Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рентгеновские лучи взаимодействие с веществом

    Вследствие того что длина волны рентгеновского излучения имеет приблизительно такую же величину, как диаметры атомов, с помощью рентгеновских лучей можно получать однозначную информацию о расстояниях между атомами и о расположении атомов внутри кристаллических веществ. На рис. 10.9 схематически изображен пучок рентгеновских лучей, взаимодействующих с кристаллом. Кристаллическая структура представлена на этом рисунке слоями атомов или ионов, расположенными на расстоянии с1 друг от друга. Пучок рентгеновских лучей проникает сквозь многие слои кристалла, постепенно рассеиваясь атомными электронами. Хотя рассеяние рентгеновских лучей происходит во всех направлениях, на рисунке показаны только два из них. В одном из этих направлений, под углом а, происходит рассеяние волн с противоположными фазами, которые ослабляют друг друга, и в результате в точке А нельзя обнаружить рентгеновских лучей. В отличие от этого волны, рассеиваемые под углом Ь, обладают одинаковыми фазами и усиливают друг друга, что позволяет обнаружить рентгеновские лучи в точке В. При еще больших углах происходит последовательное ослабление и усиление волн (см. рис. 2.10), что приводит к возникновению дифракционных максимумов и минимумов более высоких порядков. [c.173]


    Прохождение рентгеновского излучения через вещество сопровождается взаимодействием рентгеновских лучей с веществом. Известны три вида взаимодействия рассеяние рентгеновского излучения (с изменением и без изменения длины волны), фотоэлектрический эффект и образование электронно-позитронных пар, причем последний эффект имеет место только при энергии квантов больше 1 МэВ. [c.8]

    ВЗАИМОДЕЙСТВИЕ РЕНТГЕНОВСКИХ ЛУЧЕЙ С ВЕЩЕСТВОМ [c.220]

Рис. 78. Взаимодействие рентгеновских лучей с веществом Рис. 78. <a href="/info/1627274">Взаимодействие рентгеновских лучей</a> с веществом
    Но информацию о структуре кристалла дает нам третий механизм взаимодействия рентгеновских лучей с веществом — рассеяние рентгеновских лучей на электронных оболочках атомов без изменения длины волны. Обратите внимание на слова без изменения длины волны —это очень важно. [c.119]

    При прохождении рентгеновских лучей через вещество лучи вследствие их электромагнитной природы взаимодействуют с электронами и рассеиваются. Так как электроны, за исключением валентных, находятся в электронных оболочках атомов, то основное рассеяние вызывается атомами, представляющими собой сгустки электронной плотности. Подобно тому как методами радиолокации можно определить местоположение самолета или судна, улавливая рассеянные этим предметом радиоволны, так и по картинам рассеяния рентгеновских лучей атомами, молекулами и кристаллами можно определить расположение атомов и исследовать атомную структуру вещества. [c.11]

    Ошибки в определении делятся на две группы — случайные, связанные с точностью отсчетов и измерений, и систематические, связанные с геометрией съемки и особенностями взаимодействия рентгеновских лучей с веществом. В первом приближении можно считать, что случайные ошибки измерений не зависят от угла дифракции. Из теории ошибок следует, что если произведено п измерений какой-либо величины А с одинаковой точностью, то (если ошибки измерений подчинены нормальному закону распределений) наиболее вероятным значением А будет среднее арифметическое [c.84]

    Рассматривая в предыдущих разделах связь между расположением атомов в кристалле и интенсивностью дифракционных лучей, мы существенно упрощали задачу. Предполагалось, что электромагнитные волны первичного пучка, воздействующие на различные атомы кристалла, обладают одинаковой амплитудой независимо от глубины расположения этих атомов. Между тем это неверно все известные нам процессы взаимодействия рентгеновских лучей с веществом — поглощение, когерентное и некогерентное рассеяние — приводят к постепенной потере энергии первичного пучка лучей, т. е. к уменьшению амплитуды их волн. [c.61]


    Проникая в твердое вещество, излучение в зависимости от величины его энергии может затрагивать только валентные электроны, всю электронную оболочку атомов или же, при достаточно высокой энергии, и атомные ядра. В последнем случае оно производит не только возбуждение электронов, ионизацию, но и смещение атомов данного вещества из их нормальных положений. Зто относится как к электромагнитному излучению (видимому свету, ультрафиолетовым и рентгеновским лучам, 7-излучению), так и к потокам частиц (электронов, ионов, например, протонов или а-частиц и др.). При этом энергия излучения трансформируется частично в тепловую, вибрационную энергию твердого вещества, которая передается соприкасающимся с ним веществам, а частично в электромагнитное излучение сниженной частоты по сравнению с частотой поглощенной лучистой энергии. Местные изменения структуры твердого вещества, возникающие при его взаимодействии с излучением высоких энергий, принято называть радиационными дефектами. Радиационные дефекты, равномерно распределенные по всему сечению луча, проникающего в твердое вещество, создаются фотонами, электронами, а-частицами и т. д. [c.121]

    Пусть узкий пучок монохроматических рентгеновских лучей с длиной волны % падает на совокупность большого числа кристалликов. Каждый из них может быть охарактеризован набором семейств параллельных плоскостей с определенными межплоскостными расстояниями (рис. XXX. 5). При взаимодействии рентгеновских лучей с кристаллическим веществом возникает дифракционная картина, максимумы интенсивности которой удовлетворяют уравнению Брэгга [c.356]

    При структурных исследованиях кристаллических веществ используется взаимодействие рентгеновского излучения с кристаллом. При этом проникающие в кристалл рентгеновские лучи (с длиной волны I) всегда отражаются от атомов (ионов) кристаллической решетки под углом а в соответствии с формулой Вульфа — Брэгга  [c.110]

    Рентгеновские камеры. Рентгеновские камеры представляют собой устройства для регистрации на фотопленке дифракционной картины, возникающей при взаимодействии первичного пучка рентгеновских лучей с атомами исследуемого вещества. Главные составные части типичной камеры общего назначения, в которой регистрация дифракционной картины осуществляется на узкой полоске фотопленки, свернутой в цилиндр, следующие корпус камеры в виде металлического цилиндра с опорными установочными винтами коллиматор, образующий входное отверстие для первичного рентгеновского излучения и состоящий из одной или нескольких диафрагм, вырезающих из потока лучей узкий пучок, падающий на образец держатель образца и тубус (ловушка), предназначенная для предотвращения рассеяния излучения стенкой камеры, противоположной коллиматору. [c.77]

    Оценки показывают, что показатель преломления рентгеновских лучей меньше единицы и отличается от единицы на несколько миллионных. Проведенный расчет относится к кристаллу и аморфному веществу того же состава и плотности. При возникновении селективных отражений нужно учитывать их взаимодействие с первичным пучком, что приводит к небольшим отклонениям от простой формулы Вульфа — Брегга. [c.93]

    Химика прежде всего интересует материя, но он должен также изучать и излучения — свет, рентгеновские лучи, радиоволны —в их взаимодействии с веществами. Так, химика может интересовать цвет веществ, который обусловлен поглощением ими света. [c.12]

    Дается систематический обзор современных результатов по дисперсионному — обычному и запаздывающему — взаимодействию в капиллярных системах. В качестве исходного для микроскопической теории используется представление о молекулярной природе капиллярных систем и о межмолекулярных силах. Последовательное молекулярно-статистическое описание капиллярных систем строится на большом каноническом ансамбле Г иббса. Для этого используется метод производящего функционала, позволяющий компактно и замкнуто вывести необходимые общие соотношения статистической механики. Решение основополагающей проблемы о влиянии среды на взаимодействие молекулярных объектов достигается как строгий результат исследования коллективных явлений в системах многих молекул. Этот результат формулируется в виде принципа взаимодействия на языке фундаментальных физических понятий, отражающих роль среды как посредника взаимодействия. С единой точки зрения принципа взаимодействия рассматривается широкий круг самых различных по своим масштабам ключевых задач теории капиллярных систем. Сюда относятся молекулярные корреляции в капиллярных системах молекулярная структура плоских, слабо и сильно искривленных поверхностных слоев взаимодействие макроскопических частиц. Используемые в принципе взаимодействия понятия реализуются в этих задачах как сжимаемости и адсорбции. Они и являются параметрами описания коллективных явлений, обусловленных влиянием среды. Особо рассматривается построение парного эффективного межмолекулярного потенциала по данным о рассеянии рентгеновских лучей. На протяжении всей статьи проводится сопоставление с альтернативным макроскопическим подходом, в котором вещество рассматривается не как состоящее из молекул, а как континуум, описываемый макроскопической характеристикой — диэлектрической проницаемостью. Это сопоставление касается не только расклинивающего давления пленки, на примере которого была первоначально сформулирована макроскопическая теория, но и большинства других результатов по дисперсионному взаимодействию [c.163]


    При рассмотрении физической стороны механизма радиационного повреждения смазочных материалов облучающие частицы можно разделить на две группы легкие и тяжелые. В первую группу входят бета-частицы (электроны), рентгеновские лучи, гамма-кванты и другие виды электромагнитных излучений. Взаимодействие легких частиц с веществом в диапазоне энергий, обычно используемых для изучения радиационных повреждений (/ 1 — 5 Мзв), происходит главным образом посредством ионизации и возбуждения атомов и молекул. [c.238]

    Радиоактивные превращения могут быть связаны с излучением заряженных частиц, процессом электронного захвата или процессом изомерного перехода. Заряженные частицы, излучаемые из ядер, могут быть альфа-частицами (ядра гелия с массовым числом 4) или бета-частицами (электроны с положительным или отрицательным зарядом, р— или рн- со- ответственно последние известны как позитроны). Излучение заряженных частиц из ядра может сопровождаться гамма-излучением, имеющим ту же физическую природу, что и рентгеновское излучение. Гамма-лучи испускаются также в процессе изомерного перехода (ИП). Рентгеновские лучи, которые могут сопровождаться гамма-лучами, испускаются в процессе электронного захвата (ЭЗ). Позитроны уничтожаются при взаимодействии с веществом, причем этот процесс сопровождается испусканием двух гамма-лучей, каждый из которых имеет энергию 0,511 мэВ. [c.64]

    Естествознание пользуется двумя главными способами для изучения строения атомов и молекул. Эти способы — химия и оптика в широком смысле слова, т. е. изучение взаимодействия вещества со светом во всем диапазоне длин волн — от рентгеновских лучей до радиоволн. Химия расшифровывает первичную [c.130]

    В настоящее время разработан целый ряд физических методов для" определения не только зольности, но и содержания в ТГИ минеральных компонентов а) микроскопическое определение содержания минеральных компонентов по их рельефу, цвету, степени блеска, т.е. по оптическим признакам (см. гп. 1) б) рентгеноскопический, использующий особенности рассеивания рентгеновских лучей различными минеральными веществами в) радиоизотопный, основанный на взаимодействии атомов минеральных примесей с радиоактивным излучением изотопов. [c.46]

    Электроны взаимодействуют с веществом более сильно (на несколько порядков) и поэтому дифракция их происходит в тонких слоях вещества толщиной 10 —10 см. При съемках на отражение глубина проникновения электронов в вещество достигает 3—5 нм. Электроны рассеиваются на атоме значительно сильнее, чем рентгеновские лучи и нейтроны. Об этом свидетельствуют типичные амплитуды рассеяния f, которые для электронов, рентгеновских лучей и нейтронов соответственно равны 10 , 10 и 10 см. Сильное взаимодействие электронов с атомами п основ- [c.203]

    Коэффициент поглощения рентгеновского излучения веществом убывает с увеличением его частоты. Монотонность этой зависимости скачкообразно нарушается (скачки поглощения) в областях частот, при которых энергия рентгеновских квантов становится достаточной для освобождения из атома электрона с А-, 1-, М-... оболочек. Направленный пучок рентгеновских лучей сечением 1 см , проходя через слой вещества, испытывает ослабление в результате взаимодействия с его атомами. Ослабление рентгеновских лучей обусловлено процессами когерентного и некогерентного рассеяния на атомах вещества (коэффициент рассеяния о) и истинным поглощением (коэффициент поглощения т). При порядковых номерах элементов 10—35 и длине рентгеновских лучей 0,1—1,0 им преобладающую роль в процессах ослабления играет истинное поглощение рентгеновских лучей. [c.215]

    При двукратном проведении термогравиметрического анализа вторичного фосфата натрия (рис. 3-25) было показано, что суммарная потеря массы составляет 61,5% (рассчитанное значение 61,36%) [362]. Термогравиметрическое изучение моно- и полу-гидратов гидроксида меди(П) показало, что потеря гидратной воды происходит между 53 и 125 °С, после чего выше 150 °С начинается дегидратация до оксида меди [141]. Состав кристаллических фаз контролировали с помощью дифракции рентгеновских лучей. Аналогичное изучение так называемых гидратов оксида меди показало, что эти вещества образуются в результате хемосорбции воды и их состав не соответствует стехиометрическим соотношениям [142]. Такое же поведение отмечено для гидратированных арсенатов кобальта и никеля, полученных при взаимодействии мышьяковой кислоты с гидроксидами или карбонатами соответствующих металлов [91 ]. Например [c.160]

    Появление вакуумных приборов,возникновение радиотехники и совершенствование других технических средств изучения физических явлений привело в конце прошлого столетия к открытию электронов, рентгеновских лучей и радиоактивности. Появилась возможность исследования отдельных атомов и молекул. При этом выяснилось, что классическая физика не в состоянии объяснить свойства атомов и молекул и их взаимодействия с электромагнитным излучением. Исследование условий равновесия электромагнитного излучения и вещества (М. Планк, 1900 г.) и фотоэлектрических явлений (А. Эйнштейн, 1905 г.) привело к заключению, что электромагнитное излучение, помимо волновых свойств, обладает и корпускулярными свойствами. Было установлено, что электромагнитное излучение поглощается и испускается отдельными порциями — квантами, которые теперь принято называть фотонами. [c.11]

    При неупругом взаимодействии с ядрами вещества электроны теряют энергию в кулоновском поле ядер и вызывают эмиссию рентгеновского излучения со сплошным спектром. Неупругие столкновения могут вызвать ионизацию атомов, в результате чего возникают характеристические рентгеновские лучи или Оже-электроны. Если неупругие взаимодействия происходят между первичным пучком электронов зонда и слабо связанными внешними электронами вещества, испускаются вторичные электроны, имеющие энергию не выше нескольких десятков электрон-вольт. Кроме процессов, связанных с возбуждением внутренних и валентных оболочек атома, существуют плазменное и фононное возбуждения. Первый тип возбуждения характеризуется осцилляцией свободных электронов объекта в месте прохождения первичного пучка за счет энергии последнего. Фононное возбуждение является результатом взаимодействия зонда с кристаллической решеткой, что приводит к колебаниям атомов в решетке, испусканию световых квантов и в конечном счете к локальному разогреву вещества. Время элементарного акта возбуждения электронов внутренних оболочек атома и плазменного возбуждения составляет 10 с, процесс передачи энергии решетке длится 10" °—10 с. [c.218]

    Вопрос об ослаблении интенсивности рентгеновских лучей при прохождении их через вещество, не являясь основным в рентгеноструктурном анализе, имеет тем не менее существенное значение при разре-щении некоторых определенных задач. Поглощение рентгеновских лучей необходимо учитывать при расчете интенсивности дифрагированных кристаллом лучей оно играет ошределенную роль при выборе излучения селективное поглощение используется при фильтрации лучей. Рассеяние рентгеновских лучей лежит в основе самого явления дифракции их при прохождении через кристалл. Тем не менее подробное рассмотрение всех процессов взаимодействия рентгеновских лучей с веществом с позиций современной волновой механики в рамках настоящего курса не представляется необходимым. С другой стороны, ограничиваясь кратким перечислением процессов, приходится мириться с некоторыми существенными неточностями, неизбежными при упрощенном описании явлений. [c.148]

    Несмотря иа то что способ измерения радиоактивности не является химическим методом, важное значение его при открытии трансурановых элементов и изотопов, а также при проведении химических исследований указывает иа необходимость краткого обсуждения методов измерения радиоактивных излучений. Радиоактивный распад изотопов трансурановых элементов регистрируется в результате взаимодействия испугценной-частицы (а-, р-частиц или нейтрона), или осколков спонтанного деления ядер, или у- и рентгеновских лучей с веществом. [c.77]

    Рис 6. взаимодействие рентгеновских лучей с веществом. (По Либхафскому и др. [5]). [c.208]

    Глава 1. Взаимодействие рентгеновских лучей с веществом и рентгеновские спектры. 1-1. Характеристическое рентгеновское излучение (длины волн К-серии рентгеновского излучения, длины волн Ь-серии рентг(Шовского излучения, относительные интенсивности линий if-серии характеристического спектра, ширина линий характеристического спектра, индексы асимметрии линий характеристического спектра). 1-2. Перевод С-единиц в абсолютные ангстремы. 1-3. Соотношения между единицами коэффициентов поглощения. 1-4. Рассеяние рентгеновских лучей (рассеяние рентгеновских лучей различных энергий электронными оболочками и ядрами атомов, рассеяние рентгеновских лучей в газах, массовые коэффициенты рассеяния рентгеновских лучей, массовые коэффициенты рассеяния о /р, коэффициенты рассеяния сечения некогерентного рассеяния рентгеновских лучей). 1-5. Поглощение рентгеновских лучей (скачок поглощения для некоторых элементов, вычисление коэффициентов поглощения, номограмма для определения коэффициентов поглощения). 1-6. Суммарное ослабление рентгеновских лучей (атомные коэффициенты ослабления для элементов, массовые коэффициенты ослабления у,/р для элементов, массовые коэффициенты ослабления ц/р для больших длин волн, массовые коэффициенты ослабления ц/р для малых длин волн, массовые коэффициенты ослабления ц/р для некоторых соединений, толщина слоя половинного ослабления рентгеновских лучей для некоторых элементов, толщина слоя ослабления при различных углах падения лучей на образец). 1-7. Ионизирующее действие рентгеновских лучей. 1-8. Преломление рентгеновских лучей (единичные декременты показателя преломления, углы полного внутреннего отражения). [c.320]

    Свойства рентгеновских лучей (рентгеновские спектры, таблицы длин волн рентгеновских пучей, взаимодействие рентгеновских лучей с веществом, значения массовых коэффициентов поглощения алемериов в интервале от 0,1 до ЮА, ионизирующие свойства и дозиметрия рентгеновских лучей) [c.324]

    Предположение де Бронля о наличии у электрона волновых свойств получило экспериментальное подтверждение уже в 1927 г., когда К- Д. Девиссоном и Л. X. Джермером в США, Дж. П. Томсоном в Англин и П. С. Тартаковским в СССР независимо друг от друга было установлено, что прн взаимодействии пучка электронов с дифракционной решеткой (в качестве которой использовались кристаллы металлов) наблюдается такая же дифракпион-ная картина, как и при действии на кристаллическую решетку металла пучка рентгеновских лучей в этих опытах электро вел себя как волна, длпна которой в точности совпадала с вычисленной по уравнению де Бройля. В настоящее время волновые свойства электронов подтверждены большим числом опытов и широко используются в электронографии — методе изучения структуры веществ, основанном на дифракции электронов. [c.70]

    НЕЙТРОНОГРАФИЯ — метод изучения структуры молекул, кристаллов, жидкостей с помощью дифракции (рассеивания) нейтронов имеет много общего с рентгегюграфией. Дифракция нейтронов — типичное оптическое явление, аналогичное дифракции рентгеновских лучей, в котором ярко проявляются волновые свойства нейтрона. Для нейтронографических исследований требуются пучки тепловых нейтронов высокой интенсивности. Поэтому Н. начала развиваться лишь после строительства ядерных реакторов. Для исследования структуры вещества узкий направленный пучок тепловых нейтронов из реактора падает на монокристалл. Отражение нейтронных волн от кристаллической поверхности происходит в результате взаимодействия нейтронов с ядрами кристалла. Чтобы определить структуру кристалла, надо измерить углы, под которыми наблюдаются отражения первого порядка и интенсивность его. Н. имеет ряд преимуществ по сра-внлшю с рентгенографией благодаря зк1 чительному расширениво числа объектов исследования. [c.172]

    Электронографический анализ — один из методов изучения атомно-кристаллн-ческой структуры веществ, в котором используется дифракция потока движущихся электронов, обладающего волновыми свойствами. От рентгеновских лучей волны потока электронов отличаются меньшей длиной. При ускоряющем напряжении 30—100 кВ, которое применяют в электронографах, длина волны потока электронов колеблется в пределах 0,07—0,04 А, что в 20—30 раз меньше длин волн, используемых в рентгенографическом анализе. Кроме того, длина пробега электронного луча в исследуемом веществе по сравнению с рентгеновским меньше и обычно не превышает 100 А, так как электроны сильно взаимодействуют с веществом и быстро оглощаются в кристаллах, [c.105]

    С помощью электронографического анализа можно в принципе решать те же задачи, что и рентгенографическим анализом исследование кристаллической структуры, проведение фазового анализа, определение межплоскостных расстояний и периодов решетки, определение текстуры и ориентировки кристаллов и т. д. Однако особенности волновых свойств пучка электронов обусловливают и определенную специфику их использования, а также преимущества и недостатки по сравнению с рентгенографическим методом исследования кристаллов. Преимущество электронограмм заключается прежде всего в том, что в связи с малой длиной волны и сильным взаимодействием электронов с веществом этим методом можно получить резкие и интенсивные рефлексы при меньших размерах кристаллов и-меньшем количестве вещества, чем при рентгенографическом анализе, В рентгенографии, например, расширение линий начинается при р.эзмере частиц 500—900 А, а в электронографии оно становится заметным лишь при размерах 20—30 А. Интенсивность электронного луча гораздо больше, а необходимая экспозиция гораздо меньше, чем рентгеновских лучей, что дает существенные методические преимущества. Интенсивность отражений при дифракции электронов обычно настолько велика, что позволяет визуально на флюоресцирующем экране наблюдать дифракционную картину. Указанные особенности электронографии делают ее особенно ценной, например, при исследовании зародышей новых фаз. Электронография может использоваться также при изучении положений легких атомов в кристаллической решетке, хотя для этого более пригодна нейтронография, [c.105]

    Широко используются в химии различные формы взаимодействия вещества с электромагнитным излучением рассеяние света при нефелометрии, определение показателя преломления, оптического вращения. Особенно часто для характеристики соединений используются спектры поглощения в различных областях электромагнитных колебаний. Поглощение в области видимого или ультрафиолетового спектра характеризует электронные свойства молекул. Р1нфракрасные спектры отражают колебания ядер. Наконец, дифракция рентгеновских лучей открывает возможность устанавливать геометрию молекул, чему служат также электронография и нейтронография. Дополнительную информацию о строении молекул может дать резонансная 7-спектроскопия (эффект Мессбауэра). [c.22]

    Физические свойства вещества зависят от атомного состава, структуры, характера движения и взаимодействия частиц. Для определения этих параметров используются разнообразные физические методы исследования. К ним относятся методы, основанные на явлении дифракции рентгеновского излучения, электронов п нейтронов. Явление дифракции рентгеновских лучей на монокристаллах было открыто М. Лауз в 1912 г. Оно явилось началом рентгеноструктурного анализа твердых тел, жидкостей и газов. Советские ученые А. Ф. Иоффе, С. Т. Конобеевский, Н. Е. Успенский, Н. Я. Селяков одними из первых применили рентгеноструктурный метод для определения геометрических размеров кристаллических решеток и их пространственной симметрии, нахождения координат атомов кристалла, обнаружения преимущественных ориентировок (текстур), возникающих при деформации твердых тел, исследования внутренних напряжений, построения диаграмм состояния. Их основополагающие работы в этой области получили дальнейшее развитие в трудах Г. В. Курдюмова, Г. С. Жданова, Н. В. Белова, В. И. Данилова, В. И. Ивероновой, А. И. Китайгородского, Б. К. Вайнштейна и др. [c.4]

    Отражение рентгеновских лучей от поверхностей кристалла служит первым примером исключительно важных явлений взаимодействия излучения с веществом. Понятие вещества здесь нужно определить более точно, чтобы не спутать отражение рентгеновских лучей от кристаллов с рассматриваемыми ниже аналогичнылш, но все же иными физическими явлениями тина эффекта Комитона или фотоэлектрического эффекта. Более полное рассмотрение свойств кристаллов приведено в гл. XIП. [c.25]

    Лучи, испускаемые радиоактивными элементами, проникают в свинец на несколько сантиметров космические лучи имеют более короткую длину волны (а возможно, и другую природу) и проникают в землю на сотни метров. Радиоволны, характеризующиеся значительно большими длинами волн, не взаимодействуют с веществом, если оно не обладает проводимостью. Лауэ первый показал, что рентгеновские лучи имеют длину волны такого же порядка величины, как межатомные расстояния в кристаллах, и что эти расстояния MOHIHO вычислить из наблюдаемой интерференционной картины. [c.26]

    Малость длины дебройлевской волны для электрона означает большой радиус сферы Эвальда (см. стр. 268), ее вырождение в плоскость. Это сильно упрощает истолкование электро-нограмм, так как они оказываются прямыми изображениями плоского сечения обратной решетки кристалла. Атомные факторы для рассеяния электронов также пропорциональны атомному номеру, но по своей абсолютной величине они во много раз больше, чем для рентгеновских лучей. Иными словами, электроны взаимодействуют с веществом значительно сильнее, чем рентгеновские кванты. Поэтому они сильно поглощаются веществом, и для исследования его структуры необходимо пользоваться очень тонкими пленками толщиной порядка 10 —10 см, тогда как размеры кристаллов, изучаемых в рентгенографии, порядка 10 см. Исследование необходимо проводить в высоком вакууме. Это делает невозможным применение электронографии для изучения глобулярных белков в их нативном состоянии — вакуум высушит белок. Тем не менее электронография позволяет получить ценные результаты при исследовании фибриллярных белковых структур, синтетических полимеров и других аморфных тел. Существенное преимущество электронографии состоит в том, что она позволяет локализовать атомы водорода (подробное изложение см. в монографиях [31, 32]). [c.275]

    Действие йода в водных растворах в присутствии высокополимеров не только сохраняется, но в некоторых случаях даже повыщается, в то время как TOK nimo Tb препарата резко снижается. Это открывает щи-рокие возможности создания препаратов йода для энтерального и парентерального применения. С помощью метода дифракции рентгеновских лучей показано, что синяя окраска, наблюдаемая при взаимодействии йода с крахмалом, циклодекстринами, кумаринами и другими веществами, вызвана не нормальной диатомной формой йода, а расположением йода внутри каналов этих полимеров при образовании составов включений . На основании адсорбционных спектров водного раствора соединения йод-ПАВ высказано предположение о винтообразной модели комплекса. [c.396]

    Природа взаимодействия сталь различашихся по анергии квантов с веществом принципиально неодинакова. Так возникновение У - квантов связано с ядерными процессами, излучение квантов рентгеновского аз-луче.чин обусловлено электронными переходами во внутренних квантовых слоях, испускание квантов УФ и видимого излучения или взаимодействие вещества с ними - сфера оптических методов анализа - следствие электронных переходов внешних, валентных электронов, поглощение ИК и микро- [c.5]

    Основное рассеяние рентгеновских лучей происходит в результате их взаимодействия с внутренними нековалентными электронами атомов вещества. Поэтому интенсивность рассеяния от каждого участка элементар1ЮЙ ячейки определяется величиной электронной плотности в этом участке элементарной ячейки кристал- [c.310]

    Данные Дейла, Дэвиса и Мередита [82], изучавших инактивацию карбоксипептидазы и аллоксазинадениндинуклеотида при действии рентгеновских лучей в присутствии различных защитных веществ, приведены в табл. 17. Если мы примем предложенный выше механизм, то сможем рассматривать О как отношение реакционной способности защитного вещества к реакционной способности субстрата при взаимодействия с радикалами, возникающими в растворителе при облучении. [c.236]

    В соотношение (1) вводят поправки на эффект взаимодействия электронов с веществом антикатода, на поглощение рентгеновского излучения в антикатоде и на вторичное возбуждение рентгеновских лучей. Поправки, предложенные Кастеном на основе теоретического рассмотрения взаимодействия электронов и рентгеновских лучей с твердым телом и с использо- [c.63]


Смотреть страницы где упоминается термин Рентгеновские лучи взаимодействие с веществом: [c.364]    [c.149]    [c.170]    [c.21]    [c.257]   
Радиационная химия органических соединений (1963) -- [ c.14 , c.15 ]




ПОИСК





Смотрите так же термины и статьи:

Лучи рентгеновские

лучами рентгеновскими лучами



© 2025 chem21.info Реклама на сайте