Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Релаксация вращательная, время

    С ростом температуры значения Т а и Т б возрастают, что указывает на рост вращательной подвижности относительно оси симметрии шестого порядка. При 10 /Т 5 для Т а и 4 для Т в на кривых Гщ, в = = / Т ) имеются минимумы. Их можно, по-видимому, объяснить тем, что при определенных температурах, характерных для каждой группы адсорбированных молекул, вследствие близости частоты вращения адсорбированных молекул и резонансной частоты протонов передача магнитной энергии спин-системы решетке усиливается, а время релаксации уменьшается. Характерно, что минимум на == / (Т" ) имеет место при более низких температурах, чем в случае т. е. включение в релаксацию вращательной подвижности сравнительно слабо связанных с подложкой молекул начинается при более низкой температуре. С ростом температуры увеличивается амплитуда колебаний оси симметрии адсорбированных молекул, что в известном приближении эквивалентно плаванию бензола в адсорбированном состоянии. Общий характер хода температурной зависимости и Т , наличие двух составляющих времен релаксации и порядок их величин хорошо согласуются с данными работы [5]. На возможность существования в адсорбционном слое различны х по степени связи с подложкой молекул указывалось при анализе данных для воды, адсорбированной на силикагеле [8]. [c.228]


    В резком противоречии с этими данными находятся данные, полученные Паркером с сотрудниками [1007], которые, на основании измерений поглощения ультразвука в N2 и О2, нашли для этих газов Р 0,5. Отметим также, что применяемую прм< экспериментальном определении Р формулу Тво= 12Р (1вр—вращательное время релаксации) нельзя считать строго обоснованной. Это соотношение нужно считать тем более справедливым, чем больше величина вращательных квантов., [c.303]

    Возможность генерации излучения в этой схеме определяется благоприятным сочетанием скоростей различных релаксационных процессов, характерных для рабочих уровней. Нижний рабочий уровень 10 0 и исходный для накачки уровень 02°0 благодаря ферми-резонансу (взаимодействие колебательных уровней близкой энергии и подходящей симметрии, в результате которого уровни отталкиваются друг от друга и приобретают смешанный характер в данном случае смешаны фундаментальное валентное полносимметричное колебание и обертон дважды вырожденного деформационного колебания молекулы СОг) сильно взаимодействуют друг с другом. Из-за этого взаимодействия и небольшого различия в энергии уровней ( 103 см ) нарушенное соотношение их термодинамически равновесных заселенностей восстанавливается при столкновениях молекул весьма быстро, за время с-Па, сравнимое с временем релаксации вращательных уровней. Кроме того, молекулы в состояниях 10°0 и 02°0 эффективно теряют энергию возбуждения при столкновениях с менее колебательно-возбужденными и невозбужденными молекулами. В частности, время колебательной релаксации нижнего рабочего уровня 10 0 с-Па. Верхний же рабочий уровень 00°1 [c.180]

    Выражение (7.42) показывает, что первоначальная преимущественная ориентация (определяемая членом sin 2ср) по выключении потока релаксирует (исчезает) во времени по экспоненциальному закону. При этом время релаксации то (время, в течение которого преимущественная ориентация убывает в в раз), согласно (7.41), непосредственно связано с коэффициентом вращательной диффузии Dr. Решение той же задачи для пространственного движения частицы [функция распределения [c.520]

    На частоте 80 МГц ширина линии оказалась приблизительно постоянной и равной О,6-1,О Гц при концентрациях 90-650 гПа. Однако при уменьшении давления от 90 до 25 гПа она быстро растет до 10 Гц. Это уширение устраняется в присутствии 20 атм сухого аргона, что указывает на его спин-вращательное происхождение. Из-за трудности разделения вкладов двух механизмов уширения в наблюдаемый контур линии мономер - димерная релаксация в парах чистой трифторуксусной кислоты изучалась только в области давлений 130-650 гПа. В табл.1 приведены значения ширины линии на полувысоте у2 зависимости от полного давления кислоты Ро=Рм+Рд и температуры там же приведены значения степени диссоциации ос, где/3 и Рд - парциальные давления мономера и димера, вычисленные по константам равновесия, определенным в [14] для широкого интервала температур с высокой степенью точности. Видно, что отношение ширин линии, измеренных при частотах 360 и 270 МГц, близко к 1,77 =(360/270) . Зто доказывает, что уширение обусловлено быстрым обменом, связанным с модуляцией химического сдвига, однако не доказывает еще, что этим обменом является мономер-димерная релаксация.Определим время жизни димера, считая, что последнее предположение выполняется. Поскольку при равновесии времена жизни состо- [c.232]


    На рис. 109 представлена зависимость поляризации разбавленных растворов системы флуоресцеин — полиакриламид для различных молекулярных весов полимеров. Откладывая р как функцию Т ц, где т] — вязкость воды при температуре Г, получают прямую, отсекающую на оси ординат отрезок ро 0,5 и имеющую наклон В, увеличивающийся с ростом молекулярного веса 139]. Поэтому время релаксации вращательной диффузии р растет с увеличением молекулярного веса. Номере увеличения молекулярного веса величина р приближается к предельному значению, равному 6-10 сек, в то время как свободный флуоресцирующий краситель имеет величину р, примерно в десять раз меньшую [33]. Для полимера определенного молекулярного веса, связанного с флуоресцеином в комплексе, величина р увеличивается по мере того, как подавляется сегментальное движение частично перекрывающихся полимерных цепей. Из данных, приведенных на рис. ПО, видно, что, хотя величина р для полимеров с двумя различными молекулярными весами растет неодинаково при низких концентрациях, в области концентраций выше 50% величины р этих полимеров совпадают. Свободный флуоресцеин в растворах полимеров имеет, конечно, более низкую величину р, но по мере увеличения локальной вязкости р приближается к значениям, характерным для чистых полимерных матриц. [c.183]

    При описании процессов релаксации внутренних степеней свободы весьма важным и облегчающим положение обстоятельством является то, что времена релаксации различных степеней свободы часто довольно сильно различаются между собой. Обозначим через время релаксации поступательных, — время релаксации вращательных, а — время релаксации колебательных степеней свободы. В широком диапазоне условий имеет место соотношение <С Время диссоциации и [c.143]

    RT время вращательной релаксации г77 - время поступательной релаксации [c.39]

    В случае неупругих столкновений необходимо также найти из эксперимента вращательную удельную теплоемкость, отнесенную к одной молекуле , rot, и времена релаксации хц для перехода внутренней энергии молекулы i в поступательную при столкновении с молекулой /. Мы ограничиваемся только релаксацией вращательной энергии, поскольку переход колебательной энергии в поступательную происходит намного медленнее. Времена релаксации связаны с числами столкновений следующим образом  [c.53]

    Понижение диэлектрической проницаемости граничных слоев воды следует также из молекулярно-динамических оценок изменений вращательной подвижности диполей воды [4] п подтверждается исследованиями структуры воды в тонких прослойках методом неупругого рассеяния нейтронов и ЯМР. Так, для дисперсий кремнезема времена релаксации молекул воды в граничном слое 1 нм в 5—10 раз превышают объемные значения [39]. Методом электронного спинового резонанса показано, что подвижность спиновой метки снижается с уменьшением радиуса пор силикагеля от 5 до 2 нм [40]. [c.14]

    Время вращательной релаксации для микроброуновского движения в растворах и расплавах полимеров составляет 10- с. [c.276]

    Выше было сделано предположение, согласно которому время, необходимое для выстраивания спинов в магнитном поле или для нарушения их ориентации при снятии поля, мало. Эти быстрые процессы называются процессами релаксации и характеризуются временем релаксации, определенным в разд. 10.2. Релаксация ядерных спинов определяется двумя различными процессами. В процессе спин-решеточной релаксации (время релаксации Т,) избыточная спиновая энергия превращается в тепловую энергию решетки. Под решеткой понимается окружение спинов. Колебательные, вращательные и поступательные движения атомов и молекул решетки вызывают появление флуктуирующего магнитного поля на ядре или неспаренном электроне. Это поле, обусловленное магнитными моментами ближайших атомов и молекул, имеет компоненты с частотой, необходимой для индуцирования переходов между состояниями аир. Величина Тг может быть определена в эксперименте со спиновой системой, выведенной из равновесного состояния действием внешнего электромагнитного поля, путем снятия поля и измерения времени, за которое отклонение заселенности уровней от их равновесных значений уменьшается в е раз. Значение Т1 изменяется от 10 до 10 с для твердых тел и от 10-- до 10 с для жидкостей. [c.503]

    При комнатной температуре в жидких растворах время вращательной релаксации Тн молекул растворителя составляет 10 с, а время жиз- [c.436]

    Молекулы АТ обладают некоторой гибкостью, т. е. способностью к конформационным превращениям. С помощью поляризованной люминесценции комплексов IgG с люминесцирующими красителями были установлены времена вращательной релаксации т, оказавшиеся порядка 50 не (см. 5.5). Эти значения соответствуют броуновскому вращательному движению не всей молекулы белка, но малых ее участков, т. е. указывают на гибкость молекулы белка. По-видимому, домены обладают подвижностью. Взаимодействие гаптена с АТ приводит к заметному увеличению X, что указывает на изменение конформации АТ. Было установлено, что при образовании комплекса АТ—А Г конформация АГ также меняется. Данные оптических измерений подтверждаются исследованиями спектров электронного парамагнитного резонанса антител, содержащих парамагнитные метки. [c.126]


    Как уже сказано, поляризация люминесценции зависит от подвижности люминофора. Определяя Р, можно найти релаксационные характеристики макромолекулы. Теория поляризованной люминесценции полимеров развита в работах [181, 182]. Среднее квадратичное время вращательной релаксации в макромолекуле Тг можно определить по зависимости степени поляризации люминесценции для раствора полимера от вязкости растворителя [c.325]

    Вращательное время корреляции 19 (из уширения линий в спектрах Э ПР) несколько превышает величины для чистых воды или доде-кана, но его величина значительно ниже, чем следует ожидать для молекулы, прикрепленной к частице, размером с мицеллу. Картина, согласующаяся со спектральными данными, представляет мицеллу частицей с непрерывным радиальным градиентом полярности, являющимся результатом значительного проникновения воды в углеводородный район. Быстро кувыркающиеся молекулы солюбилизата могут иметь в зависимости от структуры усредненное по времени окружение, напоминающее либо центр мицеллы, либо ее периферию. Прямое доказательство существования такого водного градиента между поверхностью и ядром мицеллы дает зонд 20, Z которого монотонно изменяется до величин, соответствующих углеводородному окружению, по мере сдвига нитроокисной функции от периферии мицеллы [457]. Величины Z, определяемые фтором в положениях 2, 4, 6 и 8 мицеллярного перфтороктаноата натрия, также заметно увеличиваются при таком продвижении [381]. Аналогичным образом интерпретировали времена спин-решеточной релаксации метиленовых протонов амфифильного соединения [108]. [c.584]

    Одпако ориентация постоянных диполей, вероятно, не единственный механизм, ответственный за низкочастотные диэлектрические свойства водных суспензий и растворов нолиэлектролитов, так как эти свойства обнаруживают также такие объекты, для которых наличие большого постоянного дипольного момента является сомнительным [7]. Когда диэлектрическая проницаемость обусловлена ориентацие постоянных диполей, время диэлектрической релаксации должно определяться временем вращательной ориентации диполей. Такашима [1] обнаружил, что время вращательной релаксации и время диэлектрической релаксации, характеризующее низкочастотную дисперсию диэлектрической проницаемости для высокомолекулярных фракций, различаются в 20 раз. [c.102]

    Время вращательной релаксации молекул Время колебательной релаксации молекул Время релаксации для диссоциации О2 Сроднее время ожидания эффективного столкновения с норогово энергией 60 ккал моль 2,5 эв [c.303]

    Если время адиабатического сжатия газа нри прохождении звуковой волны заметно превышает время колебательной релаксации Ткол то молекулярную колебательную теплоемкость можно считать близкой к равновесной колебательной теплоемкости С ол- В тех же случаях, когда полупериод колебаний меньше вс личины Ткол (большие частоты), колебательная теплоемкость будет практически равна нулю, т. е. вся заключенная в данном элементе газа энергия будет иметь форму поступательной и вращательной энергии. [c.77]

    Здесь Лпо —начальное (при включенном поле) двулучепреломле-ние т—время релаксации, зависящее, в общем случае, от концентрации. При экстраполяции концентрации к нулю можно оценить коэффициент вращательной диффузии и линейные размеры макромолекул. [c.265]

    Выше рассматривались случаи, когда сама реакция служила причиной возникающих отклонений от равновесия. Ei последнее время интенсивно развиваются физические методы стимулирования газофазных реакций, в частности лазерная накачка в ИК-диапазоне. При решении задач этого направления принципиальное значение имеют вопросы кинетики заселенностей и, в частности, колебательной кинетики, так как любое воздействие на вещество (тепловое, химическое, электронный удар, оптическая накачка) приводит к перераспределению заселенности уровней, которые определяют кинетику и механизм химических реакций. Широко проводимые в настоящее время исследования касаются самых различных аспектов кинетики в существенно неравновесных условиях и включают а) изучение вида функций распределения по ко.пебательным уровням б) определение общей скорости релаксации колебательной энергии в) нахождение зависимости неравновесного запаса колебательной энергии от скорости накачки вненпшм источником, приводящим к разогреву колебаний г) анализ взаимного влияния колебательной релаксации и химического процесса (диссоциация молекул, бимолекулярная реакция компонент смеси), а также, например, генерации на колебательно-вращательных переходах. [c.66]

    Ядра изолированы от окружающей их решетки электронными оболочками и не могут отдать избыточную энергию путем соударений. Вероятность спонтанного (самопроизвольного) излучения в радиоволновом диапазоне ничтожно мала (например, время жизни протона в возбужденном состоянии равно лет). Существует, однако, безызлучательный путь отдачи энергии ядрами, называемый релаксацией. Дело в том, что в каждом образце, содержащем магнитные ядра, возникают слабые флуктуирующие (хаотически меняющиеся) локальные магнитные поля, обусловленные межмолекулярными и внутримолекулярными движениями. Эти магнитные поля содержат весь спектр колебаний, в том числе и тех, которые совпадают с частотой ларморовой прецессии магнитных ядер данного изотопа. Соответствующая компонента этого локального поля может вызвать переход того или иного прецессирующего ядра с верхнего уровня на нижний путем резонансного взаимодействия с ним. Энергия этого перехода передается элементам решетки в виде дополнительной поступательной, вращательной или колебательной энергии, т. е. превращается в тепловую энергию образца. Такой процесс охлаждения ядерных спинов называется спин-решеточной релаксацией. Он будет происходить довольно часто, поскольку, как показывает расчет, вероятность вынужденного излучения или ядерного магнитного резонанса велика (в противоположность спонтанному излучению). Система возбужденных ядер получает возмож- [c.22]

    Наиболее важной проблемой, с точки зрения аналитического применения метода, является природа процессов релаксации в жидкостях. При рассмотрении возможности передачи энергии путем спонтанной эмиссии, теплового излучения, электрических взаимодействий показано, что найденные экспериментально времена релаксации Т, и Та, например, протонов воды могут быть объяснены лишь при учете магнитных взаимодействий между частицами через локальные магнитные поля. Локальные поля будут флуктуировать, поскольку молекулы в растворах совершают трансляционные, вращательные и колебательные движения. Компонента создаваемого таким образом переменного поля с частотой, равной частоте резонанса, вызывает переходы между энергетическими уровнями изучаемого ядра совершенно так же, как и внешнее радиочастотное поле. Скорость процесса, приводящего к выравниванию энергии в спиновой системе и между спиновой системой и решеткой , будет зависеть от распределения частот и интенсивностей соответствующих молекулярных движений. При эюм следует учитывать следующие виды взаимодействий магнитное диполь-дипольное, переменное электронное экранирование внешнего магнитного поля, эле.ктрпческое квад-рупольное взаимодействие (эффективное для ядер с / > /2), спин-вращательное, спин-спиновое скалярное между ядрами с разными значениями I. [c.739]

    Данные выше понятия строго применимы к одноатом-ному газу, в котором молекулы обладают только тремя поступательными степенями свободы. Для двухатомных и многоатомных газов распределения внутренней энергии по всем степеням свободы не происходит, пока не пройдет время релаксации, которое следует за любым внезапным изменением состояния газа. Внутренняя энергия запасается вначале в поступательных степенях свободы, и только после достаточного числа столкновений она будет запасаться во вращательных и колебательных степенях свободы. Требуемое число столкновений меняется от нескольких в случае воздуха до тысячи или более в случае СО2. Толщины скачка уплотнения, например, почти полностью определяются уравнениями высшего порядка, что представляет чрезвычайные трудности. Несмотря на большие сложности, возникающие при попытках сформулировать задачу скользя-348 [c.348]

    Жидкая фаза. Г. А. Козлов и А. Г. Козлов [68] исследовали ЯМР-релаксации нормальных алканов от гексана СбН,4 до додекана С12Н26- По мнению этих авторов, с увеличением длины алифатической цепочки время продольной релаксации, как и поперечной, уменьщается. При этом добавление каждой группы СН2 ведет к закономерному и существенному понижению времени продольной релаксации, но очень малому понижению времени поперечной релаксации. Подвижностью обладает вся моле1оша в целом, и, следовательно, ее вращательное движение может быть определено одним временем релаксации. Подвижность же метильных групп на концах цепочек не вносит существенного вклада в подвижность молекулы в целом, по крайней мере при 40 °С. [c.87]

    Как мы видим, молекулы меньшего разме1Йа вращаются гора"здо быст- рее, чем крупные молекулы, времена вращательной релаксации не- льших по размерам белков имеют тот же порядок, что и константа ко дай активных соударений, частота коМрй3 .ламитируётся,дй у 31%е9., [c.17]

    Однако для очень больших молекул (особенно для длинных, имеющиж форму палочки) время вращательной релаксации вокруг короткой ос может составлять уже доли секунды. [c.18]


Смотреть страницы где упоминается термин Релаксация вращательная, время: [c.383]    [c.454]    [c.231]    [c.48]    [c.99]    [c.100]    [c.265]    [c.110]    [c.35]    [c.277]    [c.333]    [c.237]    [c.231]    [c.85]    [c.346]    [c.223]    [c.476]    [c.277]    [c.333]    [c.11]   
Фото-люминесценция растворов (1972) -- [ c.63 , c.372 ]




ПОИСК





Смотрите так же термины и статьи:

Релаксация вращательная

Релаксация время

время релаксации Сжу время релаксации при



© 2025 chem21.info Реклама на сайте