Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Давление кинетическое и статическое

    В движущемся потоке различают статическое и динамическое давления. Под статическим давлением понимается внутреннее давление, оказываемое потоком на площадку, установленную параллельно направлению движения. Под динамическим давлением понимается добавочное давление, которое поток оказал бы на площадку, поставленную нормально к потоку, возникающее вследствие торможения потока до состояния покоя. Динамическое давление, отнесенное к удельному весу среды, представляет собой кинетическую энергию одного килограмма газа [c.11]


    Для перехода от меньшего сечения трубы (канала) к большему (преобразования кинетической энергии потока в потенциальную или динамического давления в статическое) с минимальными потерями полного давления устанавливают плавно расширяющийся участок - диффузор (рис. 1.111) . Вследствие того, что в диффузоре с ростом площади поперечного сечения средняя скорость потока при увеличении угла расширения а надает, общий коэффициент сопротивления диффузора, приведенный к скорости в узком (начальном) сечении, становится до определенных пределов а меньшим, чем для такой же длины участка трубы постоянного сечения с площадью, равной начальной площади сечения диффузора. [c.185]

    Рассмотрим потери в диффузоре, связанные с преобразованием кинетической энергии (динамического давления) в статическое давление. [c.185]

    Полный запас энергии движущейся жидкости Е кг/м слагается из трех составляющих энергии положения — Л энергии объема — давление или статический напор р кг/ н- и энергии движения — кинетической, называемой также скоростным [c.34]

    Общее Кинетическое Статическое давление давление давление [c.17]

    Увеличение поперечного сечения по длине диффузора обусловливает уменьшение средней скорости течения и, согласно уравнению Бернулли, повышение статического давления. Таким образом, вдоль диффузора устанавливается положительный градиент давления, вызываюш,ий силу, которая направлена против основного течения. Статическое давление, повышающееся вдоль диффузора, одинаково по всему поперечному сечению, включая область, непосредственно прилегающую к стенке, тогда как скорости распределены по сечению неравномерно и снижаются до нуля у стенки. Вследствие того, что по длине диффузора скорость течения продолжает уменьшаться, при определенных значениях и возникает состояние, при котором запас кинетической энергии потока в пограничном слое становится недостаточным для преодоления давления, характеризующегося положительным градиентом, и поток отрывается от стенок (рис. 1.21, а). [c.27]

    Измерение и регулирование расхода жидкости и паров. Приборы, предназначенные для измерения расхода, называются расходомерами. Принцип действия простейшего расходомера основан на измерении перепада давления на дроссельном устройстве постоянного сечения. На трубопроводе устанавливают сужающее дроссельное устройство — диафрагму с соединительными импульсными трубками и измерителем перепада давлений —дифференциальным манометром. При истечении жидкого или газообразного вещества через сужающее устройство часть потенциальной энергии переходит в кинетическую, средняя скорость потока в суженном сечении повышается, а статическое давление уменьшается. Разность давлений (Р = Р —Р2) тем больше, чем выше расход жидкости, и может служить мерой расхода. [c.86]


    При решении вопроса об интенсификации работы аппаратов воздушного охлаждения часто бывает оправдано применение специальных вентиляторов с целью повышения статического давления воздуха для преодоления повышенных аэродинамических сопротивлений. В этом случае вспомогательные вентиляторы устанавливают последовательно основному вентилятору, и построения суммарной характеристики Н — 1(Ув) производится сложением ординат полного напора индивидуальных характеристик (рис. 1У-8). Характеристика основного вентилятора должна быть получена экспериментально, а зависимость Яп = /(Ув) для вспомогательного вентилятора выбирают по каталогам. При последовательной работе вентиляторов кинетическая энергия, сообщенная потоку первым вентилятором, не теряется на удар, и полученное статическое давление выше суммы Нет отдельных вентиляторов. Например, если два одинаковых вентилятора или основной вентилятор и группа вспомогательных развивают полное давление 2//п, то статическое давление составит Нет =2Яп — Яд (где Яд — динамическое давление). При последовательном включении вспомогательных вентиляторов подача воздуха увеличивается на величину ДУв  [c.97]

    Кинетическая модель процесса представляет собой совокупность элементарных стадий, реакций и уравнений, характеризующих зависимость скорости химического превращения от параметров реакции давления, температуры, концентраций реагентов и др. [144]. Такие зависимости определяются на основе экспериментальных данных в области изменения параметров реакции, охватывающей практические условия ведения процесса. Построенная кинетическая модель является первым уровнем модели любого реактора и базисом для решения различных статических и динамических проблем, возникающих при разработке технологического процесса. [c.63]

    Принцип действия термодинамического конденсатоотводчика основан на использовании кинетической энергии пара за счет понижения статического давления при увеличении скорости пара. При поступлении в конденсатоотводчик пара с конденсатом или чистого конденсата под действием рабочего давления тарелка отходит от седла и открывает выходное отверстие корпуса. Скорость пара в щели между тарелкой и седлом в момент поступления пара значительно выше скорости конденсата, и под тарелкой образуется пониженное давление. В результате этого тарелка прижимается к седлу. Кроме того, пар проникает в камеру над тарелкой, создавая в ней дополнительное давление, прижимающее тарелку к седлу. Таким образом, отсекается выходное отверстие. При понижении температуры в камере над тарелкой, что может произойти [c.120]

    Как показывает водяная модель, давление в системе уменьшается по мере приближения к выходу из трубы. Под топкой оно равно давлению на том же уровне в окружающей среде. В горизонтальном канале давление уменьшается из-за сопротивлений и увеличения кинетической энергии, а в трубе снижается по мере продвижения вверх вследствие уменьшения статического давления. Самое низкое давление (у выхода из трубы) равно атмосферному давлению на этом уровне. [c.76]

    Интенсивность перемешивания в потоке зависит от спектра масштабов турбулентности и от скорости турбулентных пульсаций. При вдувании газа в пористую среду (плотный слой) непосредственно в месте ввода кинетическая энергия превращается в потенциальную, скорость падает и резко возрастает статическое давление. Поток раздробляется на мельчайшие струйки с низкими скоростями пульсаций и мелкими масштабами турбулентности или даже движение становится ламинарным. Струйки движутся в слое по линиям наименьшего сопротивления, слабо перемешиваясь между собой. Поэтому, если газ и воздух подводятся в слой раздельно, горение получается растянутым и несовершенным. Углеводородные фракции топлива разлагаются с выделением сажистого углерода в порах слоя, засоряя его. Полученные в лабораторных условиях экспериментальные данные о распределении статических давлений в слое при сосредоточенной подаче газа в нижние горизонты слоя по его [c.120]

    В одноступенчатом центробежном насосе (рис. 111-2) жидкость из всасывающего трубопровода / поступает вдоль оси рабочего колеса 2 в корпус 3 насоса и, попадая на лопатки 4, приобретает вращательное движение. Центробежная сила отбрасывает жидкость в канал переменного сечения между корпусом и рабочим колесом, в котором скорость жидкости уменьшается до значения, равного скорости в нагнетательном трубопроводе 5. При этом, как следует из уравнения Бернулли, происходит преобразование кинетической энергии потока жидкости в статический напор, что обеспечивает повышение давления жидкости. На входе в колесо создается пониженное давление, и жидкость из приемной емкости непрерывно поступает в насос. [c.133]


    На практике химические газофазные процессы обычно осуществляются непрерывно в проточных реакторах в так называемых динамических условиях. В отличие от рассматривавшихся до СИХ пор закрытых (статических или замкнутых) систем, в которых реакции протекают при постоянном объеме, в открытых (проточных) системах процессы протекают при постоянном давлении. Статический метод позволяет проследить в течение одного опыта зависимость скорости процесса от концентрации реагирующих веществ в широком интервале их изменений и потому особенно пригоден на начальной стадии исследования кинетики процесса. Динамический метод позволяет быстрее накапливать продукты реакции и при установлении стационарного состояния, когда состав выходящей из реактора смеси продуктов становится постоянным, получать пов-торимые кинетические данные, значительно более надежные, нежели единичная точка на кинетической кривой опыта в статических условиях. [c.251]

    Кинетическое давление возникает в результате движения молекул и всегда положительно. Статическое давление является следствием взаимодействия молекул их притяжения или отталкивания. Оно может быть как положительным, так и отрицательным. Например, водороду при обычных условиях свойственно отрицательное статическое давление. У двуокиси углерода оно положительно, так, при внешнем давлении р= 1 атм и 290° К (5 //(5Г)т-=0,021 атм. Кинетическое давление можно легко связать с термическими коэффициентами. А именно, с коэффициентом объемного термического расширения [c.95]

    Приведенные соотношения означают, что увеличение энтропии в системе происходит в результате подведения к системе теплоты и в результате протекающих в системе неравновесных процессов. Последнее нетрудно понять, если вспомнить примеры неравновесных процессов в J2.1. Выравнивание температуры при нагревании тела, концентраций при растворении соли, давления при резком расширении газа под поршнем — все это процессы, ведущие от более упорядоченного состояния, когда в системе имеется направленное изменение некоторого свойства вдоль системы, к менее упорядоченному. Поэтому все эти процессы должны сопровождаться увеличением энтропии. С помощью соотношения (12.20) понятие энтропии было впервые введено в науку более ста лет назад при разработке теории тепловых двигателей. Значительно позже эта функция была осмыслена с позиций молекулярно-кинетической теории и статической физики как величина, характеризующая степень молекулярной (микроскопической) неупорядоченности макроскопической системы и введена в том виде, как это было сделано нами в 9.3. [c.217]

    Тензиметрические методы (методы измерения давления пара) условно разделяются на четыре группы 1) статические методы, в которых изучаемая система находится в изолированном объеме при постоянной температуре 2) квазистатические методы, в которых система сообщается с внешней средой, однако принимаются меры, ограничивающие массообмен 3) динамические методы, в которых давление оценивается по количеству вещества, перенесенного потоком инертного газа, протекающего через систему 4) кинетические методы [c.28]

    Разложение этого пероксида проводили в ударных трубах [25] в среде Аг при общем атмосферном давлении, когда реакцией на стенке можно пренебречь. Полученные результаты хорошо согласуются с данными кинетических опытов по пиролизу пероксида в статических струевых системах. [c.173]

    В трубопроводе, по которому протекает жидкая или газообразная среда, устанавливают устройство (диафрагму, сопло, сопло Вентури), создающее местное сужение потока. Вследствие перехода части потенциальной энергии давления в кинетическую средняя скорость потока в суженном сечении возрастает, в результате чего статическое давление в этом сечении становится меньше статического давления перед сужающим устройством. Разность этих давлений зависит от расхода. Эта зависимость описывается выражением [c.372]

    Таким образом, для любой системы давление как бы складывается ИЗ двух слагаемых, из которых одно называется кинетическим давлением, а другое — статическим. Первое вызвано тепловым движением молекул и всегда положительно. Последнее обусловлено межмолекулярными силами и может быть как положительным, так и отрицательным. В случае идеального газа оно равно нулю. [c.239]

    Работает струйный аппарат следующим образом. Рабочая жидкость выходит из сопла с большой скоростью в виде струи, несущей большой запас кинетической энергии. Активная рабочая струя захватывает окружающую жидкость и передает ей часть своей энергии. Образовавшийся смешанный поток движется в проточной части аппарата. В камере смешения в результате обмена импульсами происходит выравнивание пол й скоростей потока и з а счет высвобождающейся кинетической энергии растет его статическое давление. Затем поток поступает в диффузор, где вследствие уменьшения скорости и, следовательно, динамического давления потока происходит увеличение статического давления. [c.37]

    Из уравнения (3.36) видно, что давление, создаваемое нагнетателем, складывается из прироста кинетической энергии абсолютного движения, повышения статического давления от работы центробежных сил и преобразования кинетической энергии относительного движения в межлопастных каналах. [c.62]

    При последовательном включении одно и то же количество жидкости последовательно перемещается всеми нагнетателями, а давление, необходимое для преодоления сопротивления всей сети, равно сумме давлений, создаваемых каждым нагнетателем. Так как кинетическая энергия, сообщенная потоку первым нагнетателем, не теряется на удар, то общее статическое давление больше суммы статических давлений отдельных нагнетателей. Например, три одинаковых последовательно включенных нагнетателя создают полное давление Зр1(1+1+1), а суммарное статическое давление равно рз= [c.109]

    В общем случае на кинетику сушки и нагрева частиц влажного материала влияет не только температура окружающей среды и свойства материала. Существенными могут оказаться скорость и среднее влагосодержание X сушильного агента, разность между величинами статических давлений ДЯ внутри пористой частицы перед сушкой и в псевдоожиженном слое. Явный вид кинетических зависимостей должен определяться экспериментально. [c.280]

    В 50-х годах появился ряд работ Мак Ивена и Тиннера [5—81, посвященных детальному изучению кинетики медленного окисления циклопропана. Опыты проводились в статических условиях в температурном интервале 380—430° С с циклопропано-кислородными смесями составов 1 1 и 3 1 при давлениях 100—400 мм рт. ст. Реакция имеет период индукции, после которого наблюдается значительный прирост давления. Кинетическая кривая АР /(/) имеет явно выраженный автокаталитиче-скпй характер (см. рис. 160). Нарастание давления подчш-яется экспоненциальному закону, что доказывается получением прямой лииии при полулогарифмической анаморфозе кинетической кривой. Макси.мум скорости реакции находится при приблизительно 64% превращении (см. рис. 161, б), т. е. несколько сдвинут в сторону больших процентов превращения по сравнению с обычной б -образной кривой окисления углеводородов, имеющей максимум при 50%. Максимальная скорость реакции пропорциональна концентрации кислорода при малых его давлениях. Сверх же некоторого критического значения давления кислорода (обычно порядка 100 МЛ1 рт. ст.) скорость реакции от него не зависит. В этих [c.415]

    Основной теоретической задачей в химической кинетике является создание такой системы взглядов и уравнений, которая позволила бы, исходя из молекулярных параметров реагирующих компонентов и внешних условий протекания процесса, вычислить его скорость. К молекулярным параметрам относятся масса реагирующих молекул, их форма и размеры, порядок связи отдельных атомов и атомных групп в молекуле, энергетическая характеристика отдельных связей, совокупность возможных энергетических состояний молекулы. Под внешними условиями понимается давление (или концентрации), температура, условия, в которых осуществляется процесс (например, проведение реакции в статических условиях или в потоке). В решении этой задачи важным этапом является применение молекулярно-кинетической теории к интерпретации кинетических закономерностей при химических превращениях, поэтому настоящая глава и посвящается тем основам молекулярно-кине-тической теории, которые будут использованы далее при решении поставленной задачи. [c.89]

    Эти необратимые потери компенсируются энергией вынуждающей силы (управляющего газового потока), преобразованной в перестановочное усилие Под действием Р масса штока М1 приходит в движение, что и обусловливает наличие элемента инерционности (1-элемент) в фрагменте диаграммы связи. Таким образом, инерционный элемент I отражает аккумуляцию кинетической энергии (эффект массы М1) С-элемент отражает аккумуляцию энергии упругости пружины. Параметром этого элемента является податливость пружины 8(,2-элемент характеризует действие суммы усилий неуравновешенности статического давления среды на затвор и давления среды на шток. Рассмотренный фрагмент диаграммы связи отражает затраты энергии на непрерывное функционирование ПМИМ (рис. 3.62). [c.280]

    Тарелки, которые можно отнести также к перекрестно-прямоточным, изображены на рис. 60. В данных конструкциях ввиду наличия составляющей скорости газа, направленной в сторону движения жидкости, достигается увеличение производительности по сравнению с обычными ситчатыми тарелками. В последнем случае одностороннее направление потока паров осуществляется за счет отверстий, расположенных преимущественно с одной стороны 5-образного элемента. Отогнутые кромки элемента иод отверстиями создают увеличенную скорость газа при входе в отверстие, что способствует более равномерному вступлению тарелки в работу. К перекрестно-прямоточным провальным тарелкам можно отнести тарелки тииа Киттеля [164]. Движение жидкости на одной такой тарелке происходит по спирали от центра к периферии, на другой — ио радиусу от периферии к центру. Столь сложное движение жидкости осуществляется за счет кинетической энергии паров, так как пары выходят под определенным углом к основанию тарелки благодаря направлению просечки у листов основания. Слив жидкости на одной тарелке осуществляется у периферии, на другой — в центре. Организованное движение жидкости создает места ее скопления и увеличивает статическое давление жидкости в этих местах, что так же, как и на ситчатых волнистых тарелках, повышает их производительность. Кроме того, круговое движение пара в межтаре-лочном пространстве создает благоприятные условия для сепарации жидкости. Тарелки Киттеля в США имеют ограниченное применение и широко используются в других капиталистических странах. Текущие затраты на колонну с тарелками Киттеля составляют в среднем 65— [c.136]

    ГРасход среды измеряют стандартными сужающими устройствами или объемными счетчиками различных типов. Принцип работы сужающего устройства основан на переходе части потенциальной энергии давления в кинетическую энергию, в результате чего статическое давление в узком сечен оказывается ниже, чем перед сужающим устройством. Разность этих давлений (перепад давления) тем больше, чем больше расход продукта. Вывод расчетных зависимостей основан на совместном решении уравнений Бернулли и неразрывности струи, записываемых для сечений до и после сужающего устройства. [c.57]

    Е—величина энергии активации реакции крекинга в иал/лилъ Область применения статического метода крекинга относится к тем случаям, когда продолжительность крекинга измеряется минутами или даже десятками минут. Тем самым ставится предел температуре-крекинга при статическом методе крекинга можно применять сравнительно невысокие температуры (для большинства углеводородов не выше 500—600° С). В указанной области температур и продолжительностей статический метод крекинга имеет следующие положительные стороны 1) возможность точного определения температуры и продолжительности крекинга в широком диапазоне давлений, 2) одинаковую нродолжительность пребывания в зоне нагрева всех частиц, углеводорода и 3) отложения смолистых и коксообразных частиц на внутренних стенках аппаратуры (колбы или автоклава) не отражаются на температуре или продолжительности реакции крекинга. Кром того, при статическом методе крекинга за ходом реакции можно во-многих случаях наблюдать по изменению давления в системе, чего-нельзя сделать при динамическом методе крекинга. Поэтому при изучении точных кинетических закономерностей крекинга углеводородов при температурах до 500—600° С предпочтительно пользоваться статическим методом крекинга. [c.9]

    Большой вклад в изучение в СССР вихревого эффекта внес А.П. Меркулов. В предложенной им гипотезе процесса энергетического разделения большое внимание уделено турбулентному энер-гообмену. Энергия турбулентности используется для осуществления работы охлаждения вынужденного вихря, так как за счет радиальной составляющей турбулентной пульсационной скорости элементарные турбулентные моли перемещаются по радиусу в поле высокого радиального градиента статического давления . При адиабатном сжатии или расширении турбулентные моли изменяют свою температуру, соответственно вызывая нафев или охлаждение газа при смешении со своим слоем. Передавая тепло из зоны низкого в зону высокого статического давления, они осуществляют элементарные турбулентные циклы. Охлаждение имеет место только в приосевом потоке, так как в нем и статическая температура, и окружающая скорость падают, обеспечивая снижение полной температуры . Основная доля кинетической энергии исходного потока зафачивается на закрутку вынужденного вихря и дисси-пирует в турбулентность. Энергия на закрутку передается до тех пор, пока не наступит равновесие со свободным вихрем в сопловом сечении . Считается, что формирование центрального потока происходит по всей длине фубы и завершается в сопловом сечении. Учет поля центробежных сил проводится через радиальный фадиент статического давления. Передача кинетической энергии направлена от периферии к оси, и часть ее расходуется на турбулентность. Термодинамическая температура в приосевой области ниже, чем в периферийной области вихревой трубы. [c.23]

    Кинетические кривые АР—I окисления таких непредельных углеводородов, как этилен и ацетилен, имеют совсем иной вид, чем в случае окисления предельных углеводородов. Так, Хиншельвуд и Томнсон [45], изучавшие кинетику окисления этилена в статических условиях Т = 450° С С2Н4+ 20а) нашли, что прирост давления по ходу реакции не имеет -образного характера. В начале наблюдается небольшой период индукции без видимого изменения начального давления, затем происходит линейный прирост давления. Скорость реакции, следовательно, после незначительного промежутка времени достигает максимального значения, которое затем только медленно и плавно уменьшается в результате израсходования исходных веществ. Нарастание же скорости реакции до максимального значения происходит не по закону N6 . Таким образом, наблюдаемые в случае окисления этилена кинетические закономерности не дают ответа па вопрос о кинетическом механизме реакции. [c.76]

    Опыты проводились в статических условиях, в кварцевом сосуде, в температурном интервале 423—513° С со смесями СН4 20а. Были сняты кинетические кривые по приросту давления, расходу метана и кислорода и накоплению СО, СО2, Н О, формальдегида, Н2О2 и На. На рис. 120 и 121 приведены соответствующие данные для Т = 423° С и Рнач = 235 мм рт. ст. Из рис. 121 видно, что формальдегид достигает максимальной концентрации в момент максимума скоро- [c.303]

    Проблемы переменной гибкости, сегрегации, равновесий при высоких давлениях и соответствующих внезапных изменений релаксационных свойств неминуемо упираются в вопрос о переходе 2-го рода, обсужденный в гл. II и V. Мы приводили аргументы в пользу того, что он может — обходным путем —быть достигнут в высокотемпературной области при высоких давлениях. Можно упомянуть и о работах Аржакова в которых наблюдались -необычные эффекты как при высоких давлениях, так и в области заведомо низких температур. Не исключено, что эти эффекты имеют термодинамическую, а не кинетическую природу внешне же они проявляются как своего рода статический эквивалент вынужденной эластичности. [c.284]

    Статическое (или внутреннее) давление будет на 250 атм меньше и эта разность уравновешивается внешним давлением. В табл. 11 приведены значения кинетических давлений для некоторых жидкостей. Как видно из таблицы Ркин может как увеличиваться, так и уменьшаться с повышением температуры последнее связано, по-видимому, с увеличением объема жидкости. [c.96]

    При перекрывании щелей ротора и статора излучателя кинетическая энергия потока жидкости переходит в потенциальную энергию расщиренного пузырька в жидкости со статическим давлением а при сжатии - в энергию адиабатюгески сжатого газа. Поэтому можно записать  [c.161]

    Кривые на рис. 45 ооответствуют трем разобранным выше случаям. Верхняя диаграмма характеризует изменение статического давления по оси струи в ограниченном пространстве (среднее давление для проточной зоны имеет тот же характер измерения), средняя — изменение количества движения струи и НИЖ1НЯЯ — изменение кинетической энергии струи (проточная зона иространства применитешьно к первой модели). [c.92]

    Турбогазодувки, служащие тм нагнетания воздуха, называются воздуходувками. В многоступенчатых машинах между отдельными ступенями устанавливаются диффузоры, или н а гг р а в л я ю ц п с аппараты, имеющие назначение превращать динамический напор струи газа, выходящей из колсса, в статический, т. е. преобразовывать кинетическую энергию газа за рабочим колесом в давление. [c.146]

    Вентури 7 через отверстие 9 из камеры 8 откачивается газ и в камере создается разрежение. На поддержание разрежения расходуется часть кинетической энергии движущейся жидкости. Кроме того, за счет снижения статического давления в горловине соила снижается равновесное давление насыщенных иаров жидкости. Из жидкости выделяются в виде газовых пузырьков легкокипящие комиоиепты, движение жидкости переходит в кавитационный режим, которому свойственна диссниация (рассеивание) кинетической энергии. Поскольку ири ирохождении горловины 10 соила Вентури 7 кинетическая энергия жидкостного иотока снижается, скорость движения жидкости вдоль коллектора иосле соила уменьшается и часть жидкости иод действием силы тяжести выводится из коллектора 5 через выходное отверстие 6, расположенное в нпжней части коллектора, в емкость 1. [c.98]


Смотреть страницы где упоминается термин Давление кинетическое и статическое: [c.400]    [c.450]    [c.93]    [c.18]    [c.167]    [c.228]    [c.120]    [c.187]    [c.79]    [c.173]    [c.130]   
Физическая химия Книга 2 (1962) -- [ c.237 , c.537 , c.570 , c.620 ]




ПОИСК





Смотрите так же термины и статьи:

Давление статическое



© 2025 chem21.info Реклама на сайте