Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метан водород, равновесие

    Хотя некоторые первичные реакции крекинга и обладают как будто бы обратимостью (например дегидрогенизация парафинов в олефины и углеводородов ряда циклогексана в углеводороды бензольного ряда, а также, возможно, полимеризация и деполимеризация некоторых олефинов), однако большая часть реакций крекинга— реакции необратимого характера, причем конечным устойчивым состоянием, по всей вероятности, является хорошо изученное равновесие метан — водород — уголь. [c.108]


    Значения реакции (1Х-1) и данные по равновесию системы метан — водород, полученные Каржавиным, приведены в табл. 56. [c.218]

    Принцип действия и электрическая схе.ма сигнализатора аналогичны принципу действия и схе.ме газоанализатора ПГФ-2И. Датчик прибора калибруется на метан, водород, коксовый газ, ацетилен и другие газы или пары. Горючий газ или пары, содержащиеся в воздухе, проходя измерительную камеру датчика, сгорают на платиновой спирали. В результате этого температура спирали повышается, сопротивление увеличивается и равновесие из.мерительного моста нарушается. Вторичный прибор при этом указывает на содержание горючего газа в воздухе. [c.372]

    В результате реакции образуется вода, однако вследствие малого времени контакта гидролиз цианистого водорода не происходит. Продукты реакции быстро охлаждают до 150 °С (замораживание равновесия) и затем пропускают через абсорбер для удаления оставшегося аммиака водным раствором сульфата аммония. Очищенные газообразные продукты поступают в другой абсорбер, где при температуре 5 °С цианистый водород поглощается водой. Из водного раствора его можно выделить перегонкой. ВыхоД цианистоводородной кислоты достигает 65—91 % (по метану) и 60—83% (по аммиаку). Схема одной из установок показана на рис. 82. [c.226]

    В присутствии металлических катализаторов (Ре, Со, N1) (рис. I. 1) к этому равновесию удалось приблизиться с обеих сторон выше температуры инверсии [Г,- = 570° С (Кр = 1, АР > = 0)] метан должен спонтанно разлагаться. Косвенные термохимические расчеты показывают, что СН4 является наиболее устойчивым членом парафинового ряда С Нг +2, а из формулы Паркса [2] совершенно ясно, что при температурах выше комнатной все парафины при п > 2 термодинамически неустойчивы относительно распада на углерод и водород свободная энергия образования парафинов равна  [c.10]

    Для осуществления эндотермической реакции диссоциации метанола используется трубчатый реактор (рис. 2). Температура реакции 275—350 °С сырьем является парообразный метанол, содержащий достаточное количество водяного пара для превращения монооксида углерода в диоксид и сдвига равновесия реакции. В результате отмывки диоксида углерода в скруббере с алкиламином получается весьма чистый водород. Когда оборудование перестраивалось для целей мирного времени, в схему процесса была добавлена стадия превращения остаточного монооксида углерода в метан, который, как уже говорилось, безвреден для большинства процессов гидрирования. [c.150]


    Концентрирование водорода представляет собой по существу задачу отделения водорода от метана, поскольку другие углеводороды конденсируются при более высокой температуре, чем метан. Равновесие системы водород — метан определяет режимные условия по температуре, необходимые для получения водорода требуемой степени чистоты. На рис. 15 [2] показана зависимость концентрации получаемого водорода от температуры при различном давлении. Конденсацию метана ведут нри 2—6 МПа. Как видно из рисунка, водород с концентрацией 95% Hg можно получить при давлении [c.43]

    Существует два возможных ограничения. Либо весь углерод превращается в окислы углерода и водород, либо риформинг осуществляется до такого предела, при котором водород не содержится в полученном газе. В случае, когда сырьем риформинга является метан, последнее может произойти только при отсутствии его превращения. Но это становится возможным при риформинге углеводородов, являющихся гомологами метана, когда в метан превращается максимальное количество углерода. Эти два ограничения соответствуют либо равновесию, достигаемому при очень высоких температурах, низком давлении и высоких отношениях пар газ, либо равновесию, достигаемому при очень низких температурах, высоких давлениях и низких отношениях пар газ. Изменение этих параметров является основным приемом, который позволяет применять паровой риформинг для получения газов различного состава. [c.84]

    Из первых трех реакций наиболее вероятной является реакция (3), которая приводит к образованию бензола, метана и дибензила. Реакция (4) является мало вероятной. В случае наличия водорода в реакционной смеси равновесие реакции (б) сдвинуто практически нацело в сторону распада толуола на бензол и метан. [c.181]

    При температуре 1200° и выше скорость разложения метана достаточно высока и равновесие может быть достигнуто достаточно быстро и в соответствии с данными термодинамического равновесия метан может быть почти целиком превращен в углерод и водород. [c.543]

    Обращает внимание, что чем выше температура, тем при одном и том же отношении метан кислород выше выход сажи. Это объясняется тем, что сажа не находится в равновесии с газообразными продуктами реакции и между не,й, углекислотой и парами воды идут эндотермические реакции газификации. Поэтому, если выдержать образовавшиеся при реакции продукты в адиабатических условиях достаточно долгое время, вся сажа превратится в окись углерода и водород. А так как реакции газификации эндотермичны, то температура смеси по мере расходования сажи будет понижаться. Понижение температуры будет происходить до тех пор, пока не будет израсходована вся сажа и пе будет достигнуто состояние равновесия. Этому рав- [c.547]

    Константы фазового равновесия углеводородов, в которых присутствуют метан и водород, рассчитываются по формуле [c.190]

    Константы фазового равновесия для метана в бинарных системах водород — метан определяются по графику, приведенному на рис. П-23. [c.191]

    Константы фазового равновесия для метана приближенно можно определять по известным номограммам и формулам. Для многокомпонентных систем, содержащих водород, метан и углеводороды тяжелее-метана, вводить поправки для констант фазового равновесия не требуется. [c.191]

    Константа фазового равновесия для метана в системах водород — метан вычисляется по формуле [c.191]

    Рнс. П-23. График для определения констант фазового равновесия для метана в бинарных системах водород—метан. [c.192]

    Для систем, содержащих водород и метан, рекомендуется следующая последовательность нахождения констант фазового равновесия  [c.196]

Рис. 12. Константы равновесия между смесями водород-метан я 1а - карбидом железа + кристаллы насыщенного а-твердого раствора Рис. 12. <a href="/info/363077">Константы равновесия между</a> <a href="/info/40693">смесями водород</a>-метан я 1а - <a href="/info/6795">карбидом железа</a> + <a href="/info/476631">кристаллы насыщенного</a> а-твердого раствора
    И 3) методами статистической механики (гл. 17) с использованием некоторых сведений о молекулах, полученных из спектроскопических данных (разд. 5.18 Приведенный изобарный потенциал ). Два последних метода особенно важны в случае реакций, протекающих настолько медленно, что непосредственные измерения равновесных концентраций невозможны, или для таких условий, которые трудно создать экспериментально. Например, метан при комнатной температуре представляет собой вполне устойчивое соединение, а углерод и водород заметно не реагируют друг с другом. Поэтому при комнатной температуре невозможно измерить равновесие между этими тремя веществами (т. е. их равновесные концентрации), но константа равновесия может быть рассчитана с помощью абсолютных энтропий и энтальпий образования участвующих в реакции веществ. [c.162]


    Сопоставление состава полученного конвертированного газа с соответствующими данными термодинамического равновесия, рассчитанными по описанной выше методике, показывает, что содержание метана в газе, полученном на нанесенном катализаторе, выше, а в полученном на сплавном катализаторе — ниже, чем равновесная концентрация метана. Такая разница может быть объяснена различием механизма процесса на нанесенном и сплавном катализаторах. Можно предположить, что на сплавном катализаторе гомологи метана, содержащиеся в нефтезаводском газе, взаимодействуют с водяным паром, образуя метан и углекислоту, которая реагирует с водородом, содержащимся в сырье, образуя метан и воду последняя реакция не доходит до состояния равновесия. На нанесенном катализаторе, обладающем лучшими гидрирующими свойствами, водород вступает в реакцию с гомологами метана, образуя метан, который взаимодействует с водяным паром с образованием водорода и углекислоты в последней реакции также не достигается равновесия в условиях эксперимента. Таким образом, в обоих случаях не устанавливается равновесие по реакции [c.270]

    В СССР также применяются методики, основанные на полном или частичном извлечении растворенных газов [131]. Для полной вакуумной экстракции используются описанные выше установки ([116], УДЖ-64), причем достигается чувствительность по метану 5-10-зо/д (об.) в пробе масла 2—5 мл. Метод частичного извлечения [132] получил широкое распространение, но подвергся критике [131], причем отмечалось, что он дает заниженные результаты, колеблющиеся в зависимости от продолжительности экстракции. В последней модификации метода частичного извлечения [124] употребляются дополнительно герметизированные стеклянные медицинские шприцы на 100 мл. В такой шприц набирается 30 мл масла, а вакуум создается простым оттягиванием поршня до отметки 100 мл при закрытом отверстии, после чего выделившийся газ подается поршнем в газовый дозатор хроматографа. Неполнота извлечения газов в этих условиях учитывается введением эмпирических расчетных коэффициентов, равных 1,1 для метана, 2,2 —для двуокиси углерода и этилена, 1,7 —для ацетилена и 2,7 —для этана. На указанные коэффициенты умножается количество газов, найденное в паровой фазе, для получения содержания их в анализируемом масле. Водород, растворяющийся в трансформаторном масле гораздо хуже, извлекается практически полностью, т. е. для него коэффициент извлечения принимается равным единице. Большая часть приведенных расчетных коэффициентов существенно отличается от величин (К+Уо/Уи), которые должны были бы использоваться для расчета в строго равновесных условиях. Отмеченная выше возможность ошибок, связанных с несоблюдением условия равновесия фаз, в этом варианте, следовательно, сохраняется. [c.169]

    Рис. 5.30, гид характеризуют систему водород + + азот + монооксид углерода при фиксированных значениях Т и Р составы равновесных фаз представлены линиями. Например, жидкость, содержащая 10% Hi и 43% СО, находится в равновесии с парами, содержащими 10% СО и 3% N2, при -195 С и 150 атм. Парожидкостные композиции для системы метан + н-бу-тан + декан при трех давлениях показаны на рис. 5.30,е. На рис. 5.31 на примере системы ацетон + хлороформ + 4-метилпентанон демонстрируется другой способ изображения парожидкостного равновесия. И, наконец, температуры кипения можно также изображать на треугольных диаграммах, но в таких масштабах велика вероятность недоразумений, и поэтому предпочтительнее раздельные диаграммы. [c.284]

    При паровой каталитической конверсии метана в результате устанавливающегося равновесия в продуктах прз ращения содержатся метан, окись углерода, углекислота и водород. При переработке [c.16]

    S henk с сотрудниками подвергли количественному исследованию равновесную систему метан-водород в присутствии железа в температурных пределах от 350 до 880°, а также в присутствии кобальта в пределах от 310 до 740° результаты их исследований хорошо согласуются с данными S heffer, Dokkum и Al. Авторы установили наличие второго типа равновесия, о существовании которого до тех пор не подозревали, а именнО равновесия между водородом, метаном и карбидами никеля, железа или кобальта. Выше 680° однако это равновесие не наблюдалось. [c.53]

    Основное равновесие, к которому стремятся все системы углеводородоз при температурах выше 500°, это равновесие метан — водород—-уголь, выра-жае.мое уравнением  [c.121]

    Г2-2. Левитская Е. И. Исследование равновесия жидкость — пар тройной системы этан — метан — водород. Ж- техн. физ. , 1941, 11, вып. 3, 197—204. [c.379]

    Величина Кр является функцией температуры н во многих случаях ее можпо рассматривать как действительную константу равновесия. Холлидей п Экселл полагают, что метан разлагается на углерод и водород через ацетилен. Именно стадия разложения ацетилена и замедляется водородом, небольшое количество по подворггаегося разло кению ацетилена в равновесных условиях способно сохранить высокую концентрацию метана  [c.63]

    Петерс и Мейер [57] подвергали метан разложению до ацетилена, бензола, углерода и водорода над нагретыми вольфрамовыми спиралями в фарфоровых трубках. Реакция прекращалась до наступления равновесия, когда концентрация ацетилена становится достаточно высокой. Несмотря на то, что температурные данные этих авторов являются весьма приближенными, на основания их работ можно сделать некоторые выводы. Максимальная конверсия до ацетилена происходила при наивысшей температуре 3000° С и самом коротком времени контакта — 0,0001 сек. Уменыпение парциального давления метана приводило к увеличению конверсии до ацетилена и уменьшению выходов кокса и жидких продуктов. [c.64]

    Равновесие системы метан—углерод—водород изучалось многими исследова- [c.235]

    В обеих установках компоненты газа, выходящего из печи низкотемпературного риформинга, находятся, по-видимому, в химическом равновесии, и дальнейшее образование метана может быть достигнуто только введением иового компонента или снижением температуры. В настоящее время для обогащения газа в процессе Газинтан используется каталитическая гидрогенизация, т. е. снижается температура (приблизительно до 350°С) и вводится дополнительный очищенный пар лигроина, реагирующий, с оставшимся водородом и паром. Температурный профиль во втором реакторе, однако, повышается с самого начала, так как при низкой температуре не происходит никакого эндотермического крекинга или риформинга, а избыточный водород обеспечивает немедленное начало экзотермических реакций гидрогенизации. Аналогично процессу КОГ и здесь желательно улучшить характеристики горения получаемого газа путем дополнительной стадии метанизации. Это обеспечивает удаление любого остаточного водорода, и после поглощения основной части двуокиси углерода, находящейся в газе, окончательный продукт становится полностью взаимозаменяемым с природным газом, содержащим главным образом метан. Выходное давление обычно близко -к 35 кгс/см (3,5 МПа). [c.109]

    В связи с разработкой термически стойких палладиевых мембран предложена, но пока реализована на небольших установках конверсия метана с выводом водорода из зоны реакции через мембрану. Это сдвигает равновесие реакции паровой конверсии метана. Расчеты термодинамического равновесия реакции паровой конверсии метана при давлении 1,925 МПа, отношении пар метан, равном 3 1, и парциальном давлении в остаточном газе 0,16 МПа показали [18], что при выводе водорода уже при 500 °С степень конверсии метана достигает 1, в то время как без вывода Но степень конверсии лштана 0,9 можно достичь только нри 880 °С. [c.78]

    Более эффективный привы, позволяющий осуществить сдвиг равновесия в оптимальных условиях ведения процесса, состоит в удалении из зоны реакции одного из образующихся компонентов - водорода или углекислоты. Удаление водорода возможно при размещении в слое катализатора элементов, изготовленных из тонких мембран на основе лалладиевых сплавов, селективно проницаемых для водорода. Термодинамические расчеты показали [7], что проведение конверсии метана с одновременным выделением водорода позволяет прк температуре 1000 К, давлении 2,0 МПа и соотношении пар метан 2 1 достигнуть глубины превращения метана 0,94 и получить водород высокой степени чистоты. Конструкция аппарата, обеспечивающего достаточную интенсивность подвода тепла и удаления водорода через палладиевые мембраны, сложна, поэтому процесс не реализован в промышленных масштабах. [c.57]

    Баротропное явление наблюдается также при фазовых равновесиях газ — газ. Так, например, при равновесии в тройной системе аммиак—азот — водород при 100 °С фаза, более богатая аммиаком, имеет большую плотность до давления 350 МПа, между 350 и 370 МПа наступаег баротропное явление, и эта фаза становится уже более легкой. Аналогичные эффекты наблюдались в системах азот — аммиак, аммиак — метан и др. [c.87]

    Основным продуктом взаимодействия графита с водородом в области температур 300-1000 °С является метан. С повышением температуры количество метана, находящегося в равновесии с графитом, уменьшается и при температуре, близкой к 1000 °С и давлении 100 кПа равновесие практически сдвинуто в сторону исходных веществ. При повышенных давлениях количество равновесногр метана увеличивается (в области высоких температур), но убывает с повышением температуры. Реакция взаимодействия водорода с графитом может ускоряться в присутствии катализатора, например, железа или никеля [77]. [c.126]

    На рис. 52 отложено отношение реальной молярной доли воды в метане, находящемся в равновесии с жидкой водой, к молярной доле воды, рассчитанной по уравнению (VIII. 8) при различных давлениях и температурах. С ростом давления значение реальной молярной доли приближается к рассчитанному. Отличие достигает сотен процентов. При высоких температурах это отличие меньше, чем при низких. Для газов с более низкой критической температурой чем метан (азот, водород) отличие реальной молярной доли от рассчитанной меньше, чем для метана. Если по уравнению (VIII. 8) молярная доля воды в газовой фазе должна стремиться к нулю при неограниченном возрастании давления, то в действительности для многих случаев концентрация воды в газе достигает почти постоянного значения и практически не меняется с давлением. Эта особенность проявляется в эмпирическом уравнении Бюка-чека [c.145]

    В предположении, что энергия связи подложки с зародышем равна энергии связи между слоями кристаллического вещества. Здесь е — удельная краевая свободная энергия, не зависящая от температуры, — степень заполнения поверхности при равновесии. Для двухкомпонентной смеси (метан и водород) [c.33]

    Для количественного определения компонентов смеси в газоанализаторе ХЛ-3 используется принцип изменения теплопроводности газов в измерительной камере при изменении концентрации газов. В газоанализаторах ГСТЛ-3 и ХТ-2 состав углеводородных смесей может быть определен посредством использования эффекта каталитического окисления отдельных компонентов на поверхности платинового элемента измерительной камеры. В обоих случаях, из-за нарушения теплового равновесия происходит разбаланс измерительного моста, у которого одно из плеч расположено в измерительной камере газоанализатора. Возникающий при этом ток разбаланса фиксируется на ленте электронного потенциометра ЭПП-09. В продуктах полного и неполного сгорания твердых, жидких и газообразных топлив содержится большое количество компонентов двуокись углерода, икнсь углерода, водород, кислород, азот, метан, предельные и непредельные углеводороды. [c.148]

    Водородный показатель конвертируемых углеводородов. В основе общепринятых методов расчета равновесного состава газа конверсии углеводородов лежит хорошо обоснованное положение о том, что углеводороды с числом углеродных атомов в молекуле более единицы необратимо конвертируются в водород, метан, окись и двуокись углерода, между которыми устанавливается равновесие [3]. Исходные углеводороды (кроме метана) в установлении равновесия в системе при конверсии не участвуют. Единственно необходимой для расчета количественной характеристикой состава сырья является отношение водорода к углероду, которое можно выразить в виде простейшей формулы углеводородного сырья . Например, парафиновый углеводород с числом углеродных атомов п в молекуле характеризуется формулой углево-дпродного сырья , которая получается из равенства [c.6]

    Механизм превращения метана в ацетилен в электрическом разряде изучен еще совершенно недостаточно. Так как при 1500—2000° К, отвечающих обычным температурам дугового разряда в метане или в его смесях с водородом, термодинамическое равновесие соответствует полному разложению ацетилена на углерод и водород, то из возможности получения значительных выходов ацетилена при воздействии электрического разряда на метан заключают, что превращение метана в дуге осуществляется в две стадии. Первая из этих стадий отвечает реакции 2СН4 = СдНа -f ЗН2, а вторая — реакции С2Н2 = 2С -f Н2. Одним из доводов, свидетельствующих о наличии этих двух брутто-стадий реакции, может служить тот факт, что энергетический выход ацетилена (выход в граммах на киловатт-час) возрастает при увеличении скорости газа. Из сказанного следует, что параллельно с образованием ацетилена нз метана в зоне разряда происходит также и его разложение, которое играет [c.357]


Библиография для Метан водород, равновесие: [c.375]   
Смотреть страницы где упоминается термин Метан водород, равновесие: [c.222]    [c.222]    [c.181]    [c.79]    [c.1144]    [c.125]    [c.358]    [c.106]    [c.450]   
Связанный азот (1934) -- [ c.175 ]




ПОИСК





Смотрите так же термины и статьи:

Метан водорода



© 2024 chem21.info Реклама на сайте