Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фенол, резонанс

    В замещенных производных бензола, как, например, в феноле, резонанс происходит главным образом между двумя структурами Кекуле. [c.183]

    Корреляция рКа замещенных фенолов требует использования о -констант для групп. 1 = Ы02, п = СЫ, п = СНО из-за сильного сквозного сопряжения при наличии этих групп в фенолят-анионе. Для групп п-ОСН , л n-NH2 корреляция достигается использованием 0°-констант, так как резонансный эффект этих групп подавляется более сильным резонансом фенолят-аниона, см. [9], с. 44. [c.240]


    В результате резонанса отрицательный заряд аниона распределяется по всей молекуле, что намного выгоднее концентрации заряда на одном атоме, как это имело место в алкоксид-анионе. Отсюда следует важный вывод фенолы — более сильные кислоты, чем спирт. Это объясняется тем, что энергия, необходимая для ионизации фенола, меньше энергии ионизации спирта благодаря хорошей стабилизации феноксид-аниона (ср. легкость образо ания карбокатионов, разд. 3.3.3). [c.85]

    Скорость реакции сочетания с аминами в интервале pH 2—6 возрастает с понижением кислотности до тех пор, пока концентрация свободного амина не достигнет максимума. При сочетании с фенолами при изменении pH в интервале 5—8 скорость реакции, наоборот, возрастает с повышением pH, поскольку образуется большее количество способного к реакциям фенокси-иона. Такое объяснение не только согласуется с общим представлением о других реакциях замещения в ароматическом ряду, но и подкрепляет его. В данном случае замещающей группой является истинный катион. То, что он сильнее притягивается к фе-нокси-иону, чем к фенолу, является следствием резонанса н индукционного эффекта отрицательно заряженного атома кислорода, что приводит к повышению электронной плотности в орто- и пара-положениях ароматического кольца. Положительный заряд атома азота в солях аминов должен давать противоположный эффект, и поэтому амины сочетаются в свободном виде. [c.271]

    В противоположность галоидным бензилам, производные бензола с галоидом в ядре гораздо менее реакционноспособны, чем соответствующие галоидные алкилы, и сравнимы с галоидными винилами. Инертный характер галоидных арилов и винилов обусловлен более благоприятными условиями для резонанса в их молекулах, чем в образующихся из них ионах это приводит к уменьшению расстояния между углеродом и галоидом в молекуле и упрочнению связи между ними. В отсутствие активирующих групп, галоидные арилы инертны к щелочам, за исключением тех случаев, когда реакцию ведут при высокой температуре и большом давлении (например, реакция хлорбензол—> фенол 300 °С) и часто они могут быть очищены от трудноотделимых примесей посредством отгонки с водяным паром из смесей с водными щелочами. В отличие от галоидных алкилов, хлор- и бромбензолы не реагируют с водной окисью серебра, спиртовым раствором аммиака и этилатом натрия даже при нагревании до 100—150 °С. Практически ценными реакциями с участием атомов галоидов являются реакции с некоторыми металлами и цианистой медью, подробно рассматриваемые в следующем разделе. [c.329]


    С сильными основаниями фенол быстро реагирует с образованием стабилизированного за счет резонанса феноксид-иона  [c.47]

    Свойства фенолов существенно отличаются от свойств алифатических и ароматических спиртов объяснение этому дает теория резонанса. Важнейшее различие заключается в том, что они имеют не одинаковую кислотность спирты (в водном растворе) имеют константу кислотности, приблизительно равную Ы0 , тогда как фенолы характеризуются примерно в миллион раз более высокой кислотностью — их константа кислотности равна примерно [c.364]

    Так как замещения в орто-, мета- и лара-положениях оказывают количественно разное влияние, то для каждого положения определяются свои значения а. Заметим, что замещения в орго-положении сопровождаются дополнительными эффектами, поэтому таблицы значений а обычно составляются только для мета- и лара-положений (ст и а ). Еще одно осложнение связано с тем, что некоторые реакции оказываются настолько чувствительными к лара-замещению, что возникает резонанс, охватывающий всю циклическую систему. Примером служит кислотная диссоциация фенолов. для нитрогруппы обычно составляет 0,778, но, чтобы правильно предсказать влияние ара-нитрогруппы на диссоциацию фенола, нужно взять а , равное 1,25. Это значение <т обозначается через а . Такое более сильное влияние замещения на нитрогруппу может быть обусловлено резонансом фенолят-иона  [c.237]

    Корреляция между спектрами ЯМР и структурой исследованных соединений проведена на основании общих закономерностей характеристических химических сдвигов, интегральных интенсивностей линий протонного резонанса и генетического анализа спектров ЯМР алкилфенолов при последовательном переходе от незамещенного фенола к сложным алкилпроизводным. Установлены закономерности в химических сдвигах 5СН, 5СН, 5СН алкильных радикалов в зависимости от различных факторов (относительное положение по отношению к гидроксилу, симметрия радикала, число и положение других алкильных групп в кольце). [c.16]

    Как было показано в разд. 23.3, ароматические амины — более слабые основания, чем алифатические амины, поскольку резонанс стабилизует свободный амин в большей степени, чем соответствующий ион. В рассматриваемом случае мы встречаемся с обратной ситуацией фенолы являются более сильными кислотами, чем их алифатические аналоги — спирты, поскольку резонанс стабилизует фенолят-ион в большей степени, чем свободный фенол. (В действительности, резонанс с участием кольца оказывает одинаковое влияние в обоих случаях он стабилизует и таким образом ослабляет основание — амин или фенолят-ион.) [c.762]

    Для +Т-заместителей в /i-положении, например NHg- или ОСНз Групп, которые могут предоставлять электроны по резонансному механизму, о -константы применимы только к таким реакциям, где отсутствует прямой резонанс этих заместителей с —Т-реакционным центром (например, к ионизации фенолов). Аналогично для —Т-заместителей в /г-положении (NOj, N и др.), которые могут принимать электроны по резонансному механизму, а -константы применимы только к реакциям, где отсутствует прямой резонанс этих заместителей с +7 -реакцион ным центром. [c.463]

    При процессах ионизации кислот (д), фенолов (е), соединений, содержащих метиленовую группу в а-положении к карбонильной группе (ж) или к ароматическому кольцу (з), наблюдается отрыв протона. Стабильность получающихся анионов, способных к резонансу, обусловливает легкость отрыва протона  [c.60]

    Простые эфиры фенолов, у которых связь между кислородом и ароматическим ядром стабилизирована вследствие резонанса, расщепляются всегда с образованием алкильного производного (е)  [c.240]

    Замена фенольного водорода метилом или ацетилом приводит к некоторому уменьшению индукционной активации, но не влияет на направление замещения, обусловленное резонансом. Отрицательный полюс фенокси-иона обладает мощным индукционным эффектом и делает кольцо даже более восприимчивым к электрофильному замещению, чем у неионизованного фенола резонанс вновь обусловливает орто- и параориентацию. У неионизованной аминогруппы, подобно гидроксилу, имеется ключевой атом с неподеленными электронами, и индукционный и резонансный эффекты в аминах подобны таковым у фенолов. [c.142]

    Стало обычным рассматривать влияние заместителя на ориентацию и скорость замещения с точки зрения изменения плотности облака электронов при различных положениях в ароматическом кольце [164, 309] как следствие индукции и резонанса. Нанример, сильная о-лг-ориептация, наблюдаемая у фенолов, исходя из этого положения, приписывается резонансному взаимодействию, которое с индукцией увеличивает плотности электронов во всех положениях кольца, но особенно в о- и п-ноложениях, [c.413]

    Окраска -оксиазокрасителей при добавлении щелочи углубляется, например переходит из оранжевой в красную, так как при этом фенол превращается в фенолят-ион. и неподеленная пара электронов атома кислорода с большой легкостью участвует в резонансе. о-Оксиазокра-сители, особенно производные -нафтола, обычно не способны образовывать соли по фенольной гидроксильной группе (или образуют их лишь в концентрированной щелочи) вследствие того, что в них имеются водородные мостики. Поэтому такие красители не меняют цвета иод действием щелочей. Аминоазосоединения в кислом растворе легко присоединяют протон, образуя катион красителя. В зависимости от того, вступает ли протон в амино- или в азогруппу, наблюдается, соответственно, повышение цвета (вследствие блокирования неподеленной пары электронов аминогруппы) или углубление цвета (благодаря образованию бензоидной структуры), В связи с этим многие окси- и аминоазокрасителн находят применение в качестве 1шдикаторов. [c.604]


    Применение ряда современных методов исследования, например метода электронного парамагнитного резонанса, позволяющего определять структуру и концентрацию свободных радикалов, образующихся при окислении, термическом, фотохимическом, радиационном, механическом распаде полимеров, метода ядерного магнитного резонанса и других дало возможность изучить механизм старения и стабилизации полимеров н разработать эффективные методы стабилизации различных классов полимеров. Для многих из них предложены меры комплексной защиты от теплового, термоокислительного, светоозонного, радиационного старения. При этом оценка эффективности противостарителей осуществляется не только по активности в химических реакциях, но и по растворимости в полимере, летучести, термостабильности и другим факторам. Полиэтилен, например, хорошо защищается от термоокислительной деструкции в присутствии небольших количеств (0,01 /о) фенольных или аминных антиоксидантов, что важно для его переработки. При эксплуатации полиэтилен достаточно стабилен, тогда как полипропилен нуждагтся в защите от старения при эксплуатации. Здесь более эффективны такие антиоксиданты, как производные фенилендиаминов. Для защиты полиэтиленовых пленок от действия ультрафиолетового света применяют <5г < -фенолы. Весьма важна проблема стабилизации ненасыщенных полимеров (каучуков), где достаточно эффективны аминные про-тивостарители или их сочетание с превентивными антиоксидантами. [c.273]

    Хотя В алифатических соединениях гидроксильная группа является электронопритягивающей, гидроксил, примыкающий к бензольному кольцу, как показывают дипольные моменты, является сильно электроноотталкивающим. Таким образом, высокая восприимчивость фенола К электросмльному замещению обусловлена индукционным эффектом. Резонанс здесь также 1В031М0же1Н, та как пара ивподеленных элек- [c.141]

    Пространственно затрудненный фенол, например, 2,4,6-три-трет-бутилфенол VI, окисляется кислородом в щелочном растворе при низкой температуре с образованием непланарной гидроперекиси VII, менее напряженной, чем исходный фенол (Йоэ, 1959 Герсман, 1959). В щелочном растворе гидроперекись VII способна разлагаться, давая соединение VIII, перегруппировываться в соединение XI или претерпевать отщепление изобутилена с образованием аниона семихинона X, охарактеризованного спектром электронного парамагнитного резонанса и идентичного аниону, получающемуся при восстановлении о-хинона IX (Конради, 1960)  [c.308]

    Спектроскопия ядерного магнитного резонанса. С помощью ЯМР" спектроскопии [26] весьма успешно изучают как строение переходных соединений [23], так и структуру образующихся фенольных форполимеров [24, 25]. Этот метод позволяет определить количественно соотношение о- и и-гидроксиметильных групп в феноло-спиртах, а также соотношение о,о-, о,п- и п,н-метиленовых в бисфе-нолах. Спектры ЯМР позволяют судить о наличии алкильных заместителей в фенольном ядре, а также четко различать резольные и новолачные форполимеры. [c.100]

    Энергия резонанса этих пяти структур стабилизует фенолят-ион в большей мере, чем недиссоциированная молекула фенола стабилизуется резонансом двух структур Кекулё (при очень небольшом вкладе остальных трех структур, участвующих в распределении зарядов). Дополнительная устойчивость аниона повышает константу кислотности экспериментально установленный фактор 10 соответствует вполне вероятному значению 33 кДж-моль для дополнительной энергии резонанса фено- [c.364]

    Спирты, которые пе способны давать анионы, стабилизированные резонансом, обладают менее нрко выраженными кислотными свойствами по сравнению с фенолами (рЛ а фенолов около 10, р/1С метанола равно 18). Различная кислотность карбоновых кпслот рКа бензойной кислоты 4,2), [c.286]

    Рассмотрим структуры реагентов и продуктов при ионизации спиртов и фенолов. Как спирт, так и алкоголят-ион могут быть удовлетворительно представлены единственной структурой. Фенол и фенолят-ион содержат бензольное кольцо и поэтому должны бьггь гибридами структур Кекуле I и П, 1П и IV соответственно. Этот резонанс предположительно стабилизует и молекулу, и ион в одинаковой степени. Его влияние снижает энергию образования как молекулы, так и иона на одинаковую величину и тем самым не влияет на разность в энергиях их образования, т. е. не влияет на АЯ ионизации. [c.761]

    Преимущества этого метода обусловлены большими различиями в химических сдвигах для ядер в различных производных. Этим методом определяли метанол, этанол, н-пропанол, бу-танолы, пропаргиловый спирт, бензиловый спирт, пентанолы, цик-лопентанол, циклогексанол, циклогептанол, холестерин, ланостерин и смеси этих веществ. Можно применять этот метод и для определения аминов, фенолов и тиопроизводных. Однако то, что в этом методе используется резонанс на ядрах является его недостатком, поскольку большинство обычных спектрометров ЯМР рассчитано на регистрацию спектров протонного резонанса. Важной чертой данного метода, которую нельзя не отметить, является то, что атомы фтора в трифторметильной группе находятся в одинаковом окружении, благодаря чему сигнал резонанса на ядрах F усиливается в три раза. [c.66]

    Электрофильное замещение в бензольном кольце ФПЕ лигнина идет по такому же механизму, как и у низкомолекулярных фенолов, мономолекулярного замещения 8е1. Первой стадией электрофильного замещения в бензольном кольце является быстрое образование нестабильного 7Г-комплекса, который медленно перегруппировывается в а-комплекс с делокализоваииым положительным зарядом. Стабилизация а-комплексов в случае фенолов и их эфиров усиливается, по сравнению с бензолом, дополнительным участием в резонансе граничных структур типа катиона циклогекса-диенония (ср. схемы 12.23, б и 12.25, б). [c.431]

    Область применения уравнения (8) можно расширить введением двух значений сг для заместителей, способных к прямому резонансу. Этот прием был предложен в 1937 г. [301 на примере п-нитрогруппы. Ее сг-константа (0,778), найденная по константе кислотности п-нитробензойной кнслоты, применима с удовлетворительной точностью ко многим реакциям, но совершенно непригодна для реакций фенолов и анилинов. В этих случаях (и только в них) для описания влияния п-нитрогруппу приходится использовать значительно большую константу а=1,27. [c.465]

    Особенно убедительным примером пространственных препятствий резонансу является ионизация некоторых нитро- и цианфенолов. Уэланд, Браунелл и Майо [46] нашли р/С 3,5-диметил-4-нитрофенола равным 8,25. р/С фенола, 3,5-диметилфенола и. 4-нитрофенола составляют 9,99, 10,18 и 7,16 соответственно. По правилу аддитивности р/С 3,5-диметил-4-нитрофенола должно быть равно 7,16 + 10,18—9,99 = 7,35, т. е. значительно ниже экспериментального значения. 3-Нитрофенол имеет р/С 8,35 следовательно, усиление кислотности под влиянием /1-нитрогруппы в значительной степени связано с резонансом типа 11, который возможен при копланарности нитрогруппы с бензольным кольцом. Соседние метильные группы в 3,5-диметил-4-нитрофеноле, препятствуя-копла- [c.475]

    Электроноакцепторные заместители (оттягивающие электроны) увеличивают кислотность фенолов, электронодонорные — уменьшают ее. Поэтому хлорфенолы и нитрофенолы — значительно более сильные кислоты, чем фенол, а алкилфенолы имеют меньшие константы кислотности. На величину кислотности влияет и сопряжение заместителя с бензольным кольцом фенола. Образование водородных связей (что детектируется, в частности, спектрами комбинациойного рассеяния и парамагнитного резонанса) [5, с. 182—184]1 может влиять на кислотность фенолов. Так, при вовлечении фенольных гидроксилов в образование внутримолекулярных водородных связей (например, у орго-замещенных) происходит уменьшение константы кислотности фенолов [5, с. 195],. [c.24]

    Энергия резонанса возрастает в случаях, когда бензольное ядро связано с ненасыщ,енной группой, как, например, в стироле. Фенол (I), обладающий одной парой л-электронов, способной к резонансу с бензольным ядром, обладает энергией резонанса, превышающей соответствующую величину для бензола и равной примерно 50 ккал моль. Для бифенила эта энергия достигает 90 ккал моль, т. е. превышает сумму соответствующих значений для изолированных ядер это подтверждает наличие дополнительного резонанса между ядрами. [c.53]

    Различные ароматические карбанионы можно получать косвенным путем — отщеплением протона, связанного с неуглеродным замещающим атомом. Так, различные фенолы в щелочной среде образуют обладающий резонансом анион — фенат (г), отрицательный заряд которого распределяется между атомами углерода в орто-, пара- и орто - положениях (мезомерные формулы I, И и III), [c.133]


Смотреть страницы где упоминается термин Фенол, резонанс: [c.337]    [c.395]    [c.210]    [c.367]    [c.294]    [c.269]    [c.762]    [c.68]    [c.219]    [c.131]    [c.463]    [c.68]    [c.377]    [c.359]   
Электронные представления в органической химии (1950) -- [ c.183 ]




ПОИСК







© 2025 chem21.info Реклама на сайте