы и ее электропроводностью имеется однозначная связь. Аррениус подтвердил это и, кроме того, обнаружил, что во-первых, при добавлении к катализирующей реакцию кислоте ее соли, что согласно классической теории электролитической диссоциации должно умень-шить концентрацию ионов водорода, каталитический эффект не только не уменьшается, но в некоторых случаях даже возрастает (например, при этерификации трихлоруксусной кислоты). З то явление получило название вторичного солевого эффекта. Так как при добавлении к раствору кислоты ее соли увеличивается концентрация анионов и недиссоциированной кислоты, то из наличия солевого эффекта следует, что и недис-социированная кислота, и ее анионы обладают каталитической активностью. [c.287]

    Одним из методов снижения содержания олефинов в бензине является процесс каталитической этерификации. Благодаря ему свойство бензиновых фракций каталитического крекинга заметно улучшается уменьшается содержание олефинов, понижается давление насыщенных паров, увеличивается октановое число и содержание кислорода в бензинах. [c.102]

    Прямое гидрирование монокарбоновых кислот Сю—С . При сравнении технологических схем процессов этерификации (рис. 1.7) и гидрогенизации (рис. 1.8) становится очевидным, что они примерно равнозначны по числу технологических операций и аппаратуры. Вполне естественно, что неоднократно возникал вопрос об упрощении технологической схемы путем непосредственной каталитической гидрогенизации жирных кислот, что позволило бы исключить стадию этерификации. [c.34]

    Для выяснения влияния набухания и снижения СОЕ катионита на его каталитическую активность набухший в различных реагентах катионит использовали как катализатор этерификации диэтиленгликоля с капроновой, энантовой и пеларгоновой кислотами. Условия реакции температура 139°С мольное соотношение глико-ли кислота 1 2, 1 количество катализатора 5% вес на загрузку компонентов. Реакцию проводили в равновесных условиях в запаянных ампулах в термостате. О ходе реакции судили по изменению кислотного числа реакционной смеси. Пример обработки результатов опыта приведен в табл. 3. [c.113]

    Возможности использования газового сырья для производства моторных топлив или его высокооктановых компонентов не исчерпываются рассмотренными выше способами. За рубежом исследования направлены на синтез высокооктановых добавок и спиртов, на непосредственное получение моторных топлив из разнообразных видов газового сырья, в том числе вторичного (в частности, олефинов Сг—С5, получаемых в процессах переработки нефти). Широкое распространение за последние годы получило производство трег-бутилметилового эфира этерификацией изобутена с метанолом. Однако ограниченность ресурсов изобутена, поступающего на производство грет-бутилметилового эфира с установок каталитического крекинга и пиролиза бен- [c.220]

    Гомогенный катализ наиболее распространен в растворах. В связи с большим числом конкретных примеров гомогенно-каталитические реакции этого типа принято делить на кислотно-основные и окислительно-восстановительные с участием комплексных соединений. К кислотноосновному катализу относят процессы изомеризации, гидратации и дегидратации, гидролиза, этерификации, алкилирования, деполяризации. В зависимости от типа основания или кислоты эти реакции условно делят на четыре группы  [c.181]


    Нормальные жирные кислоты с длинной цепью получают из сырья нефтяного происхождения, а именно из твердого парафина окислением воздухом (гл. 4, стр. 74). Такие кислоты можно использовать для производства высших жирных спиртов нормального строения при этом либо каталитически гидрируют сложные эфиры, либо соли тяжелых металлов этих кислот подвергают действию водорода при высоких температуре и давлении [19]. Этерификацией синтетических высших кислот с глицерином, полученным из пропилена (гл. 10, стр. 179), можно изготовить жир полностью искусственного происхождения. В Германии, исходя из синтетических Си—С12-кислот, производили этим способом синтетическое масло. Последнее в некоторых отношениях имеет преимущество перед натуральным маслом, например синтетическое масло рекомендуют в пищу диабетикам [20]. [c.341]

    Этерификация бензинов каталитического и термического крекинга [19, 320, 328, 331] [c.347]

    Технология каталитической этерификации является эффективным методом увеличения содержания кислорода в бензине. Установка этерификации находится после установки каталитического крекинга. Сырьем для этерификации служат легкие бензины каталитического крекинга (углеводороды С4-С7). При температуре реакции 40-80 С, давлении водорода 1,0-2,5 МПа, объемной скорости подачи сырья 1,5-2,0 ч над металлическим катализатором этерификации подвергают третичные олефиновые углеводороды и метанол, которые превращаются при этом в третичные углеводородные эфиры. Выход третичных углеводородных эфиров составляет 70% на сырье, октановое число продуктов увеличивается на 1,5 пункта и содержание кислорода на 1,8% мае., понижается содержание олефинов на 8,6% мае. и давление насыщенных паров на 9,6 КПа. [c.128]

    Как видно, технология каталитической этерификации характеризуется мягкими условиями, сравнительно простой схемой с малыми вложениями, указанная технология внедрена в промышленность. [c.128]

    Реакция (1.1) для спиртов с неразветвленными цепями и числом атомов углерода от 3 до 16 является реакцией первого порядка, причем минимальное значение константы скорости отмечено для цепи Са. Энергия активации составляет 70—80 кДж на моль привитых групп. Реакция этерификации значительно ускоряется в присутствии аммиака и органических аминов. Их каталитическое действие сводится, по-видимому, к акцептированию протонов по схеме [c.17]

    Интенсивно разрабатываются методы этерификации в присутствии амфо-терных каталитических систем, представляющих собой осажденные на носитель гидраты окислов алюминия, титана и олова, соли титана, олова, циркония и карбоновых кислот или органические соединения титана. Наибольшую каталитическую активность обнаруживают тетраалкилтитанаты и тетраалкилцирконаты. Амфотерные катализаторы частично или полностью растворимы в реакционной массе и легко удаляются из нее осаждением, гидролизом, обработкой сорбента ш или простой фильтрацией. Этернфикация в их присутствии протекает при более высокой температуре (160—200 °С) и требует большего избытка спирта (40% и выше), чем при использовании кислотного катализатора. [c.238]

    Фталевый ангидрид получают каталитическим окислением нафталина или ксилола, диметилтерефталат — двухстадийным окислением п-ксилола с этерификацией метиловым спиртом после каждой стадии. Малеиновый ангидрид получают окислением бензола. [c.216]

    Гомогенно-каталитические реакции особенно распространены при проведении процессов в жидкой фазе. К таким процессам относятся ускоряющиеся под действием водородных ионов реакции этерификации и гидролиза сложных эфиров, инверсии сахаров, мутаротации глюкозы, а также катализируемый некоторыми анионами и катионами распад перекиси водорода в водных растворах. Кроме того, гомогенно-каталитическими являются реакции полимеризации олефинов в жидкой фазе под действием серной кислоты, полимеризация олефинов в жидкой и паровой фазах в присутствии трехфторнстого бора или фтористого водорода и многие другие. [c.276]

    Скорость этерификации увеличивается при нагревании и особенно в присутствии минеральных кислот благодаря каталитическому действию ионов водорода. Обычно в качестве катализатора применяют серную кислоту (В. В. Марковников, 1873). [c.182]

    В качестве природных катализаторов для ряда процессов (кре кинг, этерификация, полимеризация, производство серы из серии стых газов и другие) могут быть использованы боксит, кизельгур железная руда, различные глины [200—206]. Природные катализа торы дешевы, технология их производства сравнительно проста Она включает операции размола, формовки гранул, их активацию Применяют различные способы формовки (экструзию, таблетиро ввние, грануляцию на тарельчатом грануляторе), пригодные для получения гранул из порошкообразных материалов, увлажненных связующими. Активация исходного сырья заключается в удалении из него кислых или щелочных включений длительной обработкой растворо м"щелочи йли кислоты при повышенных Температурах. При активации, как правило, увеличивается поверхность контактной массы. Наибольшее применение в промышленном катализе нашли природные глины монтмориллонит, каолинит, бейделлит, бентониты и др. Они представляют собой смеси различных алюмосиликатов и продуктов их изоморфных замещений, а также содержат песок, известняк, окислы железа, слюду, полевые шпаты и другие примеси. Некоторые природные алюмосиликаты, например, каолин, обладают сравнительно высокой каталитической активностью в реакциях кислотно-основного катализа уже в естественном виде, после сушки и прокаливания. Большинство других требует более глубокой предварительной обработки кислотой при соответствующих оптимальных условиях (температура, концентрация кислоты, продолжительность обработки). В активированных глинах возрастает содержание SiOa, а количество КагО, СаО, MgO, AI2O3 уменьшается. Часто для уменьшения потерь алюминия в глинах к активирующему раствору добавляют сол , алю.мниия [46]. [c.168]

    Серная кислота очень часто применяется при реакциях этерификации. Уже небольшая добавка ее действует каталитически введенная в больших количествах она связывает образующуюся воду, что благоприятно влияет на выход эфира. Чаще всего серная кислота применяется в количестве 5—10% от количества взятого в реакцию спирта . [c.353]

    Кислотно-каталитическая этерификация гидропероксидов карбоновыми кислотами — один из перспективных методов синтеза пероксиэфиров, не требующий предварительного превращения органической кислоты в более эффективное ацилирующее соединение — ангидрид или галогенангидрид [48,49]. [c.14]

    Эти результаты хорошо согласуются с аналогичной зависимостью скорости кислотно-каталитической этерификации спиртов карбоновыми кислотами и гидролиза сложных эфиров, что и было использовано для раздельного определения Р. Тафтом величин стерических и индукционных констант заместителей. [c.15]

    Аналогично реакциям кислотно-каталитических процессов этерификации карбоновых кислот спиртами и гидролиза сложных эфиров [52, 53] в реакции синтеза пероксиэфиров протон, присоединяясь к гидроксилу карбоксильной группы, обеспечивает катализ процесса, способствуя отщеплению воды. [c.303]

    Периодические методы осуществления жидкофазных гетерогеннокаталитических реакций используют в промышленности достаточно широко при производстве относительно малотоннажных продуктов фармацевтических.препаратов, душистых веществ и т. п. Аппараты для периодического проведения гетерогенно-каталитических реакций не отличаются от реакторов периодического действия для проведения пекаталитических реакций. Реакторы должны оснащаться устройствами, обеспечивающими хорошее перемешивание реакционной смеси, — мешалками или выносными циркуляционными контурами. Это особенно важно при проведении газо-жидкостных реакций. Если реакция проводится при кипении жидкости, как, например, этерификация с твердыми катализаторами, то перемешивание осуществляется за счет кипения и специальной мешалки не требуется. Естественно, что реакционные аппараты должны быть снабжены устройствами для подвода или отвода тепла к реакционной массе в виде теплообменников или рубашки. Если процесс проводится под давлением, аппараты представляют собой автоклавы, конструкция которых зависит от величины давления. Для высоких давлений особенно удачны бессальниковые автоклавы с экранированным двигателем и принудительной внутренней циркуляцией, обеспечиваемой винтовым насосом, помещенным внутри аппарата. [c.274]

    В — при 100°С. Реакторы из меди с 4% 51 и 1% Мп при этерификации жирных кислот спиртами в присутствии каталитических количеств серной кислоты. [c.273]

    Жиры широко распространены в природе, они являются составной частью растительных и животных организмов. Триглицериды могут быть получены по реакции этерификации, однако в промышленности пх выделяют главным образом из природных веществ. В животных жирах преобладают триглицериды предельных кислот, поэтому эти жиры при обычных условиях являются твердыми веществами (напрнмер, коровье масло, свиное сало). В растительных жирах преобладают триглицериды непредельных кислот, эти жиры являются жидкостями (подсолнечное масло, оливковое масло). Такие жиры называются маслами. В промышленности жидкие растительные жиры часто перерабатывают в твердые жнры, ио свойствам напоминающие животные. Для этого растительные жиры подвергают каталитическому гидрированию, например  [c.420]

    Этерификация—процесс замещения иона водорода в органической кислоте алкильной или арильной группой. Водородный ион действует каталитически на реакцию. Применяются сильные кислоты или соли сильных кислот и слабых оснований. Хлористый цинк усиливает каталитическое действие кислот. Используются и другие катализаторы фториды бора и кремния хлориды алкминия, трехвалентного железа и магния металлы в тонко- [c.328]

    Этерификация дифенилолпропана обычно приводит к образова нию диэфира. Чтобы получить моноэфир, т. е. соединение, этерифи-цированное лишь по одному из фенольных гидроксилов, рекомен дуется проводить селективный алкоголиз низшими спиртам1 (предпочтительно метанолом) в среде инертного растворителя (то луол, ксилол, анизол) в присутствии каталитических количест алкоголятов щелочных металлов. Реакция проводится в безводно среде во избежание гидролиза образующегося моноэфира. Посл< удаления солей, отгонки (в вакууме) растворителя и других лету чих компонентов моноэфир отделяют от диэфира и остатка дифени лолпропана хроматографическим методом на окиси алюминия Моноацетат дифенилолпропана, перекристаллизованный из смес перхлорэтилена и петролейного эфира, имеет т. пл. 100—102 °С. [c.40]

    В настоящее время основным сырьем для производства высших жирных спиртов методом каталитической гидрогенизации служат метиловые и бутиловые эфиры кислот С,— is- Их получают этерификацией соответствующих фракций синтетических жирных кислот (продуктов окисления парафина) или переэтери-фикацией природных жиров (триглицеридов). Сами же природные жиры применяются как сырье для гидрогенизации в относительно небольших масштабах. Переработка свободных жирных кислот, начавшаяся в последние годы, имеет тенденцию к расширению. В табл. 1.8 приведены характеристики и составы кислот, получаемых из различных видов сырья, используемого в промышленных процессах гидрогенизации. Жирные кислоты природных жиров представлены насыщенными и ненасыщенными кислотами с прямой цепью, содержащими четное число углеродных атомов в молекуле. Состав фракций синтетических жирных кислот более сложен. В них присутствуют насыщенные монокарбоновые кислоты с четным и нечетным числом углеродных атомов-как с нормальной, так и с разветвленной цепью, а также дикарбоновые, ненасыщенные и нафтеновые кислоты, кетокислоты и оксикислоты. По другим данным, в промышленных фракциях кислот С]о— ia содержится [в % (масс.)] кислот с разветвленной цепью — 30—35 днкарбоновых кислот— 1,5—4 окснкислот и лактонов— 1—2 неомы-ляемых веществ — до 3. [c.28]

    Неудовлетворительные результаты этерификации ди-о-замещенных кислот нельзя приписать нестойкости продуктов реакции, так как эфиры мезитиленкарбоновой, 2,6-дибромбензойной и других подобных кислот могут быть получены действием иодистого метила на серебряные соли кислот, реакцией с диазометаном или взаимодействием хлорангидрида кислоты со спиртом, и они очень устойчивы к кислотному и щелочному гидролизу. Таким образом, о-заместители блокируют гидролиз эфиров так же, как они подавляют каталитическую этерификацию. В. Мейер ввел термин пространственное затруднение для характеристики блокирующего действия и высказал предположение, что блокирование данной группировкой этерификации или гидролиза связано с ее относительным размером, о котором можно судить по атомным весам. Так, фтор в орто-положении создает меньшее пространственное затруднение, чем хлор или бром и, следовательно, химическая природа заместителя не является определяющим фактором. Группы, ориентирующие как в орто и пара-, так и в мета-положение, подавляют этерификацию, если они находятся рядом с карбоксильной группой. Устойчивость в отношении этерификации, отмеченная у мезитиленкарбоновой кислоты 2,4,6-(СНз)зСбН2СООН, не наблюдается при удалении карбоксильной группы от ядра. Так, например, мезитиленуксусная кислота [c.365]

    В последние годы появился ряд новых процессов для улучшения октановых и экологических характеристик автобензинов, таких как этерификация метанолом непосредственно бензиновых фракций, содержащих олефиновые углеводороды (бензины каталитического и термического крекинга) с получением диалкиловых эфиров, алкилирование бензолсо-держаших фракций, гидрирование бензолсодержащих фракций, олигомеризация олефинсодержащих газов [19, 319, 320]. [c.341]

    Энергия активации незначительно зависит от присутствия катализатора (особенно это характерно для кислот с большим молекулярным весом). Для этерификации ДЭГ индивидуальными кислотами от Са до Сэ энергия активации изменяется от 3,27 до 14,86 ккал/моАЬ и для реакции этих же кислот с ТЭГ от 6,23 до 14,82 ккал1моль. Небольшие изменения энергии активации образования эфиров индивидуальных кислот, например, капроновой и ДЭГ (Е = 10,55 ккалЫоль без катализатора и Е = 8,90 ккалЫоль в присутствии КУ-2), можно объяснить тем, что в отсутствие катализатора протекает каталитическая реакция с участием водородных ионов, образовавшихся за счет диссоциации карбоксильных групп. В присутствии катализатора реакция протекает значительно бысрее за счет повышения концентрации водородных ионов. Более низкие значения энергий активации образования эфиров ТЭГ и высокомолекулярных кислот по сравнению с ДЭГ, видимо, можно объяснить влиянием большей основности триэтиленгликоля. [c.109]

    Целью данной работы является исследование влияния предварительного набухания катионита КУ-2 х 8 в Н-форме (СОЕ 4,4 мг-экв1г) в гликолях и индивидуальных монокарбоновых кислотах на его каталитическую активность в реакции этерификации. [c.111]

    Влияние набухания в различных реагентах катионита КУ-2 на его каталитическую активность в реакции этерификации. Л. Б. Куковицкая и др. [c.187]

    В общем случае это достигается этерификацией карбоксильной группы, подлежащей защите. Для получения метилового или этилового эфира обрабатывают аминокислоту метанолом или этанолом, насыщенным НС1 (этерификация по Фищеру). Однако обычно предпочитают эфиры, гидролиз которых легко провести в мягких условиях. Хотя эфиры омыляются основаниями гораздо легче, чем пептиды (поскольку алкоксиды — лучщие уходящие группы), используемые для этого щелочные условия нельзя применять для деблокирования полипептидов. Использование бензи-ловых эфиров позволяет удалять защитные группы при нейтральных условиях с помощью каталитического гидрирования. Бензи-ловые эфиры синтезируют из кислоты и бензилового спирта в присутствии кислоты или тиоиилхлорида (который переводит спирт в сульфохлорид, и уже последний замещается кислотой), [c.77]

    Этерификация спиртов, механизм которой был улсе рассмотрен на стр. 97, может быть осуществлена со всеми неорганическими и органическими кислотами или их производными (галоидангидридами, ангидридами и т. п.). С получающимися при этом весьма важными продуктами, сложными эфирами, мы подробно ознакомимся в другой главе. Здесь мы приведем лишь одно из общих свойств эфиров, заключающееся в том, что при нагревании с другими спиртами или другими сложными эфирами они, как показали Клайзен, Пурди, Бертони, Халлер, Анри и др., вступают в реакцию обмена, причем спиртовые остатки более или менее полно меняются местами. Эта реакция носит название переэтерификации и каталитически ускоряется в присутствии небольших количеств кислот или щелочей  [c.116]

    Возможно, это обусловлено тем, что алкильные группы, занимающие большое пространство по соседству с карбоксильной группой, мешают образованию промежуточного ком]ялекса, получающегося в результате ионного присоединения. Еще более отчетливо это видно на примерах подавления каталитической этерификации в ряду производных бензойной кислоты, содержащих заместители в обоих орто-положе-ниях. Это явление было открыто и тщательно исследовано В. Мейеролт (1894), но отдельные случаи такого блокирующего действия были отмечены еще раньше Гофманом (1872), наблюдавшим, что некоторые производные диалкиланилинов, замещенные в орто-положениях к функциональной группе, очень стойко выдерживают действие галоидных алкилов. В. Мейер исследовал способность ароматических кислот образовывать эфиры, проводя этерификацию как при кипячении в течение 3—5 ч раствора кислоты в метаноле, содержавшем 3% хлористого водорода (метод Фишера), так и насыщением хлористым водородом раствора кислоты в метаноле на холоду, причем раствор затем оставляли стоять в течение ночи. Он установил, что в случае бензойной кис- [c.364]

    Отщепление воды происходит при нагревании этиленциангидрина с фосфорным ангидридом однако при этом наблюдается сильная полимеризация акрилонитрила, и выходы не превышают 40% даже при добавлении песка в качестве разбавителя. Поэтому был разработан ряд различных методов дегидратации как этиленциангидрина, так и ацетальдегидциангидрина путем предварительной этерификации циангидрина (уксусным ангидридом, -толуолсульфохлоридом), с последующим термическим или каталитическим отщеплением кислоты [c.54]


Смотреть страницы где упоминается термин Этерификация каталитическая: [c.270]    [c.133]    [c.316]    [c.348]    [c.132]   
Ионообменная технология (1959) -- [ c.278 ]

Ионообменная технология (1959) -- [ c.278 ]




ПОИСК





Смотрите так же термины и статьи:

Альфоль-процесса каталитической этерификации

Каталитическая реакция этерификации

Этерификация

Этерификация бензинов каталитического и термического крекинга



© 2025 chem21.info Реклама на сайте