Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Жидкофазное окисление кинетика

    Несмотря на значительный объем опубликованных исследований наши знания о реакциях окисления простейших углеводородов остаются пока далеко неудовлетворительными. Фактически жидкофазное окисление таких относительно сложных соединений, как кумол или высшие олефины, изучено лучше, чем окисление этана или пропана. Критические способности заинтересованного исследователя редко подвергаются таким испытаниям, как при изучении всей обширной литературы по окислению углеводородов. Сильно выраженное влияние характера поверхности и незначительных количеств примесей на скорость реакции, а такн е часто наблюдаемое полное изменение природы продуктов и кинетики процесса при изменении температуры и соотношения участвующих реагентов являются причиной значительных разногласий между исследователями. Очень часто не удавалось составить удовлетворительный материальный баланс опыта, поскольку методы анализа сложных смесей жидких и газообразных продуктов реакции были разработаны лишь недавно. Значительные неясности вызываются реакциями, происходящими между конденсированными продуктами окисления и не имеющими отношения к первичным реакциям окисления. [c.318]


    Кинетика и механизм жидкофазного окисления углеводородов [c.25]

    Пероксидный радикал КО2 как активная промежуточная частица (интермедиат) занимает центральное место в кинетике жидкофазного окисления углеводородов. От его активности по отношению к RH зависит удельная скорость реакции продолжения цепи, а от скорости диспропорционирования — его концентрация и скорость окисления. [c.28]

    Кинетика, механизм и катализ жидкофазного окисления меркаптанов кислородом [c.22]

    Дизельные топлива представляют смесь различных углеводородов, в этой связи справедливо полагать, что при исследовании процессов окисления и способов их торможения можно использовать цепную теорию жидкофазного окисления индивидуальных углеводородов и методик, основанных на получении количественной информации о кинетике процесса [68-70]. Правомерность такого подхода была установлена при изучении кинетических закономерностей окисления и стабилизации реактивных топлив [66]. [c.33]

    К настоящему времени подробно исследованы кинетика и механизм жидкофазного окисления реактивных топлив на примере гидрогенизационных топлив Т-6, РТ, Т-8, Т-8В [66, 68, 69]. Установлено, что инициированное окисление топлив в интервале 120-130°С протекает как цепной процесс, длина цепи составляет 18-20 звеньев. По параметру а разные образ- [c.70]

    РЕДУКЦИЯ И КОМПЬЮТЕРНЫЙ АНАЛИЗ СИСТЕМ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ КИНЕТИКИ РЕАКЦИЙ ЖИДКОФАЗНОГО ОКИСЛЕНИЯ УГЛЕВОДОРОДОВ [c.45]

    До настоящего времени не потеряли своего значения исследования Н. И. Черножукова в области жидкофазного окисления углеводородов и нефтяных фракций, результаты которых обобщены в монографии Окисляемость минеральных масел , написанной совместно с С. Э. Крейном, ближайшим учеником Н. И. Черножукова. В этой работе, вышедшей тремя изданиями и широко известной в России и за рубежом, впервые установлен характер окисления углеводородов разных классов, а также их влияние на кинетику процесса, развитие и торможение реакции автоокисления. Выявлена роль ароматических углеводородов в торможении реакции окисления нафтенов и индуцирования процесса окисления ароматических углеводородов первичными продуктами взаимодействия нафтенов с кислородом. [c.8]

    Другой интересной особенностью кинетики фильтрации является закономерность изменения скорости процесса во времени. Установлено, что эта закономерность напоминает соответствующую зависимость в теории жидкофазного окисления (табл. 5.7). Зависимость имеет вид  [c.143]


    Кинетика и механизм жидкофазного радикального цепного окисления многих соединений изучены детально [122, 123]. Надежно определены элементарные константы и дана кинетическая модель реакций, что позволяет использовать этот процесс как один из наиболее удобных методов определения скорости генерирования свободных радикалов. С этой целью Агабеков, Бутовская и Антоновский с соавторами [124—129] разработали стандартизированный метод тестирования радикальных инициаторов, основанный на использовании в качестве модельных систем для низких температур (323—353 К) жидкофазного окисления кумола и для относительно высоких температур (373-403 К) — жидкофазного окисления н-декана. [c.38]

    Кинетика жидкофазного окисления [c.210]

    Многие исследователи [13,17, 31, 156, 171, 182] изучали кинетику жидкофазного окисления и вывели уравнения скорости реакций для различных систем. Общая скорость окисления является функцией скоростей инициирования, распространения и обрыва цепи, протекающих по уравнениям (95)—(100). Стадия инициирования служит источником радикалов, которые участвуют в дальнейших стадиях распространения и обрыва реакционной цепи. Суммарная скорость окисления зависит от числа актов инициирования за единицу времени и числа актов распространения, происходящих до обрыва реакционной цепи. Суммарная скорость окисления может быть выражена общим уравнением [c.210]

    Как уже было отмечено в гл I, жидкофазное окисление цик-логексана является широко распространенным способом получения циклогексанола и циклогексанона — основных полупродуктов и синтезе капролактама. Внедрению этого процесса в промышлен-ность [1] предшествовали обширные исследования механизма й кинетики реакции окисления циклогексана, определения оптимальных условий ее протекания, влияния на нее различных факторов, в первую очередь температуры. Исследовались разные катализаторы, условия и механизм образования побочных продуктов реакции, а также отрабатывались инженерные решения, связанные в основном с реакторным узлом [c.35]

    Неодинаковое влияние воды на реакцию жидкофазного окисления ксилолов зависит от природы катализатора и промотора, концентрации и соотношения компонентов смесевого катализатора, условий проведения процесса. Влияние воды на кинетику и механизм реакций жидкофазного окисления углеводородов до настоящего времени полностью не выяснено. [c.36]

    Реакции прямого окисления углеводородов молекулярным кислородом принадлежат к классу цепных вырожденно-разветвленных процессов, систематическому изучению кинетики и механизма которых посвящено большое количество работ, хотя эти исследования далеко не завершены. В основе теоретических представлений о механизме окисления углеводородов лежит перекисная теория Баха-Энглера, которая получила дальнейшее развитие на основе теории цепных реакций, разработанной Н. Н. Семеновым [1—3]. Благодаря работам советских ученых, в частности Н. М. Эмануэля, его сотрудников [4, 5] и других исследователей,в настоящее время стали известны кинетические закономерности жидкофазного окисления углеводородов, а также найдены пути стимулирования реакций. [c.48]

    Таким образом, исследования процессов жидкофазного окисления развиваются по многим направлениям и представляют важный раздел химической кинетики и химической технологии. [c.32]

    Б настоящей работе изучены некоторые свойства полимерного продукта. Кинетика его накопления в процессе жидкофазного окисления пропилена, измеряемая по величине оптической плотности раствора, сопоставлена с кинетикой накопления окиси пропилена и органических кислот. [c.48]

    Исследована кинетика жидкофазного окисления циклододеканона в неполярном растворителе и без него, в некатализированном и катализированном солями марганца режимах. [c.325]

    В реакциях газофазного и жидкофазного окисления применяют различные вещества, которые ускоряют или замедляют окислительные реакции. Самый факт влияния добавок на выход и кинетику реакций и изучение этого влияния помогают пониманию рассматриваемых механизмов окисления. Таким же образом, для того чтобы получить дополнительные данные о механизмах реакций, часто проводилось окисление не чистых веществ, а смеси углеводородов. Нанример, при термическом разложении углеводородов и при окислении углеводородов в газовой фазе состав реагирующих веществ часто изменяют для того, чтобы получить данные о ходе и кинетике реакций. Сведения, полученные о гомогенном окислении, дают возможность предположить, что только что упомянутый метод можно применить и к каталитическому окислению на твердой поверхности. [c.290]

    В рамках данного проекта проводятся исследования перспективного метода синтеза циклогексаноноксима - исходного продукта в производстве е-капролактама окислительным аммонолизом циклогексанона. Реакция окислительного амманолиза осуществляется при взаимодействии циклогексанона с аммиаком и перекисью водорода при 10-20°С. В качестве катализатора нами использовались растворимые в водной фазе соединения вольфрама. Стабилизация распада перекиси водорода осуществлялась с помощью трилона-Б Было установлено, что при молярном соотношении циклогексанон перекись водорода аммиак = 14 5 выход циклогексаноноксима составляет 93-95% на загруженный циклогексанон при практически полной его конверсии. С целью выяснения механизма реакции окислительного аммонолиза циклогексанона была изучена кинетика процесса и показано, что он протекает через промежуточное образование гидропероксициклогексиламина Для получения циклогексанона и перекиси водорода предложено использовать жидкофазное окисление цикJюгeк aнoлa В зтой связи подробно изучена реакция окисления циклогексанола - температура, продолжительность реакции, концентрация катализатора, выделение смеси циклогексанона и перекиси водорода, которая непосредственно была использована для получения циклогексаноноксима. Изучена кинетика реакции окислительного аммонолиза циклогексанона и предложен механизм реакции [c.53]


    При рассмотрении кинетики реакции жидкофазного окисления значительный интерес представляет длина кинетической цепи, которая по определению равна частному от деления числа актов распространения за единицу времени на число актов обрыва цепи за то же время. По литературным данным [182] малая длина кинетической цепи, равная около 4, наблюдается при некаталитическом окислении н-декана сравнительно длинная кинетическая цепь — около 100 — наблюдается [79] при некаталитическом окислении тетралина. Возможно, что длина цепи зависит от природы окисляемого углеводорода, так как распространение цепи может протекать легче или труднее в зависимости от легкости отнятия водорода от молекулы исходного углеводорода. Таким образом, для систем, содержащих легко отщепляемые атомы водорода, длина цепи может быть достаточно большой, а для систем, водород в которых трудно отщепляется, — весьма малой. [c.211]

    Достижения К. х., в течение длит, времени остававшейся чисто фундаментальной наукой, находят все большее практич. применение. Разработаны теории горения и взрыва, распространения пламени, детонации, используемые для изучения процессов, происходящих в двигателях и факелах ракет. Кинетич. исследования газофазных р-ций позволили создать хим. лазеры. Исследования кинетики газофазных р-ций имеют большое значение для химии земной атмосферы. На основе изучения кинетики р-ций в конденсиров. фазе создана теория жидкофазного окисления орг. соед., лежащая в основе технол. процессов получения мн. кислородсодержащих в-в. Кинетич. методы использ. для изучения пиролиза, полимеризации, каталитич. процессов, р-ций на пов-сти и в объеме тв. тел (см., напр.. Адиабатического сжатия метод. Акцепторов свободных радикалов метод, Релаксационные жтоды, Статические кинетические методы, Струевые кинетические методы). Знание кинетич. параметров позволяет совершенствовать известные и разрабатывать новые технол. процессы, создает основы для автоматического управления хим. процессами и т. д. См. также Механизм реакции. Скорость реакции.  [c.255]

    Проведенная спектроскопическая и хроматофафическая идентификация основных компонентов дает возможность изучать кинетику жидкофазного окисления высших моноолефинов и осуществлять количественный анализ продуктов окисления на основании ИК-спектров и газо-жидкостных хроматофамм. [c.57]

    Вода, являясь неизбежным продуктом окисления углеводородов, может оказывать воздействие на кинетику и химизм происходящих реакций. В качестве растворителя в процессе окисления ксилолов (см. с. 20) используют преимущественно уксусную кислоту, содержащую от 2 до 10% воды. О концентрации последней имеются противоречивые данные. В одних случаях предлагается использовать уксусную кислоту с минимальным количеством воды и выводить реакционную воду, образующуюся в процессе окисления -ксилола, из реакционной зоны в целях исключения возможности высаждения катализатора [115]. В других работах объясняется ингибирующее действие воды при этом приводятся примеры жидкофазного окисления алкилбензолов и нафталинов, связанные с разрушением активного кобальтбромидного комплекса [116, 117]. Отмечено также [118], что торможение процесса возможно вследствие образования аквакомплексов из кобальта и воды, которые с точки зрения каталитической активности являются индифферентными и снижают таким образом концентрацию активных комплексов кобальта 119]. Кроме того, в процессе образования аква-комплексов возможна дезактивация пероксидных радикалов. [c.36]

    В последние годы исследованы также кинетика и мехаиизм жидкофазного окисления в присутствии гомогенных катализаторов — растворимых солей п номплексных соединений металлов переменной валентности [420]. Установлено, что первичным актом гомогенного катализа является образоваяие промежуточных комплексов с участием катализатора. Например, образование радикалов при распаде гидроперекиси кумпла в присутствии ацетилацетона-та кобальта протекает через стадию промежуточного комплекса катализатора и гидроперекиси. Константы равновесия образоваиия этого комплекса, определенные по кинетическим данным и по спектрам ЯМР [421], имеют одинаковые значения, что доказывает такой механизм процесса. [c.263]

    Из зарубежных авторов, разрабатывающих вопросы кинетики жидкофазного окисления, следует назвать таких, как Бузер, Хаммонд, Гамильтон и сотрудники [146—148], Бейтман и сотрудники [149], Керн и Виллерснн [150], Боланд [151] и другие. [c.336]

    За последнее время к изучению кинетики и механизма жидкофазного окисления индивидуальных высокомолекулярных парафинов и парафинистых дестиллятов обратились химики-синтетики Зейналов, Мамедова и Лейках [152, 153], Рожков, Ши-монаев и Корнилова [154], Фрейдин [155] и, что особенно характерно, один из видных специалистов, участвующих в создании промышленных методов окисления нефтяных углеводородов, Цысковский [156, 157]. [c.336]

    С точки зрения химической кинетики достаточно полно изучен такя е процесс жидкофазного окисления циклогексана в циклогексанол, цикло-гексанон и адипиновую кислоту. [c.9]

    Во вводной статье рассматриваются современные направления исследований цепных реакций жидкофазного окисления. Подчеркиваются основные факторы, отличающие жидкофазное окисление от газофазного, и формулируются причины увеличения скорости и селективности окисления, свойственные жидкофазным процессам. Специальное место уделяется возможностям применения физических методов в изучении элементарных актов р(и1кций (методы радиоспектроскопии, гамма-резонансной спектроскопии, флеш-фотолиза, остановленной струи). Благодаря исиоль-зованию этих методов стало доступным изучение клеточных эффектов, короткоживущих продуктов (радикалов), промежуточных компонентов. Привлечено внимание к изучению феноменологических закономерностей окисления, к математическому описанию кинетики окисления различных классов органических веществ и связям кинетики с детальным механизмом процесса окисления. Этому направлению исследований в области жидкофазного окисления долгое время не уделялось должного внимания, хотя оно играет важную роль для практики и вносит в теорию окисления [c.3]

    Рассмотрены возможности получения ароматических спиртов и фенолов при окислении в присутствии уксусного ангидрида, имеющие зпачепие при разработке новых способов получения гидроксилсодеряшщих соединений из простейших ароматических углеводородов. Приводятся данные по механизму жидкофазного окисления диэтилбензола, эфиров алифатических дикарбоновых кислот, относительно закономерностей непрерывного окисления м- и п-диизонроиилбензолов и по кинетике окисления олефи-нов в начальных стадиях развития процесса. Приводятся константы соответствующих элементарных процессов. [c.4]

    В присутствии кислорода альдегиды окисляются в соответствующие кислоты по радикально-цепному механизму. Если реакции жидкофазного окисления насыщенных альдегидов изучены довольно обстоятельно [1, 2], то по каталитическому жидкофазному окислению низших а-пенасыщен-ных альдегидов имеются лишь отдельные сообщения [3, 4]. Литературные данные по кинетике автоокисления -ненасыщенных альдегидов отсутствуют. [c.57]

    Кинетика окисления галоидолефинов изучена мало. В настоящем сообщении приведены результаты исследования кинетики низкотемпературного жидкофазного окисления тетра- и трихлорэтиленов. Окисление тетра-хлорэтилена проводили при 60-Ь 120° С, а трихлорэтилена — при 30-7-70° С, пропуская кислород через 100 мл тетрахлорэтилена со скоростью 0,3 л/мин, а трихлорэтилена — 0,4 л1мин. Реакцию инициировали у-квантами Со в интервале мощностей доз (1,4-Ь14,0) -10 эв/см -сек. Увеличение скорости пропускания кислорода до 0,8 л/мин не приводило к увеличению скорости окисления, что свидетельствует о протекании процесса в кинетической области. Продукты реакции анализировали хроматографически [3]. Основными продуктами окисления тетра- и трихлорэтиленов являются окиси этих этиленов, а также хлорангцдриды три- и дихлоруксусных кислот. При окислении тетрахлорэтилена образуется небольшое, не более 5% от веса исходного вещества, количество фосгена (нри повышенных температурах), а при окислении трихлорэтилена — небольшое количество фосгена, хлористого водорода и окиси углерода в количестве, не превышающем 3%. [c.89]

    Кинетика окисления п-толуилового альдегида, катализированного солями кобальта. Арико Н, Г., Мицкевич Н. И., Ковальков М. Д. Сб. Теория и практика жидкофазного окисления . М., Наука , 1974. [c.322]

    В качестве модельной реакции свободных радикалов, переходящих в объем жидкости при гетерогенном инициировании процессов жидкофазного окисления углеводородов, изучено окисление изопропилбензола и этилбензола в присутствии азо-бис-изобу-тиронитрила. Полученные данные по кинетике накопления продуктов реакции служат дополнительным подтверждением принятого в литературе механизма этих реакций. Сопоставлением кинетики окисления изопропилбензола и этилбензола при гомогенном инициировании и в присутствии различных окислов металлов показано участие гетерогенных катализаторов в реакциях зарождения и обрыва цепи. Установлены существенные различия в механизме действия окислов серебра, никеля, марганца и других металлов. [c.325]

    Основные научные работы посвящены изучению высокоорганизованных каталитических систем. Предложил (1970) кинетическую теорию мицеллярного катализа, по-лучивщую мировое признание. На основе искусственных светочувствительных ферментных систем создал (1970—1975) химические усилители слабых сигналов. Установил (1974) возможность регулирования скорости ферментативной реакции на молекулярном уровне. Открыл (1975) явление биоэлектрокатализа. Создал (1977) новые методы стабилизации биокатализаторов. Изучал также кинетику жидкофазного окисления углеводородов, элементарные свободнорадикальные реакции. [c.51]


Библиография для Жидкофазное окисление кинетика: [c.318]    [c.67]    [c.317]    [c.318]    [c.321]    [c.328]    [c.330]   
Смотреть страницы где упоминается термин Жидкофазное окисление кинетика: [c.423]    [c.70]    [c.21]    [c.593]    [c.48]   
Антиокислительная стабилизация полимеров (1986) -- [ c.53 , c.54 ]




ПОИСК





Смотрите так же термины и статьи:

Жидкофазное окисление

КИНЕТИКА И МЕХАНИЗМ ЖИДКОФАЗНОГО ОКИСЛЕНИЯ УГЛЕВОДОРОДОВ

Кинетика и механизм реакций жидкофазного окисления бензола

Кинетика окисления

Механизм и- кинетика реакций жидкофазного окисления толуола

Окислительное старение изоляционных масел Общие соображения о кинетике процесса жидкофазного окисления углеводородов

Экспериментальные методы изучения кинетики и механизма жидкофазных реакций окисления



© 2025 chem21.info Реклама на сайте