Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Элементы химические характеристическая

    Многие характеристики линейных полимеров, в частности плотность, теплоемкость, показатель преломления, характеристическая вязкость, температура стеклования, могут быть рассчитаны, исходя из молекулярного строения цепей и аддитивного вклада различных функциональных групп и других структурных элементов цепи в значение каждого из этих параметров [40—43 44, с. 108]. С определенными допущениями такой подход может быть применен п для расчета температуры стеклования аморфных полимеров пространственного строения [45, 46], значение которой во многом определяется их химическим составом, т. е. строением молекул исходных олигомеров и сшивающих агентов. Для расчета Тс сетчатого полимера предложена следующая формула [45]  [c.29]


    МОЗЛИ ЗАКОН связывает частоту спектральных линий рентгеновского излучения с порядковым номером химического элемента. Согласно М. з. квадратный корень из частоты соответствующей характеристической линии представляет собой линейную функцию от порядкового номера. Закон установлен английским ученым Г. Мозли в 1913 г. На основе М. з. можно экспериментальным путем определять атомный номер элемента, что было использовано для подтверждения правильности расположения элементов в периодической системе элементов Д. И. Менделеева. [c.163]

    При работе с инфракрасными спектрами и спектрами протонного магнитного резонанса используются таблицы характеристических частот и химических сдвигов. Для приобретения навыков в работе с таблицами в настоящем разделе особо выделены задачи но инфракрасной спектроскопии и спектроскопии протонного магнитного резонанса. В них предлагается провести как простое сопоставление спектров со строением органического соединения, так и определение структурных элементов молекулы по приведенному ПК- или ПМР-спектру. [c.111]

    Водородные соединения наряду с кислородными играют особую роль в химической характеристике элементов. Д. И. Менделеев кроме высших солеобразующих окислов к характеристическим относил и летучие водородные соединения . Оказалось, что сумма валентности элементов по водороду и высшей валентности по кислороду всегда равна 8. Это положение было и остается справедливым для элементов, расположенных справа от границы Цинтля, которые обладают достаточным числом валентных электронов для образования преимущественно ковалентной связи. Именно для этих элементов характерно образование летучих (главным образом, газообразных) водородных соединений. [c.64]

    Характеристика элементов подгруппы галлия. Подобно типическим элементам, металлы подгруппы галлия являются 5/7-элементами. Несмотря на то что элементы подгруппы галлия — типовые аналоги, наблюдаются особенности в свойствах отдельных ее представителей. Элемент галлий непосредственно следует за первой десяткой кайносимметричных переходных 3 -металлов, для которых особенно сильна -контракция. Поэтому атомный радиус галлия меньше таковых не только его более тяжелых аналогов, но и алюминия. Вследствие этого ионизационные потенциалы галлия более высокие и связанные с ними энергетические характеристики отличаются от его аналогов. Уже у элементов ИВ-группы заметна тенденция к уменьшению степени окисления сверху вниз, в частности для ртути. Такое понижение положительной степени окисления еще более заметно и подгруппе галлия, В этом в определенной мере проявляется горизонтальная аналогия. Уже для таллия степень окисления +1 более стабильна, чем характеристическая степень окисления +3. Вследствие с1- и особенно /-контракции переход от индия к таллию сопровождается только незначительным увеличением атомного радиуса. В то же время ионизационные потенциалы таллия заметно больше, чем индия. Дело в том, что оба бз -электрона атома таллия подвержены сильному эффекту проникновения через двойной экран и /-электронных облаков. В результате 5-электроны с трудом участвуют в образовании химических связей. Этот факт получил наименование концепции инертной электронной пары. Поэтому у таллия часто валентным является бр-электрон, который, переходя к окислителю, превращает таллий в устойчивый ион Т1(+1). По этой причине производные Т1(+1) почти не проявляют восстановительных свойств и, наоборот, производные Т1(+3) являются сильными окислителями. [c.156]


    Каждый химический элемент имеет свою индивидуальную систему характеристических пиков (спектральных линий), что дает возможность осуществлять качественный и количественный анализ элементного состава различных материалов. [c.11]

    В заключение этого раздела еще отметим, что высшая формальная валентность большинства химических элементов равна номеру группы периодической системы, в которой этот элемент находится. Д. И. Менделеев называл эту валентность элементов их характеристической валентностью. [c.169]

    Каждый химический элемент имеет характеристический спектр испускания, содержащий набор линий определенных длин волн. Каждая линия в соответствии с длиной волны занимает определенное положение в фокальной поверхности объектива зрительной трубы стилоскопа. Зная положение наиболее характерных линий заданных элементов, можно обнаружить присутствие этих элементов в пробе. Сначала получают и изучают спектры заданных элементов, вводя в дуговой разряд их чистые соли. Отмечают отсчетом по шкале прибора положение наиболее характерных линий этих элементов. Затем в тех же условиях получают спектр анализируемой пробы и делают выводы о присутствии того пли иного элемента по его характерным линиям. [c.184]

    РЕНТГЕНОВСКИЕ ЛУЧИ — электро магнитные колебания весьма малой длины волн, возникающие при воздействии на вещество быстрыми электронами. Р. л. открыты в 1895 г. В. Рентгеном. Волновая природа Р. л. установлена в 1912 г. М. Лауэ, открывшим явление интерференции Р. л. в кристаллах. Это открытие явилось основой развития рентгеноструктурного анализа. Р. л. невидимы для глаза, обладают способностью вызывать яркую видимую флюоресценцию в некоторых естественных и в искусственно изготовляемых кристаллических веществах, они действуют на фотоэмульсию и вызывают ионизацию газов. Этими свойствами Р. л. пользуются для обнаружения, исследования и практического использования Р. л. Различают два типа Р. л. тормозное и характеристическое излучение. Тормозное излучение возникает при попадании электронов на антикатод рентгеновской трубки оно разлагается в сплошной спектр. Характеристические Р. л. образуются при выбивании электрона из одного из внутренних слоев атома с последующим переходом на освободившуюся орбиту электрона с какого-либо внен)не-го слоя. Они обладают линейчатым спектром, аналогичным оптическим спектрам газов, с той лишь разницей, что структура характеристического спектра, в отличие от оптического спектра газов, не зависит от вещества, дающего этот спектр. Зависимость от вещества проявляется только в том, что с увеличением порядкового номера элемента в периодической системе элементов Д. И. Менделеева весь его характеристический рентгеновский спектр смещается в сторону более коротких волн. Другой особенностью характеристических спектров является то обстоятельство, что каждый элемент дает свой спектр независимо от того, возбуждается ли этот элемент к испусканию в свободном состоянии или в химическом соединении. Это свойство является основой рентгеноспектрального йпализа. Р. л. широко используются в науке и технике. Высокая про- [c.213]

    М" " может давать осколочные ионы с массами, которые отличаются от массы молекулярного иона на величины Дт, имеющие химический смысл. Неприемлемы с химической точки зрения разности от Дт = 3 (при отсутствии Дт = 1) до Дт = 14, от Дт = 21 (при отсутствии Дт = 1) до Дт = 24, Дт = 37,38 и все Дт, меньшие, чем масса элемента из характеристического изотопного распределения, в случаях, когда изотопное распределение не сохраняется в осколочном ионе. [c.37]

    Изучение свойств простых веществ имеет фундаментальное значение в неорганической химии. Оно является первым этапом в описательной химии элементов. Последовательное и аналитическое восприятие фактического материала о свойствах простых веществ (физических, физико-химических, химических) позволяет составить общее представление о химическом облике элемента, предвидеть природу химической связи, состав и свойства его характеристических соединений, их кислотно-основные и окислительно-восстановительные характеристики и т. п. Принципиальная особенность [c.25]

    Каждый, химический элемент Периодической системы, начиная с лития, имеет свой характеристический спектр. При этом частота рентгеноспектральных линий, испускаемых атомами элементов, со- [c.181]

    Важность окислительного числа прежде всего заключается в том, что номер группы Периодической системы указывает на высш)то положительную степень окисления (характеристическая степень окисления), которую могут иметь элементы данной группы в своих соединениях. Исключение составляют металлы подгруппы меди, кислород, фтор, металлы семейства железа и некоторые другие элементы VHI группы. Кроме того, понятие степени окисления полезно при классификации химических соединений, а также при составлении уравнений окислительно-восстановительных реакций. Кривая изменения максимальной положительной степени окисления имеет периодический характер в зависимости от порядкового номера элемента (рис. 23). При этом в пределах каждого большого периода эта зависимость представляется сложной и своеобразной. [c.55]


    Оксиды. Оксиды занимают особое положение среди всех бинарных соединений. Еще Д.И.Менделеев относил "высшие солеобразующие окислы" к характеристическим соединениям. Состав высшего оксида давал возможность определить групповую принадлежность элемента. Свойства оксидов позволяли характеризовать сам элемент как металл или неметалл. Кроме того, с учетом кислотно-основных свойств оксидов делались выводы о характере соответствующих гидроксидов, а также о составе и свойствах соответствующих солей. На первом этапе становления и развития Периодического закона роль оксидов как характеристических соединений была исключительно велика. С развитием теории строения атома и в результате выявления физического смысла Периодического закона, казалось бы, роль характеристических соединений утрачивается. Но периодически изменяются не только свойства элементов, но также формы и свойства их соединений. Поэтому для описания химического облика элементов характеристические соединения по-прежнему играют исключительно важную роль. [c.265]

    В 1819 г. французские физикохимики П. Л. Дюлонг и А. Пти открыли закон, гласящий, что мольная изобарная теплоемкость всех элементов, за исключением легких элементов с атомной массой до 40 г/моль, равна 26-27 Дж/(моль-К). Последующие термохимические эксперименты выявили сложный характер температурной зависимости мольной изобарной и близкой к ней мольной изохорной теплоемкости С кристаллических тел (рис. 49). С повышением температуры изохорная теплоемкость всех элементов в кристаллическом состоянии стремится к пределу, равному Зi = = 25 Дж/(моль-К). Такой характер зависимости был впервые объяснен А. Эйнштейном в 1907 г. с квантово-химических позиций. Эйнштейн исходил из допущения, что все атомы в кристалле колеблются с одинаковой характеристической частотой V и являются гармоническими осцилляторами. В таком случае к ним применимы уравнения (117) и (118) для колебательной энергии и изохорной теплоемкости. Все зависимости на рис. 49 с.пиваются в одну, если по оси абсцисс вместо Т откладывать Г/0, где 0 = ку/к — температура, характерная для каждого кристалла. Для веществ. [c.335]

    Данные по элементному составу, приведенные на рис, 1.2, получены путем измерения интенсивности характеристических спектров индивидуальных элементов, обнаруживаемых в спектре солнечного излучения (практически наблюдаются спектры поглощения в виде фраунгоферовых линий), а также химическим анализом метеоритов, падающих на поверхность Земли. Метеориты — это попавшие в поле тяготения Земли твердые космические тела, орбиты которых прохо дят через пояс астероидов. Следовательно, данные рис. 1.2 по существу отражают элементный состав Солнечной системы. Для сравнения различий, обусловленных неодинаковыми источниками данных, в табл. 1.1 [c.13]

    По отношению к воде характеристические оксиды ведут себя различным образом и по этому признаку их можно подразделить на четыре группы довольно редки оксиды, растворяющиеся в воде без заметного химического взаимодействия (высшие оксиды рутения и осмия) большинство оксидов химически не взаимодействует с водой и не растворяется в ней — соответствующие гидроксиды получаются лишь косвенным путем (в частности, амфотерные оксиды AlsO ,, СггОз, РегОз, ZnO и т. п.) две взаимодействующие с водой группы оксидов, из которых одни при взаимодействии образуют растворимые в воде гидроксиды основного или кислотного характера (оксиды бора, углерода, азота, фосфора, серы, щелочных и щелочно-земельных металлов), а вторые — нерастворимые в воде гидроксиды (оксиды бериллия, магния, редкоземельных элементов) основного характера. Учитывая, что сама вода является идеальным амфолитом, индифферентность оксидов по отношению к ней вовсе не связана с их индифферентностью по отношению к кислотам и щелочам. Все кислотные оксиды, независимо от их отношения к воде, реагируют со щелочами, а все основные — с кислотами. Так, нерастворимые в воде СиО и SiOa хорошо взаимодействуют с кислотами и щелочами соответственно. В то же время амфотерные оксиды, как правило, устойчивы не только по отношению к воде, но и к кислотам и щелочам. Типичным примером такого рода оксидов является AI2O3, совершенно не взаимодействующий с кислотами, а со щелочами реагирующий лишь в жестких условиях — при сплавлении. [c.63]

    Характеристические соединения. Характеристические оксиды ЭО получают из элементов. Оксиды разлагаются до плавления. От цинка к ртути термическая стойкость уменьшается. В отличие от ZnO (структура вюртцита) и HgO (ромбическая структура) оксид кадмия имеет кристаллохимическое строение Na l, что свидетельствует о большей ионности dO. Оксид цинка амфотерен, а dO и HgO — основные оксиды. Гидроксиды Э(0Н)2 практически не растворяются в воде Zn(OH)a (рПР П), d(0H)2 (рПР14) и Hg(OH)a (рПР 16). Гидроксид ртути химически малостоек. Гидроксид цинка — амфолит с преобладанием основных свойств. При растворении в щелочах образуются гидроксокомплексы (Me Zn (0Н)4]), а не цинкаты типа NaaZnOa. Последний может быть получен только в твердом состоянии спеканием, например, соды с ZnO. [c.135]

    Как правило, большинство нефтяных дисперсных систем существуют в обычных условиях в неравновесных состояниях. Это приводит к проявлению многочисленных локальных коллоидно-химических превращений в структуре нефтяной дисперсной системы, которые в свою очередь отражаются на макросвойствах системы, например на седиментационной устойчивости, т.е. склонности к расслоению системы, ее вязко-стно-структурных характеристиках и т.д. Важнейшим проявлением макросвойств в нефтяных дисперсных системах являются фазовые переходы, спонтанно происходящие в них в различных условиях существования. Любая нефтяная дисперсная система отличается присухцей ее пространствеьшой внутренней организацией, которая претерпевает непрерывные превращения во времени с участием структурных элементов систем, Общепринятое понятие энтропии системы, яв уяющесся мерой упорядоченности структуры, в данном случае практически не применимо, вследствие чрезвычайной сложности нефтяной системы. В этой связи в нефтяных дисперсных системах фиксируются некоторые характеристические области вблизи состояний равновесия, где система находится в кризисном состоянии, которые проявляются в системе при изменении термобарических условий. В нефтяной дисперсной системе может существовать несколько таких областей. В каждой переходной области система проявляет характерные свойства, отличается наивысшей восприимчивостью к тем или иным воздействиям. [c.174]

    Для проведения количественного химического анализа в исследуемом многокомпонентном образце и эталоне, представляющем собой чистый элемент, в одних и тех же условиях измеряют интенсивность рентгеновской характеристической линии данного элемента. Отношение интенсивностей этих линий дает приближенные данные о количестве элемента в материале. Для повышения точности данных в полученные результаты нужно внести обязательные поправки, учитывающие особые условия нахождения элемента в многоком-понентном образце по сравнению с чистым эталоном. Это составляет разницу в поглощении рентгеновского излучения в анализируемом образце и эталоне, дополнительное возбуждение определяемого элемента в образце характеристическим излучением других элементов и т. п. Отсутствие точных данных о величине коэффициентов поглощения рентгеновского излучения такими эле- [c.152]

    Характеристическим летучим гидридом углерода является метан. В обычных условиях водород с углеродом пе реагирует. Синтез метана нз элементов идет только нррг достаточно высокой температуре и в присутствии катализатора (мелкораздроблениый никель). Применяются также и другие способы получения метана из сложных органических веществ. В лаборатории метан можно получить разложением карбида алюминия водой. В природе метан постоянно образуется прн разложении органических веществ без доступа воздуха. Химическое строение метана определяется sp- -гибриди-зацией атома углерода. Молекула метана представляет собой правильный тетраэдр, в центре которого находится атом углерода, а по вершинам — атомы водорода. [c.188]

    При этом образуется одна общая четырехэлектронная трехцентровая связь за счет обобществления валентных электронов на связывающей и несвязывающей МО, разрыхляющая МО остается вакантной, что и обеспечивает устойчивость молекулы (порядок связи 2/3). Образование Хе 4 и ХеР сопровождается возникновением, соответственно, двух и трех подобных трехцентровых связей. Фториды ксенона являются характеристическими соединениями этого элемента и свидетельствуют о его способности проявлять положительные степени окисления четного ряда +2, +4, +6 и +8. При этом высшая характеристическая степень окисления ксенона в ХеРв отвечает номеру группы, в которой расположен ксенон. Фториды являются исходными веществами для получения других соединений ксенона. В химическом отношении фториды ксенона — очень реакционноспособные вещества, функционирующие главным образом в роли энергичных окислителей. Кроме того, они склонны к диспропорционированию, что позволяет легко переходить от низших фторидов к высшим  [c.394]

    Характеристические соединения. Оксиды и гидрсоксиды платиновых металлов мало характеризуют химические свойства этих элементов вследствие малой устойчивости этих соединений для большинства платиноидов, что обусловлено высокой химической благородностью этих металлов. Тем не менее сопоставление состава и свойств оксидов позволяет выделить наиболее характерные степени окисления, свойственные тем или иным элементам. [c.419]

    Шую положительную степень окисления (характеристическая степень окисления), которую могут иметь элементы данной группы в своих соединениях. Исключением являются металлы подгруппы меди, кислород, фтор, бром, металлы семейства железа и некоторые другие элементы VIII группы. Кроме того, понятие степени окисления полезно при классификации химических соединений, а также при составлении химических уравнений окислительно-вос- [c.72]

    Изучение свойств простых веществ имеет фундаментальное значение в неорганической химии. Оно является первым этапом в описательной химии элементов. Последовательное и аналитическое восприятие фактического материала о свойствах простых веществ (физических, физико-химических, химических) позволяет составить общее представление о химическом облике элемента, предвидеть природу химической связи, состав и свойства его характеристических соединений, их кислотно-основные и окислительно-восстановительные характеристики и т.п. Принципимьная особенность простых веществ состоит в том, что при рассмотрении их свойств нет необходимости учитывать вопросы, связанные с постоянством или переменностью состава, поскольку состав простых веществ, естественно, всегда постоянен. Однако даже у простых веществ следует учитывать явление аллотропии и наличие собственных дефектов в реальном кристалле, что позволяет выявить зависимость свойств простых веществ от их химического и кристаллохимического строения. [c.239]

    Систематизируя кис.лородные соединения элементов по доминирующему типу химической связи, можно выделить три основных типа соединений с металлической, преимущественно ионной и ковалентной связью. К характеристическим соединениям относятся только оксиды, подчиняющиеся правилу формальной валентности. В характеристических оксидах доминирующим типом связи являет ся ионно-ковалентная, поэтому их можно подразделить на два типа с преимущественно ионной и преимущественно ковалентной связью. Последние, в свою очередь, по структурному признаку подразделяются на координационные и молекулярные (например, SiO . и СО2). Ионные оксиды всегда имеют координационную структуру. Ионно-ковалентное взаимодействие характерно и для анионоизбыточных кислородных соединений, однако они обладают особыми свойствами и обычно рассматриваются отдельно. Такую же специфическую группу составляют и металлоподобные оксиды. Принимая во внимание зависимость типа кристаллической структуры оксидов от характера химической связи, можно сделать вывод, что в немолекулярных структурах с ковалентной связью координационные числа не должны превышать 4, а в ионных кристаллических решетках реализуются более высокие координационные числа. Так, в кубической структуре Si02 (/i -кристобалит) к.ч (Si) 4, а к.ч. (О) 2 (рис. 130), в структуре Т1О2 (рутил) к.ч. (Ti) [c.266]

    Из гидроксидов ЭОН устойчив AgOH, два других распадаются на воду и Э2О. Гидроксид серебра — амфолит — с сильнее выраженными основными свойствами. Так, рКь — 3,6, а рАд = 11,4. Поскольку для элементов подгруппы меди в образовании химических связей помимо из -электронов принимают участие сравнительно близкие по энергии электроны (и — 1) -оболочки, они проявляют степени окисления выше характеристической (так называемые экстравалентные состояния). Из оксидов в степени окисления +2 и +3 устойчивы СиО и AU2O3. Первый получается непосредственным взаимодействием компонентов, а второй — осторожным обезвоживанием Аи(ОН)з. Гидроксиды Си(ОН)г и Аи(ОН)з получают действием щелочи на растворимые соли Си и Аи . Гидроксиды Си(0Н)2 и Аи(ОН)з амфотерны  [c.312]

    В химии редкоземельных элементов наиболее ярко проявляется внутренняя периодичность, особенно для производных в характеристической степени окисления. Объяснение этому факту было дано в 5 гл. X. Для иллюстрации внутренней периодичности в табл. 25 приведены цвет гидратированных ионов Э , стандартные энергии Гиббса образования трифторидов и проявляемые степени окисления. Наблюдается удивительная аналогия в свойствах элементов, находящихся друг под другом. В каждой семерке, составляющей внутренний период, ионизационные потенциалы третьего порядка монотонно растут (см. табл. 24) с уменьшением атомных радиусов вследствие лантаноидной контракции. Но начало нового внутреннего периода (переход от Ей к Сс1) сопровождается уменьшением третьего ионизационного потенциала на 4 В. У европия впервые в первой семерке достигается устойчивая наполовину заполненная 4/-оболочка. У гадолиния же при той же устойчивой 4/-оболочке появляется один электрон на 5 -оболочке, который намного легче удаляется, потому что этот электрон делает стабильную 5 °-оболочку неустойчивой. Для элементов, следующих за 0(1, вновь наблюдается монотонное возрастание третьего ионизационного потенциала вследствие лантаноидного сжатия. Вследствие стабильности 4/-оболочки европий часто функционирует в степени окисления +2 за счет бя -электронов, а один из семи неспаренных электронов на 4/-о6олочке участвует в образовании связей в более жестких условиях. Для его аналога иттербия картина схожая, только в качестве устойчивой выступает уже полностью заселенная 4/4-оболочка. В случае самария и тулия, находящихся левее указанных выше Ец и УЬ, 4/- и 4/ -оболочки близки к достижению стабильного состояния, а потому в основном проявляют характеристические степени окисления. Но эти же элементы в более мягких условиях могут быть в степени окисления +2 за счет бв -электронов при квазистабильных 4/- и 4/3-о6олочках. Для элементов начала внутренних периодов — Ьа и 0(1 — наблюдается только степень окисления - -3 вследствие устойчивости 4/ - и 4/-оболочек, полностью вакантной или наполовину заполненной. А электронами, участвующими в химическом взаимодействии, у них являются 5должны быть стабильны, но для лантана и лантаноидов электроны на них являются внешними, а потому слабее связанными с ядром и вследствие этого наиболее подвижными. У [c.351]

    Образование ХеР4 и ХеРе сопровождается возникновением соответственно двух и трех подобных трехцентровых связей. Фториды ксенона являются характеристическими соединениями этого элемента и свидетельствуют о его способности проявлять положительные степени окисления четного ряда +2, +4, +6 и -Ь8. При этом высшая характеристическая степень окисления ксенона в ХеР отвечает номеру группы, в которой расположен ксенон. Фториды являются исходными веществами для получения других соединений ксенона. В химическом отношении фториды ксенона — очень реакционноспособные вещества, функционирующие главным образом в роли энергичных окислителей. Кроме того, они склонны к диспропорционированию, что позволяет легко переходить от низших фторидов к высшим  [c.486]

    Характеристические соединения. Элементы первой диады образуют летучие оксиды Кп04 и 0804. Это единственные в своем роде примеры соединений, в которых степень окисления элемента УПШ-группы равна -Н8, т.е. отвечает номеру группы. В силу координационной насыщенности эти оксиды не присоединяют воду, поэтому им не отвечают гидроксиды. Они способны растворяться в воде, химически с ней не взаимодействуя. Кислотный характер этих оксидов проявляется лишь в их способности образовывать комплексные соли с основными гидроксидами, например К2[0804(0Н)2]. Отвечаюпдае подобным комплексным солям кислоты называются аквакислотами, наприме]) Н2[0804(0Ы)2]. [c.497]

    Например в ходе количественного эмиссионного спектрального определения с конечной фотографической регистрацией спектра осуществляются следующие основные процессы и операции а) испарение и перенос пробы из канала угольного электрода в плазму разряда б) возбуждение атомов элементов в плазме и излучение характеристических спектральных линий элементов в) отбор определенной доли светового потока из общего потока, излучаемого плазмой, с помощью дозирующей щели спектрографа г) пространственное разложение полихроматического излучения на соответствующие характеристические частоты (развертка спектра) с помощью призмы илн дифракционной решетки д) фотохимическое взаимодействие светочувствительного материала с квантами электромагнитного излучения (образование скрытого изображения спектра на фотопластинке или фотопленке) е) химические реакции восстановления ионов серебра до металла и растворения галогенидов серебра в комплексующих агентах (проявление и фиксирование) ж) поглощение света спектральными линиями на фотографической пластинке при измерении плотности почернения спектральных линий определяемого элемента и фона с помощью микрофотометра а) сравнение полученных значений интенсивностей спектральных линий с илтен-сивностью соответствующих линий эталонов или стандартов и интерполяция искомого содержания элемента в пробе по градиуровочному графику. [c.42]

    Характеристические функции реагирующих систем находят алгебраическим суммированием значений искомых функций химических соединений, учтенных в уравнении реакции. Значения функций берут из таблиц и принимают с положительным знаком для продуктов реакции и с отрицательным - для исходных веществ. За начало отсчета энтальпий и потенциалов Гиббса химических элементов в таблицах термодинамических величин принято обычное состояние соответствующих веществ в окружающей среде при стандартных условиях. Так, для водорода, гелия и азота это газообразное состояние в виде, Не и, для углерода - форма графита, для металлов - твердое кристаллическое состояние. Поэтому значения i°298(293) °298(293) ПрОСТЫХВе-Ществ в таблица2Дне помещены и принимаются равными нулю. [c.63]

    Определение примесей химических элементов в радиофар-мацевтических препаратах осуществляют методом эмиссионного спектрального анализа по спектрам испускания. Анализ предполагает сжигание пробы испытуемого вещества в газовом пламени, электрической дуге или электрической высоковольтной искре. При этом происходят испарение исследуемого вещества и его диссоциация на атомы и ионы, которые возбуждаются и испускают свет. Излучение источника света складывается из излучения возбужденных атомов всех элементов, присутствующих в пробе. Атомы каждого элемента испускают кванты света только определенных длин волн (так называемое характеристическое излучение), выделяемых посредством спектральных приборов, в которых происходит разложение света, испускаемого источником, в линейчатый спектр. [c.322]

    Соответственно температуру диффузии То следует выбирать достаточно высокой, чтобы обеспечить возможность работы при повышении давления до значений, позволяющих полностью использовать характеристическое давление пористых фильтров Рс-В то же время наивысшая температура в ступени Г, (на выходе из компрессора) должна быть ограничена таким образом, чтобы предотвратить опасные последствия коррозии для наиболее чувствительных к гексафториду урана элементов оборудования, например падение проницаемости пористых фильтров вследствие за-бптпя пор частицами пыли, образующимися при коррозии оборудования, или прямое химическое воздействие на стенки некоторых пор. [c.144]

    При взаимодействии быстродвижущихся электронов с атомами вещества возникает рентгеновское излучение, которое имеет спектры двух типов характеристические и тормозные. Особенность характеристических рентгеновских спектров заключается в том, что атомы каждого химического элемента, независимо от того, в какой химической форме они находятся, имеют свой, вполне определенный спектр. Тормозные спектры возникают вследствие торможения быстрых электронов в электромагнитном поле атомов вещества. Непрерывный рентгеновский спектр тормозного излучения ограничен со стороны малых длин волн некоторой наименьшей длиной волны Ятш, называемой коротковолновой границей тормозного спектра. Появление границы связано с тем, что вся энергия, которую приобретает электрон в электромагнитном поле рентгеновской трубки, излучается в виде кванта при едином акте торможения. Если Хпчп выразить в нм, а потенциал фо на рентгеновской трубке в кВ,то [c.214]

    В таблице суммированы данные, которые полезно знать при выборе условий определения отдельных элементов методом атомной абсорбции в пламени обозначения и названия химических элементов относительные атомные массы элементов (А) атомные числа элементов (г) энергии диссоциации монооксидов — наиболее устойчивых химических соединений в пламени (Ло, эВ) энергии ионизации атомов ( /, эВ) длины волн резонансньк линий (нм), применяемых для измерения атомного поглощения положение энергетических уровней (нижнего и верхнего, см" ), соответствующих данному переходу рекомендуемая спектральная ширина щелей спектрофотометра с учетом возможных спектральных помех и оптимального соотношения сигнал/фон оценочное значение величины характеристической концентрации для конкретного типа пламени и возможные спектральные помехи при измерениях атомного поглощения. [c.917]


Смотреть страницы где упоминается термин Элементы химические характеристическая: [c.83]    [c.152]    [c.60]    [c.121]    [c.174]    [c.233]    [c.14]    [c.272]    [c.274]    [c.338]    [c.129]    [c.39]    [c.171]    [c.271]   
Техника низких температур (1962) -- [ c.365 , c.366 ]




ПОИСК





Смотрите так же термины и статьи:

Элемент химический



© 2025 chem21.info Реклама на сайте