Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алюминий химическая стойкость

    Монокристаллические материалы составляют основу современной полупроводниковой и вычислительной техники, оптических квантовых генераторов, методов голографии. Искусственные монокристаллы получают различными способами из расплавов, рас-,1 . парообразной или твердой фазы. В первом твердотельном х /ооре, построенном в 1960 г., в качестве рабочего элемента использован монокристалл рубина. Рубин — это кристалл корунда (а-АЬОз), содержащий примеси ионов хрома, Сг+ . Присутствие ионов хрома придает кристаллам корунда красную окраску. В оптических квантовых генераторах (ОКГ) чаще всего применяют бледно-розовый рубин с содержанием хрома около 0,05%. При повышении количества хрома окраска становится уже ярко-красной, а в дальнейшем переходит в зеленую. Кристаллы рубина по своим физико-химическим свойствам в определенной степени уникальны и отвечают всем требованиям, предъявляемым к материалам для ОКГ. Они обладают высокой теплопроводностью, что позволяет избежать их саморазогрева во время работы, имеют высокую оптическую и механическую однородность, исключающую паразитное поглощение и рассеяние энергии, обладают высокой термической, механической и химической стойкостью. Монокристалл рубина для ОКГ должен быть длиной от 50 до 300 мм и диаметром 5—25 мм. Кристаллы такого размера получают синтетическим путем. Одним из наиболее распространенных методов синтеза монокристаллов рубина остается способ, предложенный в 1891 г. Вернейлем. Ультрадисперсный порошкообразный оксид алюминия, легированный оксидом хрома (1П), попадает в пламя кислородно-водородной горелки, где температура достигает 2000 °С, плавится и опускаете) на расплавленную верхнюю часть [c.158]


    Основное содержание справочника составляют таблицы коррозионной стойкости. В первой графе таблиц приводится наименование материала, процентный состав его (по массе) и марка отечественного материала, близкого к нему по составу (указывается в скобках). Если материал выпускается промышленностью, то указывается только его марка, а состав определяется соответствующими ГОСТами. Условия предварительной термической или механической обработки материалов, если они известны, указываются в примечании или рядом с маркой материала. Материалы располагаются в следующем порядке. Вначале идут металлические материалы, которые начинаются с железа и железных сплавов как наиболее широко применяющиеся в практике. Затем следуют в алфавитном порядке наиболее распространенные металлы и сплавы алюминий и его сплавы, магний и его сплавы, медь и ее сплавы, никель и никелевые сплавы, титан и титановые сплавы. После этого в алфавитном порядке размещаются другие металлы и их сплавы. В последней части таблиц приводится химическая стойкость неметаллических материалов (по алфавиту). Скорость коррозии металлов и сплавов характеризуется потерей массы ( , г/м .ч) или глубинным показателем коррозии (/г , мм/год). Длительность коррозионных испытаний приводится в примечаниях или в отдельном столбце таблицы. Продолжительность испытания оказывает влияние на скорость коррозии (в частности, на среднюю скорость коррозии). Как правило, при более длительных испытаниях средняя скорость коррозии становится меньше. Большое влияние на скорость коррозии могут оказать перемешивание среды и примеси. В таблицах, по возможности, отмечены эти особенности. [c.4]

    Сплавы на основе алюминия. Силумин — сплавы алюминия (85—90%) с кремнием (15—10%). Для силуминов характерны значительная прочность и высокое механическое сопротивление, а также большая, чем у чистого алюминия, химическая стойкость. [c.321]

    Способность к пассивации делает алюминий весьма стойким во многих нейтральных и слабокислых растворах, в окислительных средах и кислотах. Хлориды и другие галогены способны разрушать защитную пленку, поэтому в горячих растворах хлоридов, в щелевых зазорах алюминий и его сплавы могут подвергаться местной язвенной и щелевой коррозии, а также коррозионному растрескиванию. Коррозионная стойкость алюминия понижается в контакте с медью, железом, никелем, серебром, платиной. Столь же неблагоприятное влияние оказывают и катодные добавки в сплавах алюминия. Для алюминия характерно высокое перенапряжение водорода, которое наряду с анодным торможением (окисная пленка) обеспечивает высокую коррозионную стойкость. Примеси тяжелых металлов (железо, медь) понижают химическую стойкость не только из-за нарушения сплошности защитных пленок, но и вследствие облегчения катодного процесса. [c.73]


    Большое значение для коррозионных процессов имеет способность металла образовывать на поверхности прочные оксидные пленки. Так, алюминий окисляется легче железа, но он более стоек к коррозии, так как окисляясь кислородом воздуха, покрывается плотной пленкой оксида. На этом явлении основана пассивация металлов, заключающаяся в обработке их поверхности окислителями, в результате чего на поверхности металла образуется чрезвычайно тонкая и плотная пленка, препятствующая оррозии. Примером может служить пассивация железа концентрированной азотной кислотой, открытая еще М. В. Ломоносовым, или. воронение стали в щелочном растворе нитрата и нитрита натрия. Пассивированием объясняется также химическая стойкость нержавеющих сплавов и металлов, на поверхности которых под действием кислорода воздуха образуется защитный слой оксидов, [c.148]

    Получены бориды алюминия А1В2, А1В д, к Ец. Изучение системы В—А1 продолжается. В связи с малой плотностью, химической стойкостью, прочностью и другими ценными свойствами бориды алюминия находят применение в промышленности, включая ядерную энергетику. [c.275]

    В качестве армирующих элементов слоистых и волокнистых композиционных материалов с металлической матрицей применяются волокна из углерода, бора, карбида кремния, оксида алюминия, высокопрочной стальной проволоки (сетки), бериллиевой, вольфрамовой и других проволок. Для обеспечения химической стойкости в расплаве матрицы и сцепления волокна с матрицей применяют защитные барьерные покрытия на волокнах из карбидов кремния, титана, циркония, гафния, бора, из нитридов и окислов этих и других элементов. При этом получается сложная многокомпонентная система матрица — переходный слой продуктов химического воздействия матрицы с барьерным покрытием — слой волокна. Механические свойства за счет армирования повыщаются в 1,5—3 раза (удельные в 2—5 раз) в зависимости от объемной доли и способа введения армирующих волокон. [c.78]

    Практические данные показывают, что при соответствующей термической обработке алюминия химическая стойкость его увеличивается. Такая обработка заключается в нагреве при 400—450° и охлаждении на воздухе или в воде. Имеет также большое значение конечная отделка алюминиевых деталей или аппаратов гладкая и особенно полированная поверхность увеличивает сопротивляемость металла коррозии, что, очевидно, связано с увеличением перенапряжения водорода на катодных участках. [c.149]

    Таким образом, химическая стойкость стекла в первую очередь определяется его составом стекло химически более стойко с большим содержанием малорастворимых окислов алюминия, бора, цинка, свинца, магния и менее стойко с большим содержанием хорошо растворимых окислов щелочных и щелочноземельных металлов. [c.19]

    Алюминиевые сплавы обладают высокой коррозионной стойкостью по отношению к окислительным средам, так как при воздействии кислорода быстро образуется защитная пленка, состоящая в основном из окиси алюминия. Химическая стойкость различных алюминиевых сплавов мало отличается друг от друга и зависит от характера агрессивной среды, ее температуры и структуры сплавов. [c.433]

    Твердые теплоносители должны обладать следующими свойствами жаростойкостью, стойкостью к резким колебаниям температуры, химической стойкостью, высокой механической прочностью (особенно высокой стойкостью к истиранию). Этим требованиям удовлетворяют зерна размером 6—12 мм из силиката циркония, оксида алюминия и каолина [20]. [c.222]

    Применение в энергетике. Бор (изотоп 5°В) интенсивно поглощает медленные нейтроны, поэтому используется для изготовления регулирующих стержней атомных реакторов и защитных устройств от нейтронного облучения. Кристаллический бор обладает полупроводниковыми свойствами и используется в полупроводниковой технике (его проводимость при нагревании до 600 С возрастает в 10 раз). Исключительной химической стойкостью, твердостью, жаростойкостью обладают многие соединения бора с металлами побочных подгрупп. Алюминий и его сплавы применяют в энергетике в качестве конструкционного и электротехнического материала. Галлий применяют в полупроводниковой технике, так как его соединения с мышьяком, сурьмой, висмутом, а также аналогичные соединения индия обладают полупроводниковыми свойствами. Галлий используют при изготовлении высокотемпературных термометров с кварцевыми капиллярами (измерение температуры до 1500° С). Галлий может быть использован как хороший теплоноситель в системах охлаждения ядерных реакторов, лазерных устройств. Индий обладает повышенной отражательной способностью и используется для изготовления рефлекторов и прожекторов. Способность таллия при температуре ниже 73 К становиться сверхпроводником делает его перспективным материалом в энергетике. Представляют практический интерес многие соединения этих металлов и соединения бора, например нитрид бора ВЫ—боразон, отличающийся исключительной твердостью и химической инертностью. [c.230]


    Стеклопластики характеризуются высокой химической стойкостью, они в четыре раза легче нержавеющей стали, значительно дешевле нее, на 40%) легче алюминия, легко окрашиваются, поддаются ремонту, огнестойки, технологичны, обладают высокой ударной прочностью и другими достоинствами, позволяющими успешно использовать их взамен нержавеющей стали, меди, ха-стеллоя, никеля, монель-металла и прочих дефицитных материалов. [c.39]

    Из композиционных материалов на минеральной основе интересны и перспективны стеклокристаллические материалы — ситаллы. Их получают путем частичной или полной кристаллизации стекла при наличии катализатора кристаллизации. Сырьем для получения ситаллов служат отходы стекольного производства, металлургические шлаки и др. В расплаве шихты при ее охлаждении образуются зародыши кристаллизации (катализатор), на которых затем кристаллизуется сама стекломасса. Б зависимости от состава и температурной обработки материал может содержать до 95% кристаллической фазы с размерами кристалликов от 40 до 2000 нм. Ситаллы обладают высокой твердостью, термостойкостью, химической стойкостью. Они легче алюминия и почти в пять раз прочнее обычного стекла. [c.395]

    Катоды-матрицы должны служить длительное время. Этим и объясняются предъявляемые к ним высокие требования. Наращиваемый металл должен легко сниматься с катодов без коробления матриц, поэтому в качестве матричного металла применяют алюминий, титан или нержавеющую сталь, т. е, металлы, окисляющиеся на воздухе и не обладающие высоким сцеплением с осаждаемым металлом. Катоды-матрицы должны отличаться высокой химической стойкостью в электролите, чтобы основной металл не загрязнялся продуктами их коррозии. Катоды-матрицы требуют тщательного ухода их обычно снабжают изолирующими рамками [c.256]

    С помощью электродов электрический ток подводится к шихте или электролиту. Поэтому электрод должен отличаться хорошей электропроводностью и химической стойкостью при повышенной температуре, а также высокой чистотой. В большинстве случаев, в частности и при получении алюминия, электрод служит не только средством подвода тока, но и сам участвует в электрохимических [c.488]

    Кварцевое стекло — это почти чистая (99,8—99,9%) окись кремния, содержащая лишь незначительные примеси окислов алюминия, натрия, калия, магния и железа. Кварцевое стекло очень термостойко и упруго, обладает высокой химической стойкостью к кислотам (кроме плавиковой и фосфорной) и хорошими оптическими свойствами, прозрачно к инфракрасным и особенно к ультрафиолетовым лучам, устойчиво к радиации, является отличным диэлектриком. К недостаткам кварцевого стекла следует отнести высокую температуру обработки (около 1800°С), газопроницаемость (особенно для гелия и водорода), неустойчивость к щелочным реактивам, способность к кристаллизации в определенных условиях. [c.270]

    Катоды-матрицы должны служить длительное время. Этим и объясняются предъявляемые к ним высокие требования. Наращиваемый металл должен легко сниматься с катодов без коробления матриц, поэтому в качестве матричного металла используют алюминий, титан или нержавеющую сталь, т. е. металлы, окисляющиеся на воздухе, и не обладающие высоким сцеплением с осаждаемым металлом. Катоды-матрицы должны обладать высокой химической стойкостью в электролите, чтобы основной металл не загрязнялся продуктами их коррозии. Катоды-матрицы требуют тщательного ухода их обычно снабжают изолирующими рамками по ребрам для облегчения снятия металла, часто обрабатывают механически для удаления повреждений, иногда покрывают слоем масла или мыльного раствора для облегчения сдирки. [c.375]

    В ряду напряжений ванадий, ниобий и тантал расположены между алюминием и цинком и поэтому должны проявлять значительную химическую активность. Тем не менее все они при обычных условиях отличаются высокой химической стойкостью (устойчивы по отношению к воздуху, воде, растворам кислот и щелочей) благодаря плотной оксидной пленке, образующейся на их поверхности, особенно при действии кислот-окислителей. Ниобий и тантал устойчивы даже в концентрированной азотной кислоте и царской водке . Ванадий на холоду растворяется лишь в царской водке и концентрированной плавиковой кислоте, а при нагревании — в концентрированной азотной и серной кислотах. [c.465]

    Широкие возможности в конструировании рациональных форм малоизнашивающихся электродов (МИЭ) для ряда электрохимических процессов открылись в связи с развитием составных электродов. Б первоначальных конструкциях платиновых электродов для придания им механической прочности и жесткости, а также для подвода (развода) тока в качестве каркаса электрода использовали металлы с хорошей электропроводностью (медь, алюминий, сталь и др.), заш иш енные от коррозии стеклом, кварцем или полимерными материалами. Таким образом, уже самые первые типы конструкций электродов, применявшихся в промышленности, часто решались как составные электроды. Однако, возможности для упрощения конструкции таких электродов, повышения их надежности в работе и снижения их стоимости появились только после того, как стали доступны для использования титан и другие аналогичные металлы. На поверхности таких металлов при анодной поляризации в определенных условиях могут возникать окисные плотные пленки, обладающие высокой химической стойкостью в условиях анодной поляризации, защищающие в дальнейшем основу электрода от разрушения и не препятствующие передаче тока от металла к активному слою электрода. [c.107]

    С помощью электродов электрический ток подводят к шихте или электролиту. Поэтому электрод должен отличаться хорошей электропроводимостью и химической стойкостью при повышенной температуре, а также высокой чистотой. В большинстве случаев, в частности и при получении алюминия, электрод может и сам участвовать в электрохимических и химических процессах. Так, при получении алюминия электролизом крио-лит-глиноземных расплавов энергия, выделяемая при окислении анодов, значительно снижает анодный потенциал и, следовательно, напряжение на ванне, а при получении сплавов алюминия в электротермических печах электрод выполняет также и роль восстановителя. [c.462]

    К материалу, из которого изготавливается колонка, предъявляются тре бования химической стойкости и отсутствия каталитической активности по отношению к сорбенту и компонентам разделяемой смеси. Широко применяются стеклянные трубки. Распространены также колонки из полихлорвиниловых трубок, из нержавеющей стали, меди и алюминия. [c.112]

    Все ортосиликаты являются тугоплавкими соединениями, не растворяются в воде, но, кроме фенакита, хорошо растворяются в минеральных кислотах. Силикаты алюминия отличаются высокой химической стойкостью. [c.47]

    Ситаллы, как уже отмечалось ранее, материалы, содержащие стекло с очень мелкими (0,01 мкм) кристаллами, равномерно распределенными в его матрице. Благодаря такой структуре ситаллы отличаются высокой прочностью, хорошими диэлектрическими свойствами, а также исключительной химической стойкостью по отношению к кислотам и щелочам. Они тверже высокоуглеродистой стали, легче сплавов алюминия, а по химической стойкости уступают только платине и золоту. Ситаллы великолепно противостоят агрессивным воздействиям (СЬ, НС1, хлориды и бромиды некоторых металлов) даже при высоких температурах. Изменяя степень кристаллизации (от 50 до 2%) и размер кристаллов (от [c.147]

    Алюминий химически активен, легко окисляется кислородом воздуха, образуя прочную поверхностную пленку оксида AI2O3, что обусловливает его высокую коррозионную стойкость. В мелко раздробленном состоянии при нагревании на воздухе воспламеняется и сгорает. Алюминий реагирует с серой и галогенами. При нагревании образует с згглеродом карбид AI4 3 и с азотом нитрид A1N. Как амфотерный металл алюминий растворяется в сильных кислотах и щелочах. Нормальный электродный потенциал алюминия равен 1,66 В при рН<7 и 3,25 В при рН>7. [c.15]

    Этому виду коррозии подвержены металлические материалы, в составе которых есть фазы с различной химической стойкостью. Наиболее распространенными видами избирательной коррозии являются графитизация серого литейного чугуна (избирательное растворение ферритных и перлитных составляющих), обесцинковаине латуней (селективная коррозия цинка), обезалюминивание алюминиевых бронз (растворение фаз, обогащенных алюминием). [c.53]

    Б качестве материала для токоподводящих проводников и для жесткого крепления плс тины применяют алюминий, Химическая стойкость его повышается предварительной анодной поляризацией в растворе бисульфата аммония, при возрастающем до Ш в напряжении в течение 18 часов. На поверхности алюминия образуется пассивирующая окисная ПJfeнкa, бла] о-даря чему становится возможным употребление его даже при электролизе надеерной кислоты и персульфата аммония. [c.195]

    Покрытие алюминия металлами преслед ет и некоторые специальные цели так, меднение и никелирование придают алюминию химическую стойкость в агрессивных средах для упрочения поверхности алюминиевых изделий на них аносяг хромовое покрытие серебрение поверхности алюминия значительно уменьшает контактное сопротивление алюминиевые сплавы, имеющие покрытие из оловянно-свинцового сплава, обладают хорошей коррозионной стойкостью в атмосфер-92 [c.92]

    Можно работать нри значительно более низких давлениях, если использовать в качестве катализатора алкилалюминий в смеси с тетрахлорэтаном [266, 267], окисью хрома на носителе [268— 270], никелем или кобальтом на древесном угле [271] или промо-тированным молибдатом алюминия [272]. При этом полимеры имеют более линейную структуру. Подобным образом может быть получен и полипропилен. Из этилено-нропиленовых и этилено-бутеновых смесей можно получить высокомолекулярные сополимеры с хорошей эластичностью. Полиэтилен представляет интерес прежде всего с точки зрения его отличных электроизоляционных свойств его химическая стойкость, легкость обработки, легкий вес и большая упругость дают возможность его применения для многих других целей. [c.581]

    По ГОСТ 3549—55 выпускается алюминий десяти марок (АВОООО, АВООО, АВОО, АВО, АООО, АОО, АО, А1, А2, АЗ), отличающихся по содержанию чистого металла. Минимальное содержание примесей, соответствующее наибольшей химической стойкости металла, имеет алюминий марки АВОООО (99,996% А1). Для изготовления химической аппаратуры в большинстве случаев используют алюминий марок АОО (99,7% А1) и АО (99,6% А1). [c.86]

    Алюминий — химически активен даже в обычных условиях покрывается очень прочной тончайшей (0,00001 мм) оксидной пленкой. Последняя несколько ослабляет металлический блеск алюминия и определяет его довольно высокую коррозионную стойкость. Так, алюминий горит в кислороде лишь при высокой температуре и притом в мелкораздробленном состоянии. Взаимодействие сопровождается большим выделением тепла (АЯ298=—1650 кдж1моль AI2O3). Подобным же образом протекает взаимодействие алюминия с серой. С хлором и бромом он реагирует при обычной температуре, а с иодом — при нагревании или в присутствии воды, как катализатора. При сильном нагревании реагирует с азотом (800°С) и углеродом (2000 С). С водородом непосредственно не взаимодействует. [c.526]

    ХИМИЧЕСКИ СТОЙКИЕ МАТЕРИАЛЫ — материалы, применяемые в химической промышленности, машино-и приборостроении, как защитные и конструкционные материалы, устойчивые против коррозии при действии различных агрессивных веществ (кислот, щелочей, растворов солей, влажного газообразного хлора, кислорода, оксидов азота и т. д.). X. с. м. делятся па металлические и неметаллические. К металлическим X. с. м. относятся сплавы на основе железа с различными легирующими добавками, такими как хром, никель, кобальт, марганец, молибден, кремний и т. д., цветные металлы и сплавы на их основе (титан, цирконий, ниобий, тантал, молибден, ванадий, свинец, никель, алюминии). К неметаллическим X. с. м. относятся различные органические и неорганические вещества. X. с. м. неорганического происхождения представляют собой соли кремниевых и поликрем-ниевых кислот, алюмосиликаты, кальциевые силикаты, кремнезем с оксидами других элементов и др. X. с. м, органического происхождения подразделяются на природные (дерево, битумы, асфальты, графит) и искусственные (пластмассы, резина, графитопласты и др.). Наибольшую химическую стойкость имеют фторсодержащие полимеры, которые не разрушаются при действии почти всех известных агрессивных веществ и даже таких, как царская водка. Высокой химической стойкостью отличаются также графит и материалы на его основе, лаки, краски, применяемые для защиты металлических поверхностей. [c.274]

    Прочность связи А1 - О (включающей донорно-акцепторное взаимодействие за счет свободной /-орбитали атома А1 и неподеленной электронной пары атома О) обьясняет химическую стойкость AI2O3, его огнеупорность и твердость, обилие природных соединений, содержащих связи - AI-0--AI-. При комнатной температуре компактный оксид алюминия не реагирует с водой, кислотами, щелочами. [c.353]

    Футеруют ванны многими материалами, обладающими различной химической стойкостью в расплавленном электролите. Алун-довая и муллитовая футеровки загрязняют литий алюминием (до 1%), тальк-магнезитовая и тальк-хлоритовая — значительным количеством магния и кремния. Более коррозионноустойчивы графит, графито-шамотные керамические массы и керамика на основе двуокиси циркония [14, 112, 191]. Графитовая футеровка дает более чистый металл, так как в этом случае чистота зависит главным образом от качества исходных солей. Все же для получения металла высокой чистоты применяют металлические ванны с водоохлаждаемыми стенками, в кото-)ых футеровка образуется за счет гарниссажа из застывших солей 191]. [c.70]

    Для обеспечения долговечности цементного кольца необходимо, чтобы затвердевший тампонажный раствор сохранял прочность и непроницаемость при воздействии минерализованных пластовых вод. Цементный камень с активной добавкой глины или высокодисперсных окислов показал достаточную коррозионную стойкость в агрессивных средах [317, 318]. Это связано с более плотной дисперсной структурой, с изменением фазового состава и степени закристаллизованности гидратных фаз по сравнению с камнем, приготовленным из чистого цемента. Необходимо отметить, что добавка глин с повышенным содержанием окислов алюминия (типа као-линитовых) обусловливает меньшую химическую стойкость цементного камня против сульфатной коррозии вследствие образования ими дополнительного количества гидросульфоалюминатных фаз [317,319]. [c.117]

    Слюда как минерал слоистой структуры имеет особо важное значение. Мусковит, представляющий собой силикат кальция и алюминия, является почти единственно применяемой разновидностью этого минерала. Пластинки или чешуйки слюды весьма гибки и упруги, обладают высокими электроизоляционными характеристиками, а также термостойкостью. Наполненные слюдой компаунды применяются в электротехнике для коллекторов и т. и. Кроме высоких электрической прочности и термостойкости эти компаунды обладают низкой удельной теплопроводностью, малым во-допоглощением и очень хорошей химической стойкостью, поскольку скорость диффузионных процессов заметно снижается за счет слоистой структуры наполнителя. [c.153]

    Химическая стойкость алюминия жаростойкость, способиость к декоративной отделке, дешевизна, мачая плотность предопределяют е[0 применение в промышленности Алюминий в перспективе заменит Цик ковые, оловянные, некоторые антифрикционные иокрытия [31, 37, 47] Ограничением применения атюмнкиевых покрытий является труд ность нанесения их электрохимическим н химическим методами В перспективе алюминиевые покрытия, наносимые разными методами, в том чис те диффузионным и нонно-плазыенным, будут вытеснять многие другие покрытия вследствие своих свойств н дешевизны [c.155]

    Алюминий химически активен даже в обычных условиях покрывается очень прочной тончайшей (0,00001 мм) оксидной пленкой. Последняя несколько ослабляет металлический блеск алюминия и определяет его довольно высокую коррозионную стойкость. Так, алюминий горит в кислороде лишь при высокой температуре и притом в мелкораздробленном состоянии. Взаимодействие сопровождается большим выделением теплоты (АЯ°дд = —1676 кДж/моль AI2O3). Подобным же [c.489]

    Группа L 1Чатериалы этой группы, в основном состоящие из оксида алюминия.и кремнезема, менее вакуумноплотны, чем чистое кварцевое стекло. Проницаемость для газов сильно увеличивается при возрастании рабочей температуры и времени эксплуатации изделия. Помимо обычного фарфора, для лабораторной посуды различными предприятиями разработаны составы, обладающие более высокой химической стойкостью. Максимально допустимая для применения ряда этих материалов температура возрастает по мере повышения содержания в них оксида алюминия. Глазури применяются только для фарфора. Устойчивость к изменениям температуры у этих материалов значительно ниже устойчивости чистого кремнезема. [c.21]

    Многие действующие реакторы имеют трубки водяного охлаждения и оболочки тепловыделяющих элементов из алюминия. В случае высоких температур и при применении в качестве теплоносителей жидких металлов алюминий непригоден. Сталь 1Х18Н9Т используется в тех случаях, когда требуются высокая прочность и химическая стойкость 1при вЫ(Соких температурах. [c.45]

    Долговечность ванн и чистота металла определяются в основном качеством футеровки. Материалы, используемые для футеровки ванн, не равноценны по своей химической стойкости в среде расплавленного электролита алундовая и муллитовая футеровки загрязняют литий алюминием (до 0,12%) талько-магнези-товая или талько-хлоритовая футеровки — значительным количеством магния и кремния, а при наружном обогреве ванны, выложенной талько-магнезитовым или талько-хлоритовым, часто наблюдается просачивание расплавленного электролита через футеровку. Более высокой коррозионной стойкостью обладают графит, графито-шамотные керамические массы и керамические массы на основе двуокиси циркония [2, 3, 9, 11, 12]. Графит считается лучшим материалом для футеровки электролизных ванн, хотя и он частично взаимодействует с расплавленным литием с образованием карбида лития Li2 2, разлагающегося затем в электролите с выделением углерода [2]. Помимо этого обнаружено, что графитовые блоки постепенно пропитываются электролитом [13]. [c.382]

    Силиконы, или кремнийорганические полимеры, которые можно рассматривать как органические производные силикатов, получают путем проведения последовательно гидролиза мономеров и поликонденсации из алкил- и арилхлорсиланов и т. д. Они отличаются высокой термостойкостью, химической стойкостью и эластичностью. В зависимости от характера связи между молекулами и природы входящих в их состав радикалов силиконы можно получать в виде смол, каучукоподобных веществ, масел или жидкостей. На основе этих соединений производят жаростойкие, жаропрочные лаки, жидкие смазки, силиконовые каучуки и слоистые пластики. Наибольшее значение приобретают силиконовые полимеры, используемые в качестве покрытий, устойчивых во многих агрессивных средах, кислороде, озоне, влажной атмосфере, к действию ультрафиолетового облучения, а в комбинации с различными наполнителями и к нагреву до 500—550 °С. В качестве наполнителей используют чаще всего порошкообразные алюминий, титан или бор. Силиконовые покрытия наносят на различные металлические конструкции для защиты их от коррозии. [c.141]

    Эпоксидио-фенольные материалы, являющиеся одиокомпо-иеитиыми системами, используют для защиты консервной тары из жести и алюминия и аэрозольных упаковок [6, 7], а также других изделий. Получаемые покрытия характеризуются высокой химической стойкостью, твердостью, механической и адгезионной прочностью, благодаря чему даже в тонком слое обеспечивается долговременное защитное действие [8, с, 170]. [c.178]


Смотреть страницы где упоминается термин Алюминий химическая стойкость: [c.151]    [c.336]    [c.90]    [c.59]    [c.18]    [c.38]    [c.55]   
Основы технологии органических веществ (1959) -- [ c.244 ]

Производство серной кислоты Издание 3 (1967) -- [ c.38 ]

Основы технологии органических веществ (1959) -- [ c.244 ]

Производство серной кислоты Издание 2 (1964) -- [ c.38 ]

Вспомогательные процессы и аппаратура анилинокрасочной промышленности (1949) -- [ c.30 ]

Справочник механика химического завода (1950) -- [ c.370 , c.372 , c.376 , c.379 , c.386 , c.388 , c.392 , c.394 , c.396 , c.398 ]




ПОИСК







© 2025 chem21.info Реклама на сайте