Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворитель подвижный

    При исследовании некоторых смесей удобней оказывается круговая, или радиальная хроматография. В центр бумажного кружка пипеткой наносят исследуемый раствор, а затем несколько капель растворителя (подвижная фаза). Диффундируя, растворитель захватывает анализируемое вещество, составные части которого распределяются концентрическими кругами. Полученную хроматограмму можно разрезать на отдельные секторы, каждый из которых можно подвергнуть проявлению различными проявителями. [c.162]


    Наиболее часто применяемые системы растворителей (подвижные фазы) в распределительной бумажной хроматографии приведены в табл. 9. [c.161]

    На подготовленную пластинку с помощью микропипетки наносят пробу исследуемого вещества (на расстоянии 1,5 см от нижнего края). Если таких проб несколько, то расстояние между ними должно быть не менее 2 см. Затем пластинку помещают в камеру для хроматографирования, на дно которой предварительно наливают небольшое количество растворителя (подвижная фаза) (рис. 44). Неподвижной фазой служит сорбционный слой и адсорбированный им растворитель. [c.164]

    Рассматривая нефтяные дисперсные системы в виде суспензий возможно предположить, что размеры растворенных частиц, в частности агрегативных комбинаций, намного превышают размеры молекул растворителя. Подвижность такой растворенной частицы, представляемой в виде макромолекулы, будет определять вязкость раствора. Очевидно, такое подвижное макроскопическое тело в растворе может характеризоваться некоторым средним размером. При этом следует обратить особое внимание на нефтяные углеводородные системы, в которых растворенным веществом являются полимеры. В этих случаях необходимо рассматривать макромолекулы в двух направлениях. Так, линейный размер макромолекулы вдоль цепи велик по сравнению с молекулами растворителя. Однако размер макромолекулы в направлении, перпендикулярном главной оси, соизмерим по величине с диаметром молекулы растворителя. [c.89]

    При получении распределительных хроматограмм на колонке твердый носитель вначале растирают с растворителем, который будет служить неподвижной фазой. Полученную густую кашицу суспендируют во втором растворителе (подвижная фаза) и смесь равномерно вносят в колонку. В случае ионообменной хроматографии иониты предварительно подвергают специальной обработке например, катионит очищают от ионов железа и доводят до набухания. [c.157]

    Величина может изменяться в интервале О < Кг < I. При получении внешней хроматограммы исследование элюата можно проводить непрерывно, регистрируя концентрацию вещества в подвижной фазе. Отдельные вещества проявляются на хроматограмме в виде пиков (горы, полосы, см. рис. 7.7). При таких хроматограммах для оценки вещества служат объем или время, необходимое для элюирования веществ из стационарной фазы,,— удерживаемый объем или время удерживания. Стандартами для сравнения являются чистый растворитель — подвижная фаза или стандартное веще-> ство. [c.345]


    МОЩИ специального приспособления подвешивают в сосуде с растворителем или в виде цилиндра вставляют в сосуд. На дне сосуда находится растворитель (подвижная фаза), который впитывается бумагой, вследствие капиллярного действия, направленного против действия поля земного притяжения. Преимуществом такого способа получения хроматограмм является простота аппаратуры скорость всасывания уменьшается по мере удаления от старта. Этот способ можно применять только для получения хроматограммы длиной 30 см, т. е. для разделения веществ со значительно различающимися величинами Ri. [c.357]

    Жидкостный хроматограф представляет собой универсальный прибор. Работа хроматографа заключается в следующем проба вводится в блок дозатора, откуда потоком растворителя (подвижной фазой) переносится в колонку с сорбентом. В колонке смесь разделяется на отдельные компоненты, которые при продолжающемся движении растворителя попадают в детектор в определенной последовательности и регистрируются на ленте самописца. После детектора компоненты попадают в сборник фракций и могут быть использованы для дальнейших работ. [c.45]

    В этом методе неподвижным растворителем является неполярное, а подвижным — полярное вещество. Бумагу предварительно гидрофобизуют, пропитывая ее растворами различных гидрофобных веществ смесью триглицеридов растительных масел [31—32], силиконом [33—35], нафталином [36], парафином [37, 38], раствором каучука-[39] и т. д., или ацетилируют специальной смесью, состоящей из уксусного ангидрида, петролейного эфира и концентрированной серной кислоты, в результате чего бумага приобретает гидрофобные свойства [40, 41]. Эта бумага способна удерживать неполярные вещества (керосин, декалин, петролейный эфир и др.), которые используют в качестве неподвижных растворителей. Подвижным растворителем в этом случае служат полярные вещества — водные растворы спиртов, кислот и т. д. [c.87]

    Описанные приемы относятся к восходящей хроматографии. Важное значение имеет метод нисходящей хроматографии, когда поток растворителя (подвижная фаза) движется сверху вниз по хроматографической бумаге. При работе по методу нисходящей хроматографии [c.521]

    В бумажной хроматографии неподвижным растворителем (неподвижной фазой) является вода, адсорбированная фильтровальной бумагой н всегда присутствующая в ней, носителем — фильтровальная бумага, а подвижным растворителем (подвижной фазой) —органический растворитель (нлн смесь растворителей), предварительно насыщенный водой. [c.149]

    Жидкостно-жидкостная хроматография (ЖЖХ), представляющая собой разновидность распределительной хроматографии или растворной хроматографии. Образец распределяется между подвижной жидкостью, обычно водой, и неподвижной жидкостью, обычно органическим растворителем. Подвижная жидкость не должна растворять неподвижную жидкость. [c.27]

    О значении терминов носитель , неподвижная фаза и подвижная фаза уже говорилось. Процесс промывания хроматограммы растворителем — подвижной фазой — называется проявлением хроматограммы. Так как большинство разделяемых веществ бесцветны, был разработан ряд способов обнаружения, при помощи которых можно определить положение бесцветного вещества на хроматограмме. Проявленную фильтровальную бумагу с обнаруженными на ней пятнами веществ называют бумажной хроматограммой. Место, куда наносится раствор разделяемых веществ, [c.444]

    Для исследования смесей высокополярных и труднолетучих веществ успешно применяют сочетание высокоэффективной жидкостной хроматографии и масс-спектрометрии. Объединение этих двух методов сопряжено еще с большими, чем при газовой хроматографии, трудностями, поскольку для сохранения вакуума в ионном источнике необходимо удаление растворителя (подвижная фаза), поступающего из хроматографа со скоростью 0,5-5 мл/мин. В пересчете на газ это составляет 100-300 мл/мин. Для этой цели разработан ряд устройств, которые, однако, не всегда универсальны. [c.45]

    Аномально высокую подвижность ионов водорода раньше объясняли тем, что их радиус очень мал. Затем было установлено, что в растворе негидратированные протоны из-за высокой плотности заряда существовать не могут. Ионы гидроксония НзО , как и гидроксильные ионы, гидратированы, и их эффективные радиусы сопоставимы с этими величинами для других ионов. Кроме того, аномально высокой подвижностью ионы Н3О+ и ОН обладают только в водных растворах или в растворителях, содержащих гидроксильные группы. В остальных неводных растворителях подвижность этих ионов имеет тот же порядок, что и для других однозарядных ионов. В настоящее время считают, что диссоциация Н2О протекает по схеме [c.192]


    Отсутствие ограничений по совместимости с растворителем, подвижной фазой и образцом. [c.117]

    Проявление обычно выполняют методом восходящего потока так же, как в аналитической ТСХ. Используют оптимальную систему растворителей (подвижную фазу), предварительно вы- [c.137]

Рис. 190. Влияние типа камеры на результаты элюирования смесью растворителей (подвижная фаза). Рис. 190. <a href="/info/362607">Влияние типа</a> камеры на результаты элюирования смесью растворителей (подвижная фаза).
    Величины, измеренные в случае капиллярного насыщения (см. табл. 40), представляют собой концентрации, определенные в поперечном сечении. Они не дают информации о распределении между фазами. Такая оценка может быть произведена с помощью некоторых упрощающих предположений когда фронт растворителя поднялся на довольно высокий уровень (например, 5 или 10 см), можно считать, что даже в случае многокомпонентных растворителей подвижная фаза непосредственно над линией погружения совпадает по составу с залитой в камеру жидкостью (поскольку слой всегда пополняется свежей смесью). Кроме того, такой же состав имеет жидкость, испаряемая в конце концов с пластинки при непрерывном элюировании или выходящая из колонки (если обсуждается разделение в хроматографической колонке), когда достигнуто уравновешивание фаз через разделяющий слой. [c.140]

    Разделение (хроматографирование). В качестве подвижной фазы для разделения обычно используют смеси растворителей высокой степени чистоты. Хроматографирование проводят в закрытом сосуде (обычно в прямоугольной камере с крышкой), насьщенном парами растворителей. Предварительное насыщение камеры устраняет частичную ассоциацию веществ со смешанными растворителями, устраняет краевой эффект (испарение растворителя больше у краев пластинки, чем в середине) и способствует образованию круглых, четких без размытых краев пятен на одной линии по поверхности пластинки. Насыщение камеры проводят обычно путем наложения на стенки фильтровальной бумаги, насыщаемой смесью растворителей подвижной фазы в течение некоторого времени (0,5—2 ч) непосредственно перед разделением. Для получения компактных пятен необходимо применять растворители с низкой точкой кипения. Пластинку ставят в камеру, погружая в растворитель примерно на 1 см, и выдерживают до подъема фронта растворителя нужной высоты. Обычно разделительный путь не превышает 10 см. [c.34]

    В основе метода хроматографии на бумаге лежит принцип распределения анализируемых веществ между двумя растворителями— подвижным и неподвижным. В зависимости от скорости перемещения различных элементов с подвижным растворителем происходит распределение хроматограммы на зоны, местоположение которых на хроматограмме характеризуется величиной Rf. Значительное различие величин Rf бериллия и большинства сопутствующих элементов делает возможным успешное разделение их при помощи хроматографии на бумаге. [c.147]

    Влияние растворителя иа подвижность иоиов иллюстрирует табл. XVII, 5, из которой следует, что и в органических растворителях подвижности ионов—величины такого же порядка, как и в водных растворах, т. е. выра- [c.440]

    Для получения надежных результатов при кондуктометрическом титровании следует иметь в виду, что удельная электропроводность, изменяющаяся в процессе химической реакции, является аналитическим сигналом, зависящим от многих факторов, которые надо учитывать констант образования (диссоциации) всех участников химической реакции, константы автопро-толиза растворителя, подвижности ионов, ионной силы раствора и др. Использование неводных органических растворителей значительно расширяет возможности кондуктометрического метода анализа. [c.105]

    Одномерную нисходящую хроматограмму можно получить, несколько изменив методику выполнения опыта. Подвижный растворитель, насыщенный неподвижным, наливают в небольшую кювету, закрепленную в верхней части камеры. На дно этой камеры помещают бкркс с неподвижным растворителем, насыщенным подвижным, для создания в камере атмосферы насыщенных паров, предотвращающей испарение растворителя с бумаги (рис. 40). На полоску бумаги на расстоянии 5 см от верхнего края наносят каплю исследуемого раствора. После высушивания пятна этот край полоски погружают в кювету с растворителем (подвижная фаза), который под действием капиллярных сил и сил тяжести перемещается вниз по бумаге. Хроматографирование заканчивается, когда фронт растворителя почти достигает нижнего края бумаги. Проявление хроматограммы осуществляют, как описано выше. [c.160]

    Для распределительной хроматографии твердый носитель растирают с растворителем, являющимся неподвижной фазой, затем суспендируют во втором растворителе (подвижная фаза). Полученную жидкую кашицу равномерно вводят в колонку. Поверхность слоя носителя должна быть все время покрыта растворителем. Если растворитель очень медлешю проходит через колонку с адсорбентом, лучше работать под давлением, которое создают специальным насосом илн прибором для создания повышенного давления (не более 1 атм) (рис. 78). [c.73]

    Гранулированные гели. Разделение на гелях основано на распределении растворенных веществ между растворителем (подвижная фаза) и растворителем, содержащимся в порах геля (стационарная фаза). В отличие от распределительной хроматографии подвижная и стационарная фазы в этом случае одинаковы. Таким образом, распределение происходит на основе способности растворенных частиц проникать в поры разделение частиц определяется различной скоростью их диффузии. Сродство разделяемых веществ к гелю само по себе должно быть наименьшим во избежание побочных процессов. Для разделения гидрофильных веществ применяют гели на основе декстрана, полиакриламида или агаровый гель. Для разделения гидрофобных веществ необходимо применять гели, способные набухать в органических растворителях. Такие гели получают перезтерификацией гидроксильных групп декстранового геля. Этот способ можно применить для получения акриловых и полистироловых гелей, растворимых в жирах. [c.351]

    Принцип распределительной хроматографии основан на различии в коэффициентах распределения аминокислот между водой и органическим растворителем. Особенность метода распределительной хроматографии на бумаге по сравнению с обычной экстракцией ам.инокислот из водного раствора органическим растворителем заключается в том, что одну из фаз, чаще всего водную, помещают на какой-нибудь инертный твердый носитель, а органический растворитель — подвижная фаза,— проходя через первую, извлекает и распределяет аминокислоты на бумаге в соответствии с их коэффициентами распределения. Положение аминокислот на бумаге определяют по отношению скорости движения аминокислоты скорости движения фронта растворителя и обозначают Rf. Величина за висит в первую очередь от строения аминокислоты, затем от системы растворителей, pH среды и сорта бумаги, Чем полярнее аминокислота, тем меньше она растворяется в органических растворителях и тем меньше ее R . Увеличение длины углеродной цепи повышает . Введение в молекулу полярных групп, например, гидроксильной, аминной или карбоксильной понижает Rf Так, Rf фенилаланина в системе фенол/вода = 0,85, а тирозиит 0,51. Другие примеры изменения в зависимости от строения аминокислоты представлены на рис. 3 и 4. Подбирая соответствующие смеси растворителей, можно провести достаточно тонкое разделение аминокислот. Наиболее часто пользуются для такого разделения системами вода — фенол — аммиа вода — бутапол — уксусная кислота бутанол — аммиак — коллидин и т. д. Разделение можно проводить на одномерной или двумерной хроматограммах. Можно пользоваться также различными типами распределительной хроматографии на бумаге — нисходящей, восходящей и радиальной. Величины Rt для каждой из систем растворителей оказываются постоянными при соблюдении [c.479]

    Схема разделения смеси веществ методом ТСХ приведена на рис. 44. На пластинку с тонким слоем адсорбента (неподвижная фаза) на определенном месте ( стартовая линия ) наносят пробы веществ и их смесей. Затем пластинку ниже стартовой линии погружают в растворитель (подвижная фаза). По мере продвижения растворителя по пластинке проходит многократно повторяющийся процесс адсорбции и десорбции анализируемых веществ, в результате чего происходит их разделение. Отметив границу подъема растворителя ( линия фронта ), пластинку сущат и проводят операции по обнаружению и определению анализируемых веществ. [c.128]

    В случае колоночной (в том числе газовой) хроматографии такой способ работы неудобен. Поэтому через колонку продолжают пропускать подвижную фазу (растворитель или газ) до тех пор, пока С51>% она выходит из колонки. Раствор, вытекающий из хроматографической колонки, называют элюатом, растворитель подвижной фазы — элюантом и такой способ проведения [c.253]

    Хроматография на бумаге. —Этот метод, введенный Мартином и Синджем2 в 1944 г., используемый теперь во всех областях химии, применим, а частности, для идентификации компонентов смеси аминокислот с дн- и трипептидами, получаемой при частичном гидролизе белков и полипептидов. Компоненты гидролизата распределяются между водой, адсорбированной на целлюлозе и являющейся неподзижной фазой, и органическим растворителем, подвижной фазой (например, водный этиловый спирт, бутиловый спирт, фенол), которая дви кется вдоль листа вверх или вниз, — восходящий или ни- [c.650]

    Распределительная хроматография — это вариант ВЭЖХ, в котором разделение смеси на компоненты осуществляется за счет различия их коэффициентов распределения между двумя несмешивающимися фазами растворителем (подвижная фаза) и фазой на сорбенте (неподвижная фаза). Исторически первыми были сорбенты такого типа, которые получали нанесением жидких фаз (оксидипропионитрила, парафинового масла и др.) на пористые носители, аналогично тому, как готовили и готовят сорбенты для газожидкостной хроматографии (ГЖХ). Однако сразу же обнаружились и недостатки таких сорбентов, основным из которых было относительно быстрое смывание фазы с носителя. За счет этого количество фазы в колонке постепенно уменьшалось, времена удерживания также уменьшались, на начальном участке колонки появлялись не покрытые фазой центры адсорбции, вызывавшие образование хвостов пиков. С этим недостатком боролись, насыщая растворитель нанесенной фазой еще до его попадания в колонку. Унос также уменьшался, когда использовали более вязкие и менее растворимые полимерные фазы, однако в этом случае из-за затруднения диффузии из толстых полимерных пленок эффективность колонок заметно снижалась. [c.20]

    Бумажная хроматография, впервые примененная в 1944 г. Консденом, Гордоном и Мартином, представляет собой распределительную хроматографию, при которой адсорбционно связанная с целлюлозой вода образует стационарную, а смесь органических растворителей — подвижную фазу. Непрерывная диффузия растворенных компонентов из одной фазы в другую приводит к их распределению между фазами. Отношение концентраций при таком распределении соответствует закону распределения Нернста С = j/ j, где С — зависящий от температуры коэффициент распределения, а С) и С2 — концентрации вещества в обеих фазах. После идентификации разделенных веществ их положение на хроматограмме характеризуется коэффициентом удерживания Ry (от англ. retention fa tor)  [c.57]

    В тех чаще используют восходящий способ получения хроматофамм. Для этого 1фименяют стеклянные, металлические или пластмассовые пластинки, покрытые тонким слоем сорбента (неподвижная фаза) обычно толщиной 100—300 мкм. Исследуемое вещество наносят ми1дюпнпеткой на стартовую линию, как в БХ, и помещают пластинку в камеру, содержащую растворители (подвижная фаза) для разделения милюнеттов. [c.335]

    Метод. Непрерывная тонкослойная хроматография (НТСХ) представляет собой вариант проявительной (элюционной) хроматографии. В этом варианте растворитель (подвижная фаза) испаряется у верхнего края пластинки и, следовательно, зоны (пятна) хроматографируемых веществ непрерывно перемещаются вдоль пластинки под действием потока подвижной фазы постоянной скорости. НТСХ напоминает колоночную жидкостную хроматографию. Такой метод был впервые предложен в 1961 г. Бреннером и Нидервизером [84]. [c.232]

    Ущ + V = 2 см на 1 г сухого сорбента. Чем. меньше количество предварительно адсорбированной влаги, тем больше остается пространства для растворителя (подвижной фазы) и тем выше скорость фронта элюента (см. рис. 187). Поэтому А ,/Ут также зависит от влажности (см. рис. 114). Условия эксперимента силикагель 60 (фирма Мегск), толшииа слоя I мм, растворитель - ундекан. камера - Уагю-К5. [c.320]

    Насыщение ка.меры В случае идеальной двухкомпонентной смеси растворителей (подвижной фазы) отношение концентраций компонентов в газовой фазе подсчитывается соответственно закону Рауля  [c.90]


Смотреть страницы где упоминается термин Растворитель подвижный: [c.441]    [c.159]    [c.239]    [c.151]    [c.159]    [c.47]    [c.522]    [c.19]    [c.34]    [c.100]    [c.69]   
Физико-химичемкие методы анализа (1964) -- [ c.306 ]

Физико-химические методы анализа Издание 2 (1971) -- [ c.314 ]

Физико-химические методы анализа (1964) -- [ c.306 ]

Физико-химические методы анализа (1971) -- [ c.314 ]




ПОИСК







© 2025 chem21.info Реклама на сайте