Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влияние растворителя на подвижности ионов

    Электростатическая теория растворов объясняет сравнительно малую электропроводность расплавленных солей огромным тормозящим влиянием ионной атмосферы, которая здесь имеет характер ближнего окружения каждого иона ионами противоположного знака. Растворитель, уменьшающий взаимодействие ионов, отсутствует, а расстояния между нонами очень малы. Вследствие отсутствия сольватации подвижности ионов в расплавах непосредственно связаны с их радиусами, и в ряду щелочных катионов наблюдается правильная последовательность подвижностей  [c.452]


    Влияние природы растворителя на подвижность ионов для водных и неводных растворов примерно одинаково. Возрастание вязкости раствора затрудняет перемещение ионов и этим снижает электропро-воднссть раствора. Вальденом было установлено, что произведение [c.275]

    Проблемы физикохимии растворов и теории сольватации всесторонне рассматривались в литературе. Достаточно назвать ряд монографий, опубликованных в рамках данной продолжающейся серии, издаваемой Институтом химии растворов РАН [8-11]. В указанных монографиях глубоко проанализирован чрезвычайно широкий круг современных аспектов химии и термодинамики растворов. Это - влияние растворителя на состояние растворенных веществ и их взаимодействие в растворе, растворимость газов, гидрофобная гидратация [7], химические аспекты сольватации [8], строение и термодинамика образования молекулярных комплексов, комплексообразование и сольватация природных порфиринов [9, 10], химия растворов целлюлозы [10], термодинамические свойства и подвижность ионов [И] и многие другие. Каждая из названных проблем имеет прямое отношение к современной биофизической химии. [c.4]

    Для объяснения концентрационных зависимостей электропроводности (1.39) — (1.41) и влияния концентрации на подвижность ионов необходимо принимать во внимание взаимодействие между ионами, а также взаимодействие ионов с молекулами растворителя. [c.39]

    Влияние растворителя на электропроводность прежде всего складывается из влияния его вязкости, диэлектрической проницаемости и специфического взаимодействия с ионами. Силы вязкости растворителя тормозят движение ионов. Диэлектрические свойства среды влияют на эффективную напряженность (электрического) поля и межионный потенциал. Последние величины влияют не только на скорость ионов, но и на притяжение между разноименными ионами и, следовательно, на степень их связывания в пары. Специфическая сольватация ионов может оказывать воздействие как на подвижность, так и на ассоциацию. [c.12]

    Влияние растворителя учитывается введением диэлектрической проницаемости Ер. Предполагается, что в растворе электролита вследствие электростатического взаимодействия между ионами (притяжение между разноименными и отталкивания между одноименными) вокруг каждого иона образуется в среднем по времени сгущение ионов противоположного знака. Такие сгущения образуют так называемые ионные атмосферы противоположного данному иону знака и, следовательно, в принципе межионное взаимодействие можно свести к взаимодействию между ионными атмосферами. Ионная атмосфера характеризуется зарядом, величина которого быстро убывает с ростом расстояния от центра. Заряд ионной атмосферы тем больше, чем больше общая концентрация ионов в растворе. При наложении электрического тока катионы и анионы двигаются в соответствующих направлениях вместе со своими атмосферами, которые в своем движении запаздывают за движением ионов и тем самым тормозят его. Кроме того, ионы испытывают тормозящее воздействие за счет притяжения между ионными атмосферами противоположных знаков. Эти тормозящие воздействия уменьшают подвижность ионов и, следовательно, уменьшают эквивалентную электрическую проводимость, что особенно заметно при увеличении концентрации. Указанные явления представляют собой физические причины существования коэффициента электрической проводимости [c.389]


    Перешедшие в раствор ионы остаются связанными с молекулами воды и образуют гидраты ионов. Иначе говоря, в результате диссоциации образуются не свободные ионы, а соединения ионов с молекулами растворителя. В общем случае любого растворителя эти соединения называются сольватами ионов. Но в уравнениях диссоциации обычно пишут формулы ионов, а не их гидратов или сольватов, тем более что число молекул растворителя, связанных с ионами, изменяется в зависимости от концентрации раствора и других условий. Однако, поскольку всегда образуется моногидрат иона водорода — ион гидроксония Н3О+, рекомендуется все же указывать его формулу, а не изолированного иона водорода. Тем более, что с образованием и разрушением иона гидроксония связана исключительно высокая подвижность иона водорода в водных средах, а значит, и его влияние на разнообразные химические реакции. Как нам известно из главы 4, для воды характерен некоторый дальний порядок в жидком состоянии за счет наличия между ее молекулами водородных связей. Ион гидроксония из-за своего более поляризованного, чем в молекуле воды, атома водорода участвует в образовании водородной связи, присоединяясь к одной из молекул воды  [c.235]

    Рассмотрение полученного равенства приводит к выводу, что связь удельной электропроводности с концентрацией и природой растворенных ионов, а также с температурой и природой растворителя определяется влиянием этих параметров на подвижность ионов. [c.52]

    В зависимости от растворителя значения подвижности могут меняться. На подвижность ионов существенное влияние оказывает вязкость. Между вязкостью растворителя т)о и подвижностью существует зависимость [c.308]

    Влияние растворителя на подвижность ионов подтверждается данными табл. 13, из которой следует, что в органических растворителях эта величина может меняться в несколько раз, причем во многих случаях в неводных растворах подвижности меньше, чем в водных. Однако встречаются и исключения. Для растворов в ацетоне и цианистом водороде влияние растворителя на подвижность иона связывают с вязкостью растворителя т]о. Подставляя формулу Стокса в выражение (III.6), получим  [c.90]

    Как и при разделении на ранее описанных полимерных ХНФ, механизм хирального распознавания в данной системе является сложным и до конца не выяснен. Однако основные причины удерживания сорбата были выявлены в ходе систематических исследований влияния его структуры и состава подвижной фазы на коэффициент емкости. Во многих отношениях альбумин-силикагелевый сорбент ведет себя подобно обращенно-фазовым материалам на основе алкилированного силикагеля. Спирты, преимущественно пропанол-1, помогают регулировать время удерживания, поскольку вызывают его быстрое уменьшение вследствие ослабления гидрофобных взаимодействий с сорбентом. Оптимизировать состав подвижной фазы можно, варьируя тремя основными параметрами, а именно pH, ионной силой и органическим растворителем-модификатором [90]. Вероятно, в любой хроматографической системе одновременно наблюдается влияние диполь-ионных и гидрофобных взаимодействий. Кроме того, возможно образование водородных связей и комплексов с переносом заряда. Большое влияние свойств подвижной фазы на значения к разделяемых энантиомеров можно объяснить зависимостью свойств белков от распределения заряда и его конформации. БСА состоит как минимум из 581 остатка аминокислот, связанных в единую цепь (мол. масса 6,6-10 ), и его надмолекулярная структура в значительной мере определяется присутствием в молекуле 17 дисульфидных мостиков. При рН7,0 полный заряд молекулы равен - 18, а изоэлектрическая точка равна 4,7. Как это хорошо известно из химии ферментов, смена растворителя способна вызывать изменения в структуре связывающего центра белка в результате изменения его заряда и конформации. [c.133]

    В то время как амины и аминокислоты, несущие положительный заряд, более прочно удерживаются при более высоких значениях pH, для отрицательно заряженных сорбатов справедливо обратное. Систематические исследования, проведенные на серии N-бензоил-о, L-аминокислот, позволили глубже понять механизм взаимодействия сорбата с белком. Влияние изменения свойств подвижной фазы на величины к VI а демонстрирует рис. 7.10. Во-первых, удерживание в значительной степени возрастает с усилением гидрофобного характера аминокислоты (Ser > А1а> Phe). Во-вторых, увеличение суммарного отрицательного заряда белка с увеличением pH вызывает уменьшение к для всех шести соединений (вследствие ионного взаимодействия). Далее, влияние концентрации буфера можно объяснить усилением адсорбции вследствие ионных взаимодействий при низкой ионной силе. Небольшое, но вполне заметное возрастание к для наиболее сильно удерживаемых сорбатов при высоких концентрациях буфера вероятнее всего является результатом усиления гидрофобных взаимодействий. Поскольку ионные (кулоновские) и гидрофобные взаимодействия по-разному подвержены влиянию ионной силы, то оба эффекта приводят к возникновению минимума в адсорбции сорбата (к ) в определенной точке. И наконец, совершенно очевидно влияние органического растворителя-модификатора он всегда приводит к понижению удерживания сорбата и тем сильнее, чем более гидрофобен сорбат. Влияние pH и ионной силы на удерживание незаряженных соединений невелико, но выражено вполне отчетливо. Оно связано исключительно с изменениями в связывающем центре ХНФ. Добавление пропанола-1 вызывает уменьшение удерживания по сравнению с наблюдаемым у заряженных сорбатов, что свидетельствует о преимущественном вкладе в удерживание гидрофобных взаимодействий. Это подтверждает также наблюдаемое очень большое влияние на удерживание длины цепи алканола-1. Высшие спирты являются значительно более эффективными конкурентами за связывающий центр, а потому вызывают более быстрое элюирование сорбата. Возможность регулирования удерживания путем изменения подвижной фазы, которую демонстрирует схема 7.6, говорит о том, что эту особенность данных хроматографических систем можно использовать в целях оптимизации разделения. [c.135]


    Более детально о соотносительном влиянии электронодо-норных и электронофильных растворителей на подвижность ионов с изменением кристаллографического радиуса последних можно судить из данных табл. 10, в которой приведены величины кристаллографических радиусов ионов Гкр, величины радиусов сольватированных ионов Га (последние взяты из работы [1137]) и подвижность ионов в двух растворителях, относящихся к различным классам. [c.48]

    Влияние растворителя на подвижность кето-енольных систем понятно, если принять во внимание, что скорости процессов превращения обеих форм друг в друга обусловливаются процессом ионной диссоциации. Влияние же растворителя на положение равновесия (табл. 71) определяется растворимостью обеих форм при этом в случае кето-енольных систем, поскольку обе формы относятся к разным классам органических соединений, влияние растворителя оказывается весьма существенным. Димрот [47] вывел следующее соотношение между концентрацией С и растворимостью L обеих форм  [c.558]

    Однако у ионов меньших размеров положительное влияние увеличения заряда частично снижается из-за более сильного взаимодействия в системе ион—растворитель. Для двухосновных кислот, как правило, подвижность иона типа X примерно в 1,7 раза больше подвижности иона типа НХ эта тенденция к более медленному росту подвижности по сравнению с увеличением заряда наиболее отчетливо проявляется у простых элементарных ионов. Na Са + и La " имеют примерно одинаковый радиус в кристаллической решетке, а их подвижности при 298 К составляют соответственно 50,1, 59,5 и 69,7. [c.110]

    Аззам [15] исследовал вопрос о связывании ионами ближайших молекул воды, рассматривая при помощи методов статистической механики распределение диполей растворителя вокруг иона. Он установил критерий существования связывания и предложил способ определения числа связанных ионом молекул воды раствора. Аззам пришел к выводу, что связывание наблюдается при наличии таких ионов, как На+, К , С1 и т. д. В этих случаях, согласно Аззаму, ближайшие к иону молекулы-воды прочно с ним связаны, и молекулы воды и ион вместе ведут себя как замкнутое целое (имеется в виду отсутствие обмена). Аззам определил числа гидратации для ионов Н , Ц+, Ка" , К+, Rb+, Сз+, Р, С1, Вг", 1". В ряде работ [16—19] обоснована точка зрения, согласно которой ближнюю (или, по терминологии Бокриса, первичную) гидратацию ионов в водных растворах следует рассматривать не как связывание ионом какого-то числа молекул воды раствора, а как действие ионов на тепловое и, прежде всего, на трансляционное движение ближайших молекул воды. Это действие характеризуется величинами E — изменениями под влиянием ионов потенциального барьера, разделяющего временные положения равновесия молекул воды раствора, по сравнению с величиной потенциального барьера для чистой воды. Величины для различных ионов могут быть как положительными, что означает затруднение обмена ближайших к ионам молекул воды, так и отрицательными. В последнем случае обмен ближайших к ионам молекул воды в растворе происходит чаще, чем обмен ближайших молекул воды в воде вблизи ионов молекулы воды становятся более подвижными, чем в чистой воде. Это явление названо отрицательной гидратацией. Из катионов щелочных металлов отрицательная гидратация свойственна К" , НЬ+ и Сз+. Отрицательная гидратация ряда ионов в водных растворах подтверждается при экспериментальном исследовании самодиффузии воды в водных растворах электролитов. В самом деле, поскольку вблизи ионов с отрица- [c.51]

    Процессы переноса, вызываемые градиентом электрического потенциала, как и другие процессы переноса, можно обсуждать в разных аспектах. Для практических целей явление электропроводности достаточно описать при помощи связей между макроскопически измеряемыми характеристиками без учета молекулярного механизма процесса. С другой стороны, процессы проводимости можно рассматривать в терминах молекулярной статистики. Информация о механизме проводимости, которую дает молекулярная статистика, имеет различную ценность в зависимости от исходных предположений и методов используемой теории. Теория Дебая—Хюккеля рассматривает растворитель как континуум, в котором ионы мигрируют в соответствии с законами гидродинамики, и главным образом исследует влияние на подвижность электростатического взаимодействия ионных зарядов. Но для деталь- [c.301]

    Влияние растворителя на подвижность кето-енольных систем понятно, если принять во внимание, что скорости процессов превраще-иия обеих форм друг в друга обусловливаются процессом ионной [c.484]

    По мере увеличения набухания, т. е. уменьшения относительного вклада сольватационной составляющей, появляются условия для проявления эффектов, связанных с подвижностью углеводородных цепей. Эти эффекты усложняют характер влияния растворителя на селективность наряду с уменьшением наклона кривой Куу—состав, на ней могут появиться области, где селективность увеличивается с ростом содержания преимущественно поглощаемого иона. [c.156]

    Влияние растворителя на подвижности ионов. Подвижности ионов в довольно сильной степени меняются с растворителем, с чем также связано и изменение электропроводностей. [c.288]

    Влияние растворителя иа подвижность иоиов иллюстрирует табл. XVII, 5, из которой следует, что и в органических растворителях подвижности ионов—величины такого же порядка, как и в водных растворах, т. е. выра- [c.440]

    Ионы Металлов, входящие в состав проявителя, могут адсорбироваться на поверхности подложки и при последующей термодиффузии примесей в подложку вызывать дефекты полупроводниковых структур. Для сверхбольших интегральных схем отрицательное влияние удерживания подвижных ионов металлов особенно велико и повышается с ростом плотности элементов схемы. Поэтому необходимо, чтобы максимальное содержание ионов Na+ и К+ в резисте составляло 0,2—5 млн-. Поскольку проявление позитивных резистов проводится растворами щелочей, требуется хорошая промывка подложки после проявления. Заметна тенденция использовать растворители, не содержащие ионов металлов, и для проявления позитивных резистов, так как при этом меньше вносится всевозможных загрязнений. Примером таких проявителей могут служить MF-314 Shipley, а также системы па основе водных растворов аминов [2] и смесей этаноламинов с глицерином [79]. [c.51]

    Но подобные процессы не оказывают заметного влияния на подвижность ионов NHj и NH в аммиаке, так как водородная связь в этом растворителе гораздо более слабая (чем слабее водородная связь, тем больше величина энергетического барьера между двумя равновесными состояниями протона). Из приведенных выше данных видно, что подвижности аммоний- и амид-ионов в аммиаке близки к подвижностям обычных одновалентных ионов в этом растворителе. Константы скоростей реакций (21) и (22), как уже указывалось, равны — 5-10 - л1 молъ-сек). Константы скоростей соответствуюш,их им водных реакций  [c.32]

    Влияние растворителя на подвижность ионов иллюстрирует табл. XVII, 5, из которой следует, что и в органических растворителях подвижности ионов — величины такого же порядка, как и в водных растворах т. е. выражаются значениями десятков обратных омов. В зависимости от растворителя подвижности [c.414]

    Электрическая проводимость растворов электролитов зависит от температуры и природы растворителя. При увеличении температуры она обычно возрастает приблизительно на 2% на каждый градус. Большое значение при этом имеет влияние вязкости на подвижность ионов. Если бы радиус сольватироваиного иона не зависел от температуры, то следовало бы ожидать выполнения правила Вальдена и Писаржевского, которое в действительности соблюдается лишь для практически негидратированных крупных органических ионов  [c.222]

    Эквивалентная электропроводность изменяется с температурой. Для большинства электролитов с повышением температуры электропроводность увеличивается, что объясняется повышением подвижности ионов. Однако для некоторых электролитов, особенно в неводных средах, возможно и снижение электропроводности. Это связано с уменьшением диэлектрической проницаемости растворителя. Величина эквивалентной электропроводности зависит также от амплитуды и частоты приложенного электрического поля. Особенно заметно это проявляется в растворах сильных электролитов, где на перемещение ионов оказывает влияние окружающая противоионная атмосфера. При высоком напряжении ион движется значительно быстрее, чем образуется ионная атмосфера, и поэтому отсутствуют, катафоретиче-ские и релаксационные эффекты. Электропроводность растворов в этих условиях резко возрастает. Релаксационное торможение снижается, кроме того, при повышенных частотах (эффект Дебая—Фаль-кенгагена). В растворах слабых электролитов электропроводность также растет с увеличением градиента поля, однако природа этого явления связана с изменением равновесия диссоциации. При высоком градиенте потенциала равновесие сдвигается в сторону образования ионов. [c.225]

    Эти уравнения однако, выполняются лишь при невысоких кон центрациях растворов В зависимости от концентрации, природы электролита и растворителя и других факторов наблюдаются не только количественные отклонения от этих уравнений, но и закономерности которые качественно отличаются от описанных Электрическая проводимость растворов электролитов зависит от температуры и природы растворителя При увеличении тем пературы она обычно возрастает приблизительно на 2% на каж дый градус Большое значение при этом имеет влияние вязкости на подвижность ионов Если бы радиус сольватированного иона не зависел от температуры то следовало бы ожидать выполнения правила Вальдена и Писаржевского которое в действительности соблюдается лишь для практически негидратированных крупных органических ионов [c.222]

    Подвижные фазы. Хроматографические разделения с использованием ионообменников чаще всего проводят в водных растворах, так как вода обладает прекрасными растворяющими и ионизирующшш свойствами. Под действием воды молекулы пробы мгновенно диссоцшфуют на ионы, ионо-генные группы ионообменников гидратируются и также переходят в полностью или частично диссоциированную форму. Эго обеспечивает быстрый обмен противоионов. На элюирующую силу подвижной фазы основное влияние оказывают pH, ионная сипа, природа буферного раствора, содержание органического растворителя или поверхностно-активного вещества (ион-парная хромато1рафия). [c.317]

    Хроматография на бумаге возникла как вариант распределительной хроматографии на столбике целлюлозы. Фильтровальная бумага является носителем неподвижной фазы, а система растворителей — подвижной фазой, которая перемещается по хроматограмме под действием капиллярных сил. В ячейках бумаги протекает процесс, в какой-то мере аналогичный противоточному распределению. Скорость перемещения определяемого вещества по бумаге выражают величиной Рр (см. разд. 2.7). На значение Рр оказывают влияние следы посторонних ионов в растворителях, изменение температуры, неоднородность бумаги и т. д. Значения Нр для различных веществ в большинстве случаев пропорциональны их коэффициентам распределения. Консден, Гордон и Мартин [4] выявили зависимость между коэффициентом распределения и скоростью перемещения анализируемого соединения она описывается уравнением [c.21]

    В противоположность этому подчеркивает, что здесь в действительности речь идет не о двойном обмене , но лишь о переходе определенной заряженной частицы, а именно крайне подвижного протона, от одной кислотно-основной системы к конкурирующей второй системе (ср., например, стр. 284). Определение Брёнстеда позволяет выяснить, в каком процессе проявляется сила химического притяжения, а также позволяет понять влияние растворителя оно имеет значительно более широкий и общий смысл, чем классическое определение. В действительности вследствие образования соли, ионы которой лишь в незначительной степени участвуют в процессе, для взаимодействия между кислотой и основанием характерно еще образование недиссоциированной и незаряженной молекулы, которую можно рассматривать как растворитель [220]. В четырех случаях обмена кислоты и основания, которые возможны, по данным Эберта, только в первом образуется молекула растворителя, во втором и третьем в противоположность этому она не образуется, а в четвертом молекула растворителя даже расходуется. [c.280]

    Перегруппировка молекул воды после перескока протона как часть механизма прототропной проводимости была тщательно исследована теоретически [39]. Для этого определяли скорость переноса по нескольким возможным механизмам и на основе результатов расчетов показали, что скорость определяющая стадия заклк)чается во вращении молекул растворителя, действующих в первой сольватной оболочке как электрические диполи, обеспечивающем непрерывный перенос протонов. По сравнению со скоростью вращения молекул растворителя протоны вдоль водородных связей между ионами оксония и соседними молекулами растворителя переносятся с большой скоростью. Аналогичны взгляды исследователей на скорость определяющую стадию процесса проводимости электричества ионами гидроксила. Сила, вызывающая вращение молекул воды, при переносе электричества ионами Н3О+, частично обусловлена влиянием ионов на диполи молекул растворителя, частично — отталкиванием между гидроксильными группами, противостоящими в процессе предыдущего переноса протона. Влияние взаимодействия гидроксильных групп на вращающую силу в водных растворах подтвердилось расчетами. С другой стороны, лри переносе протонов в процессе проводимости за счет ОН--ионов две ОН-связи не могут противостоять друг другу. Поэтому возникновение силы, вращающей молекулы воды, связано только с действием ОН--ионов на дипольные молекулы растворителя. Поскольку предполагается, что подвижность ионов пропорциональна квадратному корню из величины действующей на них силы, можно ожидать, что часть проводимости 0Н--И0И0В, обусловленная переносом протонов, составляет У /4 = /2 проводимости ИОНОВ водородз, что приближенно соответствует экспериментальным данным. Однако оценить в этом отношении экспериментальные данные можно лишь приближенно, так как нельзя измерить отдельно прототроп-ную часть проводимости. Возможно, что не будет заметного [c.334]

    Первое уравнение Онзагера сравнивали с экспериментальными данными. Весьма важно исследовать зависимость константы ионной ассоциаций от диэлектрической проницаемости растворителя. Для этой цели особенно пригодны смеси воды и 1,4-диоксана (С4Н8О2), поскольку, несмотря на свою низкую диэлектрическую проницаемость (е = 2,21 при 25 °С), диоксан смешивается с водой. Диэлектрическую проницаемость смеси диоксан — вода можно варьировать в интервале 78,5—2,2. Однако при добавлении диоксана к воде изменяется не только диэлектрическая проницаемость среды, но и, что весьма существенно,— структура жидкости. Соответственно изменение проводимости водных растворов электролита вследствие присутствия диоксана обусловлено не только изменением диэлектрической проницаемости, но также и всех взаимодействий, определяющих подвижность ионов и зависящих от структуры жидкости. Тем не менее было показано, что в смесях диоксан — вода влияние на проводимость изменений диэлектрической проницаемости значительно. [c.365]

    Явления переноса в растворах электролита тесно связаны с взаимодействием молекул и ионов. Соответствующие соотношения и связи сложны и многообразны, и их можно выразить посредство1м различных сил. Тем не менее взаимодействие между частицами растворов электролита и явления, вызванные ими, можно классифицировать, разделяя их на две основные группы разной природы. В одной из групп преобладающими силами являются электростатическое притяжение и отталкивание между электрическими зарядами ионов, т. е. кулоновские силы. Эти силы главным образом видоизменяют пространственное распределение растворенных ионов и уменьшают ионную подвижность. Теории, рассматривающие это явление, обычно объединяются под названием электростатическая теория сильных электролитов. В другой группе явлений рассматривается взаимодействие между ионами и молекулами растворителя. С одной стороны, электрическое или какое-либо другое атомное поле ионов нарушает или разрушает структуру воды (или вообще структуру растворителя). С другой стороны, оно связывает молекулы растворителя с ионами более или менее упорядоченными, но обычно не ковалентными связями. Эти явления, называемые сольватацией или в случае воды гидратацией, очень сложны. Однако общее для них состоит в том, что некоторые свойства растворителя, главным образом его структура и, следовательно, его энтальпия, энтропия, мольный объем, сжимаемость и подвижность молекул, изменяются в присутствии ионов. Подвижность молекул воды играет очень важную роль в явлениях переноса, и ионные поля влияют на нее в двух противоположных направлениях подвижность молекул воды возрастает из-за разрушения решетчатой упорядоченной структуры воды и уменьшается под действием упрочняющего структуру ион-дипольного взаимодействия, а также и других вандерваальсовых сил. Если результирующая сила, зависящая от относительной величины этих двух типов влияний, уменьшает подвижность молекул воды, то имеет место положительная гидратация (или, коротко, гидратация), если же результирую- [c.462]

    Связь между потоками противоионов в сочетании с действием электрического поля усложняет уравнение из-за введения перекрестных коэффициентов из термодинамики необратимых процеЬсов [59]. Еще более серьезное затруднение заключается в том, что коионы в ионите нарушают, по крайней мере в некоторой степени выполнение условий, определяемых уравнениями (5) и (6). Таким образом, упрощенное решение с помощью только одного простого дифференциального уравнения оказывается недопустимым. Кроме того, ионный обмен может сопровождаться сорбцией или десорбцией растворителя, не оказывающих прямого действия на поток протиПоионов, по косвенно влияющих на скорости, так как эти процессы вызывают изменения размеров зерен ионита и подвижности ионов. При создании количественной теории ионообменной кинетики предстоит еще большая работа по выяснению влияния сорбции или десорбции растворителя, [c.296]

    Растворы сильных электролитов (солей, сильных кислот и сильных оснований) не подчиняются закону действия масс. В их растворах находятся только катионы и анионы данного растворенного вещества и практически нет недиссоциированных молекул этого вещества. Но экспериментально определенная степень диссоциации сильных электролитов очень невелика. Закон действия масс выведен без учета действия сил притяжения и отталкивания между ионами растворенного вещества и молекулами растворителя. Эти силы особенно заметны в растворах сильных электролитов, где все молекулы растворенного вещества диссоциированы на ионы, несущие разноименные электрические заряды. В концентрированных растворах слабых электролитов также наблюдаюгся отступления от закона действия масс, потому что в них концентрация электрически заряженных компонентов раствора значительно больше, чем в разбавленных растворах. По теории растворов сильных электролитов при повышении концентрации растворов подвижность ионов в растворе уменьшается под влиянием взаимодействия ионов, так как среднее расстояние между ионами уменьшается. [c.37]

    Температура. Хотя температура оказывает существенное влияние на характеристики осадка, предсказать ее роль практически невозможно. Повышение температуры приводит к снижению концентрационной поляризации за счет увеличения подвижности ионов и уменьшения вязкости растворителя. В то же время при повышении температуры из-за снижения перенапряжения может наблюдаться усиление образования газа. Оптимальную температуру для каждого конкретного процесса электролиза можно определито только экспериментально. [c.22]


Смотреть страницы где упоминается термин Влияние растворителя на подвижности ионов: [c.441]    [c.275]    [c.21]    [c.314]    [c.343]    [c.425]    [c.127]    [c.445]    [c.69]   
Смотреть главы в:

Физическая химия Том 1 Издание 4 -> Влияние растворителя на подвижности ионов




ПОИСК





Смотрите так же термины и статьи:

Ионная подвижность

Ионная подвижность Подвижность

Подвижность иона

Подвижность ионов

Растворитель ионита



© 2025 chem21.info Реклама на сайте