Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Обращение конфигурации механизм

    Оптически активные ацилоксисиланы реагируют с твердым едким кали в среде пентан—ксилол с 75—85%-ным обращением конфигурации (механизм 2—Si)  [c.270]

    Синтезированный АТР весьма полезен при изучении стереохимических закономерностей и, следовательно, механизма реакции фосфорилирующих ферментов (киназ) (разд. 3.3). Можно представить по крайней мере два механизма, по которым фермент катализирует передачу 7-фосфатной группы от АТР к субстрату. Это может происходить, во-первых, прямым замещением на поверхности фермента с обращением конфигурации хирального у-фосфата  [c.140]


    Механизм атаки с тыла вызывает обращение конфигурации у атома фосфора  [c.482]

    Превращение при хиральном центре, механизм которого известен. Так, реакции 5м2 происходят с обращением конфигурации при асимметрическом атоме углерода (разд. 10.1). С помощью последовательности таких превращений молочная кислота была отнесена к анилину (стрелка > указывает, что в процессе реакции происходит обращение конфигурации)  [c.150]

    Кинетические доказательства — это необходимое, но не достаточное условие, так как возможны и другие механизмы, которые будут согласовываться с этими данными. Значительно более убедительные доказательства можно получить из того факта, что механизм Sn2 предсказывает обращение конфигурации, если замещение происходит у хирального атома углерода, и это неоднократно наблюдалось [2]. Такое обращение конфигурации (т. 1, разд. 4.7) называется вальденовским обращением и было обнаружено задолго до того, как Хьюз и Ингольд сформулировали механизм Sn2 [3 . [c.13]

    Стереохимические доказательства механизма SnI, так же как и кинетические данные, характеризуются меньшей четкостью, чем стереохимические доказательства механизма Sn2. Если процесс включает образование свободного карбокатиона, то последний должен быть планарен (т. 1, разд. 5.2) и нуклеофил должен с одинаковой легкостью атаковать его с обеих сторон плоскости, что приведет к полной рацемизации. Многие реакции замещения первого порядка действительно приводят к образованию рацемического продукта, однако имеется большое число реакций, для которых это не так. Обычно обращение конфигурации составляет от 5 до 20 %, в ряде случаев наблюдалось [c.21]

    Для определенных субстратов иногда обнаруживается, что 1) скорость реакции выше, чем ожидалось, и 2) конфигурация хирального атома углерода сохраняется (обращения конфигурации или рацемизации не происходит). В этих случаях в субстрате в р-положении по отношению к уходящей группе (а иногда и в более удаленных положениях) обычно имеется группа с неподеленной парой электронов. Механизм таких реакций называется механизмом с участием соседней группы. [c.28]

    Доказательство осуществления этого механизма заключается в следующем добавление пиридина к смеси спирта с тионилхлоридом приводит к образованию алкилгалогенида с обращенной конфигурацией. Инверсия происходит потому, что прежде, чем сможет произойти любой другой процесс, пиридин [c.51]

    Бимолекулярные механизмы реакций электрофильного алифатического замещения аналогичны механизму Sn2 в том от-нощении, что новая связь образуется, когда разрывается старая. Однако в механизме Sn2 входящая группа несет с собой пару электронов и эта орбиталь может перекрываться с орбиталью центрального атома углерода лишь в той степени, при которой уходящая группа отделяется со своими электронами, в противном случае у углерода было бы более восьми электронов на внешней оболочке. Поскольку электронные облака отталкиваются, входящая группа атакует молекулу субстрата с тыла под углом 180 к уходящей группе, так что при этом наблюдается обращение конфигурации. Если атакующей частицей является электрофил, несущий субстрату только вакантную орбиталь, такое рассмотрение неприменимо и невозможно заранее предсказать, с какой стороны должна происходить атака. Теоретически можно представить два главных направления атаки и соответственно два механизма Se2 (с фронта) и Se2 (с тыла) (заряды на схеме не показаны)  [c.408]


    Было бы невероятно, если бы все превращения металлоорганических соединений в алкилгалогениды происходили по одному и тому же механизму [265]. Было показано, что в большом числе случаев реакция происходит с обращением конфигурации (см. разд. 12.1), что указывает на механизм Se2 (с тыла), тогда как в других случаях наблюдается сохранение конфигурации [266], что свидетельствует о механизме Se2 (с фронта) или Sei. Кроме того, известны случаи полного изменения конфигурации, что вместе с другими фактами свидетельствует [c.457]

    Непременным условием химических корреляций долгое время считали необходимость использования только таких реакций, при которых не затрагиваются связи асимметрического центра с четырьмя его заместителями. Если это условие не соблюдается, то нет уверенности в том, что не произойдет изменения конфигурации (вальденовского обращения). В настоящее время положение несколько изменилось при определении конфигурации стало возможным и использование реакций, затрагивающих асимметрический центр, если надежно установлен механизм и стереохимический результат, т. е. известно, протекают ли они с сохранением или с обращением конфигурации. [c.200]

    Таким образом, на второй стадии реакции равновероятна атака нуклеофильного реагента с обеих сторон плоскости, г. 8. наиболее естественным результатом реакции по механизму должна была бы быть рацемизация. Практически же в большинстве случаев наблюдается, наряду с рацемизацией, обращение конфигурации. Это объясняют тем, что уходящий анион X- прикрывает подход к плоскому карбкатиону и атака нуклеофильного реагента происходит преимущественно с противоположной стороны, напоминая ход замещения по механизму [c.274]

    Наиболее общий путь получения эпоксидов — отнятие галогеноводорода от галогенгидринов — осуществляется по механизму бимолекулярной реакции замещения с обращением конфигурации у углеродного атома, от которого уходит галоген. Из диастереомерных галогенгидринов получаются при этом геометрически изомерные окиси, например  [c.549]

    В 50—60-х годах изучение влияния стереохимического (особенно конформационного) строения органических молекул на их реакционную способность продолжало оставаться одной из важных задач кинетики органических реакций. Уже в 1953 г. А. Н. Несмеяновым и О. А. Реутовым [298] были начаты исследования стереохимии электрофильного замещения у насыщенного углеродного атома на примере реакции ртутьорганических соединений с солями ртути. Д. Крам [299], изучая стереохимию электрофильного замещения углеродного атома на водород, показал, что течение реакции довольно значительно зависит от природы растворителя в слабо ионизирующих растворителях сохранилась конфигурация у углеродного атома (S 1), а в среде сильно ионизирующих растворителей (сильные электрофильные реагенты) наб.чюдается главным образом обращение конфигурации — механизм [c.122]

    МИ со скоростью, превышающей скорость диссоциации ионной иары. Замена катиона металла на четвертичный аммониевый ион и в этом случае вызывает полную рацемизацию. Обмен дейтерий — водород в протонных растворителях с высокой диэлектрической проницаемостью происходит с обращением конфигурации. Механизм обращения конфигурации сводится к несимметричной сольватации свободного карбаниона. Рацемизация при обмене дейтерий — водород наблюдается в тех случаях, когда растворителем служит диметилсульфоксид. По-видимому, и здесь карбанион сольватируется молекулами диметилсульфоксида с тыльной стороны, и его время жизни достаточно велико, чтобы он успел превратиться в симметрично сольватированный ион и далее — в рацемический продукт. Итак, параллелизм между реакциями, в которых роль уходящей группы играет атом водорода или атом углерода соответственно, выражается в сходстве экспериментальных условий и обусловленных ими стереохимических результатов. Такое поразительное сходство делает весьма правдоподобным рассмотренный выше механизм. [c.172]

    См. ответ к задаче 1046. 1066. К >-ряду относятся соединения (а), (в) и (д) к -ряду — (б), (г) и (е). См. [4], I, стр. 523. 1069. Монометиловый эфир мезовинной кислоты. 1074. траис-2-Бутен образует, иезо-2,3-дибромбутан, а Чис-2-бутен — рацемат трео-форм 2,3-дибромбутана. См. [8], стр. 83. 1075. Фу-маровая кислота дает лезо-2,3-дибромянтарную кислоту, а малеиновая — рацемат /прео-форм 2,3-дибромянтарной кислоты. См. [7], стр. 323—326. 1076. цис-Изомер образует рацемат /прео-форм 2,3-диброммасляной кислоты, а транс-изомер — рацемат эри/про-форм этой же кислоты. См. [7], стр. 323—326. 1083. Более глубокая степень рацемизации будет наблюдаться у соединения (б), так как в этом случае промежуточно образуется более устойчивый третичный карбониевый ион. См. 13], И, стр. 145. 1084. См. ответ к задаче 1083. 1086. Образуется леэо-соединение. 1087. а) Обращение конфигурации (механизм 3 2), б) сохранение конфигурации (механизм 5дгО- См. [3], II, стр . 146. 1088. Через ,-2-хлор-бутан используя реакции нуклеофильного замещения, по механизмам 1 и 8 2. 1089. б) О-2-хлорбутан -2-бутанол -2-хлорбутан. [c.202]


    Холмберг [И] показал, что рацемизация оптически активных галогенов в растворе подчиняется суммарному кинетическому закону второго порядка, первого по отношению к галоген-иону и первого по отношению к алкилгалогену. Хьюз с сотр. [12] показали, что скорость обмена 2-октилио-дида с радиоактивным иодом в растворе ацетона в точности равна скорости инверсии, причем обе скорости подчиняются суммарному закону второго порядка. Это, конечно, вполне вероятно, если предположить, что обе реакции протекают по механизму 8 - 2 с обращением конфигурации  [c.474]

    Рассмотрим теперь некоторые особенности механизма и кинетики радикальных реакций (15.1) и (15.2). По-видимому справедливо, что реакция замещения типа X + СНдХ- Х СНд + X протекает с обращением конфигурации. Реагент X образует связь с атомом углерода субстрата со стороны, противоположной той, откуда отрывается уходящая группа X. Поэтому процесс замещения можно схематически изобразить в виде [c.144]

    Эти представления позволили провести прямое сопоставление конфигураций молочной кислоты и аланина при помощи строго контролируемых реакций замещения у асимметрического атома углерода (Брюстер, Хьюз, Ингольд, Pao 1950). Для каждой стадии было показано кинетически, что замещение проходит п(5 механизму 8л-2, т. е. реакция сопровождается обращением конфигурации. D-(-]-)-а-бром-пропионовая кислота под действие.м концентрирогзаиной щелочи превращается в L( + )-молочную кислоту, а под действием азида натрия Б L-a-азидопропионовую кислоту. Последняя при гидрировании, которое [c.372]

    Если молекула субстрата оптически активна и атакуемый атом углерода, связанный с уходяп1ей группой X, является центром асимметрии, то при протекании реакции по механизму 5м2 наблюдается обращение конфигурации, названное вальде-новским. Сам П. Вальден замещал действием щелочи атом хлора в оптически активной хлорянтарной кислоте на гидроксильную группу и, наоборот, действием пентахлорида фосфора па оптически активную яблочную кислоту замещал гидроксильную группу на атом хлора. В обоих случаях паб.пода,гось обращение [c.135]

    Оказалось, что замещение соответствует реакции второго порядка, т. е, протекает по бимолекулярному механизму, и что скорость уменьщения оптической активности в два раза превышает скорость изотопного обмена. Последнее означает, что в результате каждого элементарного акта происходит обращение конфигурации это полностью соответствует пре.аставленмям о механизме 5n2, предполагающем атаку нуклеофильного реагента исключительно с тыльной стороны по отношению к уходящей из молекулы субстрата группе. [c.137]

    Замещение по механизму 5д,2 происходит с обращением конфигурации независимо от каких-либо деталей строения реагентов. Левовращающий изомер в реакции 5. 2 превращается в правовращающий продукт. Это объясняется тем, что в реакции 5дг2 происхо дит выворачивание тетраэдра вследствие того, что У атакует С ь Х со стороны, противоположной X  [c.123]

    Был предложен еще пятый вариант [101] — общий кислотно-основной катализ с согласованным участием обеих карбоксильных групп активного центра, Glu 35 и Asp 52, по механизму простого замещения Sn2. По этой гипотезе подвижный протон карбоксильной группы остатка Glu 35 переносится па атом кислорода 0(4) расщепляемой гликозидной связи субстрата (как и н рассматриваемом ниже карбокатионном механизме, рис. 20). Однако, в от-. шчие от карбокатиониого механизма, одновременно с переносом протона здесь происходит согласованный процесс с участием другой, отрицательно заряженной, карбоксильной группы остатка Asp 52 — акцептирование протона от молекулы воды и одновременная атака образующимся гидроксильным ионом углеродного атома С(1) гликозидной связи субстрата. Такой одностадийный согласованный механизм Sn2 маловероятен, поскольку должен протекать с обращением конфигурации расщепляемой связи субстрата, что противоречит соответствующим экспериментальным данным. [c.172]

    Здесь желательно вспомнить о том, как в оригинальных работах было доказано, что реакция замещения происходит с обращением конфигурации, причем тогда, когда механизм реакции еще не был известен. Вальден [4] привел ряд примеров реакций, в которых должно происходить обращение конфигурации. Например, ( + )-яблочную кислоту действием тионилхлорида можно превратить в ( + )-хлороянтарную, а действием хлорида фосфора(V)—в (—)-хлороянтарную  [c.13]

    Замещение в свободном эпоксиде, которое, как правило, происходит в нейтральной или основной среде, идет обычно по механизму Sn2. Поскольку первичные субстраты легче подвергаются SN2-aTaK6, чем вторичные, то соединения тииа 90 в нейтральном или основном растворе атакуются по менее замещенному атому углерода, причем взаимодействие происходит стереоспецифично с обращением конфигурации у этого атома углерода. В кислой среде в реакцию вступает протонированная форма эпоксида. В таких условиях реакция может идти по механизму либо SnI, либо Sn2. При осуществлении механизма SnI, для которого характерно участие третичных атомов углерода, можно ожидать, что атака будет происходить по наиболее замещенному атому углерода, что и наблюдается. Однако даже когда протонированные эпоксиды реагируют по механизму Sn2, атака тоже происходит по более замещенному положению [368]. Так, часто можно изменить направление раскрытия цикла при переходе от основных растворов к кислым и наоборот. Раскрытие эпоксидного цикла, конденсированного с циклогексановым кольцом, по механизму Sn2 всегда имеет диаксильный, а не диэкваториальный характер [369]. [c.99]

    Протекание реакций по механизму Вдь2 легко обнаружить, так как это единственный из шести наблюдаемых механизмов, при котором должно происходить обращение конфигурации R. Однако в последнем примере механизм становится очевидным из природы продукта, так как простой эфир не может образоваться иным путем. [c.114]

    У атома углерода, соединенного с ОН-группой, происходит обращение конфигурации, что указывает на осуществление механизма Sn2, в котором ОРРЬз выступает как уходящая группа. [c.149]

    Эти реакции обычно идут по механизму Sn2 с обращением конфигурации в случае хирального RX, хотя в некоторых случаях получены доказательства реализации свободнорадикального механизма [1141]. Введение третичных групп можно осуществить по механизму SnI при обработке соединения Z H Z (а не енолят-иона) третичным карбокатионом, генерированным in situ из спирта или алкилгалогенида и ВРз или AI I3 (см., например, [1142]) или третичным алкилперхлоратом [1143]. [c.205]

    Известны, однако, примеры обращения конфигурации, что свидетельствует о механизме Se2 (с тыла). Так, реакция оптически активного егор-бутилтринеопентилолова с бромом (реакция 12-28) дает обращенный втор-бутилбромид [10]. Показано [c.411]

    В этом случае информацию о механизме реакции можно получить, измеряя отношение константы скорости изотопного обмена ке) к константе скорости рацемизации (йа). Если отношение кс к значительно больше единицы, это означает, что реакция происходит с сохранением конфигурации, поскольку процессы изотопного обмена не вызывают изменения конфигурации. Величина отношения ке ка, близкая к единице, указывает на рацемизацию, а величина этого отношения, равная /г, говорит об обращении конфигурации (разд. 10.1). В зависимости от природы К, основания и растворителя наблюдается один из трех типов стереохимического поведения. Как и в реакции расщепления алкоксидов, в растворителях с низкой диэлектрической проницаемостью обычно наблюдается сохранение конфигурации, в полярных апротонных растворителях — рацемизация, а в протонных растворителях — обращение конфигурации. Однако в реакциях обмена протона появляется и четвертый тип стереохимического поведения. Было найдено, что в апротонных растворителях и с апротонными основаниями, подобными третичным аминам, отношение кс1ка. меньше 7г это свидетельствует о том, что рацемизация происходит быстрее, чем изотопный обмен (такой процесс известен как изорацемизация). В этих условиях сопряженная кислота амина остается ассоциированной с карбанионом в виде ионной пары. Иногда ионная пара диссоциирует достаточно медленно, для того чтобы карбанион успел вывернуться и снова захватить протон  [c.415]

    Правило Марковникова обычно соблюдается также и в тех случаях, когда в качестве интермедиатов образуются ионы бромония или другие трехчленные циклы [80]. Это означает, что в таких случаях атака частицы должна быть более похожей на 8x1-, чем на 5к2-механизм (т. 2, разд. 10.17), хотя общее стереоспецифичное ангы-присоединение в этих реакциях указывает на то, что стадия нуклеофильного замеп ения идет с обращением конфигурации. [c.153]

    Очевидно, квазиперегруппировка Фаворского не может идти по циклопропаноновому механизму. Общепринятым механизмом (называемым семибензильным [151]) является механизм типа катализируемой основанием пинаколиновой перегруппировки, аналогичный описанному в 18-7. Такой механизм требует обращения конфигурации в конечном месте миграции, что и было экспериментально обнаружено [152]. Показано, что даже при [c.145]

    Правило для SN2-peaкцuй замещение у асимметрического атома, протекающее по механизму 5 у2, всегда сопровождается обращением конфигурации независимо от деталей строения молекулы. [c.82]

    В гл. 1 мы уже отмечали, что стереохимический результат реакций замещения у асимметрического атома углерода определяется правилами Ингольда замещение по механизму 5лг2 сопровождается обращением конфигурации, замещение по механизму 5 1 обычно протекает с рацемизацией или частичным обращением конфигурации, а при наличии в молекуле фиксирующих групп — и с сохранением конфигурации. Правилам Ингольда можно дать следующее наглядное толкование. [c.272]

    Реакции по механизму 5 2 идут через переходное состояние, в котором вступающая группа взаимодействует с асимметрическим центром тогда, когда уходящая группа еще не потеряла связи с ним. Наиболее выг(5Дной моделью такого переходного состояния является расположение входящей и уходящей групп на одной прямой с двух сторон от асимметрического центра. Замещение при этом приводит к обращению конфигурации  [c.272]

    Стереохимически раскрытие эпоксидного кольца протекает, как и следует для механизма 8 2, с обращением конфигурации у затрагиваемого в ходе реакции асимметрического центра, например в случае стильбеноксидов  [c.551]


Смотреть страницы где упоминается термин Обращение конфигурации механизм: [c.136]    [c.137]    [c.137]    [c.282]    [c.202]    [c.22]    [c.110]    [c.180]    [c.27]    [c.27]    [c.181]    [c.192]    [c.354]    [c.221]    [c.222]   
Основы химии карбанионов (1967) -- [ c.109 , c.111 ]




ПОИСК





Смотрите так же термины и статьи:

Конфигурация обращение

Обращение фаз



© 2025 chem21.info Реклама на сайте