Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Серная кислота коррозионная активность

    В дизельных топливах, как и в бензине, но только в больших количествах содержатся сернистые соединения, которые условно относят к так называемой активной сере (меркаптаны, сероводород, элементарная сера). Все они при сгорании образуют оксиды серы. Эти газообразные продукты при высокой температуре оказывают коррозионное воздействие на металлы в газовой фазе, а при низких температурах легко растворяются в капельках воды, конденсирующихся из продуктов сгорания, с образованием сернистой или серной кислот. Коррозионному воздействию продуктов сгорания сернистых соединений подвергаются детали цилиндропоршневой группы. [c.24]


    Коррозия может быть химической, т. е. развиваться вследствие непосредственного химического воздействия компонентов топлива на детали из наиболее активных металлов, например действие некоторых меркаптанов серы на медь, входящую в состав сплавов, кадмий или серебро, из которых выполнены покрытия некоторых деталей топливной аппаратуры [2—4]. Для применения сернистых топлив характерны также коррозионные износы цилиндро-поршневой группы двигателей и выпускной системы коррозионно-агрессивными продуктами сгорания. Агрессивные окислы серы могут непосредственно воздействовать на металлы выпускной системы при высокой температуре газовая коррозия), но значительно более опасна электрохимическая коррозия кислотами (серной кислотой), образующимися при конденсации паров воды в остывающем или непрогретом двигателе (при [c.179]

    Пассивным называется металл, являющийся активным в электрохимическом ряду напряжений, но тем не менее корродирующий с очень низкой скоростью. Пассивность — это свойство, лежащее в основе естественной коррозионной устойчивости многих конструкционных металлов, таких как алюминий, никель и нержавеющая сталь. Некоторые металлы и сплавы можно перевести в пассивное состояние, выдерживая их в пассивирующей среде (например, железо в хроматном или нитритном растворах) или с помощью анодной поляризации при достаточно высоких плотностях тока (например, железо в серной кислоте). [c.70]

    Так, свинец, погруженный в серную кислоту, магний в воде или железо в ингибированной травильной кислоте будут называться пассивными по определению 2 — вследствие низких скоростей их коррозии, несмотря на значительную склонность к коррозии. Но по определению 1, эти металлы не являются пассивными, так как их коррозионные потенциалы относительно активны и поляризации не наблюдается, если эти металлы выступают как аноды в элементах. [c.71]

    Из фракции 150—325 °С арланской нефти были получены дистилляты (150—260 и 150 —280 °С), соответствующие по пределам выкипания современным реактивным топливам. Однако их нельзя было использовать как товарные топлива из-за большого содержания серы, адсорбционных смол, большого йодного числа, низких температур начала кристаллизации, недостаточной термической стабильности, высокой коррозионной активности и т. д. После отделения сульфидов экстракцией водным раствором серной кислоты получены высококачественные топливные фракции (табл. 55). [c.301]


    Необходимость очистки коксового газа определяется наличием в нем токсичных, коррозионно-активных веществ (НгЗ, КНз, НСК). Их удаление из газа позволяет также получать ценные товарные продукты серу, серную кислоту, пиридин и его гомологи, аммиачную воду, жидкий аммиак. [c.62]

    На снижение защитного действия поверхностных слоев на глобулах воды существенно влияет присутствие деэмульгаторов. По воздействию на нефтяные эмульсии все существующие деэмульгаторы подразделяют на электролиты, неэлектролиты и коллоиды. Электролитами могут быть органические и минеральные кислоты (серная, соляная, уксусная), щелочи и соли (поваренная соль, хлорное железо и т. д.). Электролиты могут образовывать нерастворимые осадки с солями эмульсии, снижать стабильность бронирующей оболочки. Но ввиду их особой коррозионной активности электролиты как деэмульгаторы применяют ограниченно. [c.41]

    В состав электролита помимо чистой серной кислоты или чистого бисульфата аммония входят поверхностно-активные добавки (промоторы), такие, как фторид, хлорид, роданид и цианид аммония. Анионы этих солей, адсорбируясь на активных центрах поверхности платины, повышают перенапряжение выделения кислорода и этим увеличивают выход по току 5208. Анионы р- и С1- в ходе технологического процесса почти не расходуются. Однако они повышают агрессивность среды, будучи активаторами коррозии, и это затрудняет их использование. Роданид аммония, наоборот, приходится непрерывно вводить в анолит, поскольку анионы СЫ5 легко окисляются на аноде. Впрочем, продукты разложения роданида также обладают промотирующим действием. В отличие от галогенидов роданид не влияет на коррозионные свойства электролита, в отличие от циа- [c.186]

    Как большинство элементов побочных подгрупп хром представляет собой твердый, тугоплавкий металл. В электрохимическом ряду напряжений он стоит левее водорода, перед железом. Таким образом, хром относится к активным металлам. Однако на воздухе он не подвергается коррозии. Покрытые им (хромированные) изделия отличаются приятным блеском с чуть синеватым отливом. Коррозионная устойчивость хрома на воздухе обусловлена теми же причинами, что и алюминия. На поверхности хрома существует тончайшая пленка оксида хрома (И1), которая предохраняет его от контакта с кислородом и влагой. В разбавленных соляной и серной кислотах эта пленка разрушается и хром, следовательно, растворяется с выделением водорода. В концентрированных азотной и серной кислотах пленка не разрушается (явление пассивации) и хром с ними не взаимодействует. Для вытеснения водорода из воды хром недостаточно активен, поэтому в отличие от алюминия в растворах щелочей он устойчив. [c.273]

    Сульфаты — натриевые, кальциевые и магниевые соли серной кислот. При содержании в воде 100 и выше сульфаты повышают коррозионную активность воды. [c.317]

    Соляная кислота, ранее широко использовавшаяся благодаря ее низкой стоимости, сегодня, так же как и серная, и фосфорная кислоты, редко применяются в качестве катализатора вследствие высокой коррозионной активности. Кроме того, было замечено, что при получении новолаков, когда хлористый водород и формальдегид находятся в газовой фазе в концентрации более 0,01%, может [c.75]

    Вторая стадия сушки хлора осуществляется последовательно в нескольких башнях 12, орошаемых серной кислотой. Последняя по ходу хлора башня орошается 96%-ной серной кислотой, которую затем подают в предыдущие башни, т. е. существует противоток серной кислоты и осушаемого хлора. В первой башке кислота разбавляется водой, содержащейся в хлоре, до концентрации 74—76% и в таком виде выводится из системы. Хлор, пройдя осушку, утрачивает коррозионную активность и поступает потребителю либо на сжижение. [c.161]

    Более сложной задачей является предотвращение коррозионного растворения минералов, не участвующих в технологическом процессе механического разрушения, но присутствующих в области действия кислотного раствора (например, выбуриваемого шлама или готового продукта помола), с тем чтобы предотвратить излишний расход реагентов. Здесь следует выбирать раствор такого состава, который обеспечивал бы относительно пассивное состояние твердой фазы при отсутствии деформации и ее активное растворение при механическом воздействии, т. е. добиваться сочетания механохимического и хемомеханического эффектов в локальных областях механического воздействия. Для кальцита таким раствором является раствор серной кислоты, которая образует пассивирующий слой гипса на поверхности минерала, не растворяющийся без механического воздействия. Исследование зависимости устойчивости пассивного состояния от концентрации кислоты показало, что в 10%-ном ее растворе быстро происходит устойчивая пассивация поверхности кальцита, обеспечивающая экономное расходование реагентов. [c.131]


    Хотя при увеличении концентрации свыше б-н. потенциал облагораживается и при больших концентрациях коррозионная активность серной кислоты, обусловленная парциальным содержанием иона (как это было установлено специальными измерениями), уменьшается, однако возрастает содержание поверхностно активных бисульфата и недиссоциированных молекул, кислоты (рис. 57), и поэтому наблюдается адсорбционное понижение прочности—эффект Ребиндера (рис. 58) [119]. [c.160]

    I При увеличении концентрации (свыше 6 н.) потенциал облагораживается и при больших концентрациях коррозионная активность серной кислоты, обуслов- [c.164]

    На рис. 1 сопоставлены анодные поляризационные кривые для железа [7], хрома [ 8] и никеля [9] в 1 н, растворах серной кислоты. Как видно, последовательность, в которую можно расположить эти металлы по коррозионной стойкости, различна в зависимости от области потенциалов. В активном состоянии (А В на рис. 1) хром растворяется с наибольшей, а никель с наименьшей скоростью. Железо занимает промежуточное положение. В пассивном состоянии (сВ на рис. 1) наиболее устойчивым становится [c.6]

    Соответствие коррозионно-электрохимических свойств индивидуальных железа и хрома, с одной стороны, и их сплавов, с другой, проявляется и во влиянии окислительных добавок на кинетику растворения этих металлов. Действительно, в противоположность растворению активного никеля [58], растворение хрома и железа в серной кислоте (при постоянном потенциале) может в определенных условиях тормозиться под действием кислородсодержащих окислителей (перекиси водорода, хромата, нитрата I 48, 59-60]. Аналогичное явление для железа может иметь место и в нейтральных растворах, что было показано, например, для органических хроматов [62] и бихромата калия [63]. [c.13]

    Условия пассивации видны на анодных поляризационных кривых сталей (рис. 100). Если повышать электродный потенциал нержавеющей стали в растворе серной кислоты, то плотность тока увеличивается до максимума, причем металл находится в активном состоянии (3) и растворяется, а плотность тока характеризует скорость растворения. При определенном потенциале пассивации (4) плотность коррозионного тока начинает резко понижаться металлическая поверхность пассивируется (2). Пассивацию связывают с образованием тончайшей защитной пленки, которая состоит в основном из оксида и гидроксида хрома. Если потенциал продолжать увеличивать до очень высоких значений, плотность тока снова возрастает вследствие так называемой транспассивной коррозии (1) . [c.109]

    Коррозионно-активной является атмосфера, содержащая сернистый газ, который окисляется до серного ангидрида, образующего при взаимодействии с влагой серную кислоту. На скорость атмосферной коррозии в значительной степени влияют состав и свойства пленок продуктов коррозии на поверхности металла. [c.30]

    Коррозионная активность меркаптанов определяется их строением. Алифатические меркаптаны по отношению к меди значительно агрессивнее ароматических. Это объясняется большей способностью ароматических меркаптанов образовывать отложения на поверхности металлов. При значительном содержании сероводорода (например, в сырой нефти) процессы коррозии развиваются очень интенсивно. Растворенный в воде сероводород в присутствии кислорода образует серную кислоту и сульфиды железа  [c.118]

    Введение серной кислоты в азотнокислотный окислитель уменьшает его коррозионное воздействие на металлы, но одновременно приводит к ухудшению других свойств окислителя. Серная кислота не является окислителем (в молекуле серной кислоты отсутствует активный кислород, так как все атомы кислорода связаны с горючими атомами серы и водорода), поэтому присутствие ее в азотнокислот-ном окислителе приводит к недопустимо большому снижению его энергетических показателей. [c.47]

    В общем случае разрушение стеклопластиков представляет собой коррозионно-адсорбционный процесс. Например, для растворов серной кислоты поверхностно-активным веществом является вода [37] с повьпые-нием концентрации серной кислоты активность воды снижается, уменьшая роль этого компонента в адсорбционном понижении прочности, и отмечается увеличение долговечности материала. [c.140]

    Содержание меркаптановой серы является важнейшим показателем, характеризующим наличие в бензине коррозионно-активных соединений. В меркаптанах атом водорода тио-группы способен замещаться на металл с образованием меркаптидов. При окислении меркаптанов могут образовываться сульфокислоты и серная кислота [51]. Поэтому содержание меркаптановой серы в топливах должно быть строго ограничено. [c.47]

    Медь в зависимости от степени чистоты подразделяется иа марки МООА. .. М4 (ГОСТ 859—78) и поставляется в виде листов, лент, прутков, проволоки и других изделий. Медь применяют в основном для изготовления аппаратов, работающих под давлением до 0,6 МПа в интервале температур от --254 до +250 °С с различными коррозионно-активными средами (10—40 %-ная серная кислота, 10— 20 %-наи соляная кислота, бензол, метиловый и этиловый спирт), а также в криогеппой технике. [c.100]

    Небольшая часть серной кислоты, поступающей на установку, расходуется таким же образом. Вначале серная кислота не подвергается химическим превращениям, а просто разбавляется. Обычно свежая серная кислота имеет титруемую кислотность 98,0—99,5% Н2804. Постепенно она разбавляется водой, полимерами и эфирами, а когда ее концентрация снизится до 90%, ее откачивают с установки. Хотя реакции алкилирования могут протекать и при более низкой концентрации НгЗО , коррозионная активность катализатора в отношении углеродистой стали резко возрастает. На одном из собраний Национальной ассоциации нефтепереработчиков приводили данные [2] лабораторных исследований, когда концентрация кислоты была 82% и она была разбавлена (в меньшей степени водой, а в большей — полимерами). Некоторое количество воды необходимо, но не более нескольких процентов. Это подтверждает данные, полученные ранее [3]. Экономические расчеты позволяют дать окончательный ответ при определении оптимальной концентрации откачиваемой кислоты для данной установки. Более подробно это обсуждается ниже. [c.250]

    Условия транспортировки, приема и хранения серной кислоты в большой степени зависят от ее концентрации. Следует иметь в виду, что для серной кислоты характерно значительное изменение таких показателей, как плотность, температура застывания, агрессивность в зависимости от концентрации кислоты. В табл. VIII. 6 приводятся данные о плотности, температуре застывания и коррозионной активности серной кислоты и олеума различной концентрации. [c.239]

    В последние годы Институтом химии БФАН СССР был предложен вариант сернокислотной экстракции нефтяных дистиллятов, отличительной особенностью которого является регенераци сераорганических соединений из сернокислотного раствора комбинированным способом — реэкстракцией органическими растворителями в сочетании с частичным гидролизом [1]. Ограниченное разбавление сернокислотного раствора исключает получение коррозионно-активной кислоты в процессе экстракции в отличие от метода [2]. Нахождение нового варианта реэкстракции и применение для извлечения сераорганических соединений из нефтяных дистиллятов отработанной серной кислоты процесса алкили-рования открывает перспективу значительного совершенствования процесса получения нефтяных сульфидов. [c.224]

    По масштабам производства и применения соляная кислота занимает третье место после серной и азотной кислот. Соляная кислота применяется для получения хлоридов металлов, хлорида аммония, в гидролитических процессах (гидролиз целлюлозы и др.), для очистки поверхности металлов (травление). Для снижения коррозионной активности в соляную кислоту вводят ингибиторы, заш иш аюш ие металл, но не препятствуюш ие растворению оксидной пленки. [c.350]

    Способ экстракционного извлечения сульфидов водными растворами серной кислоты из фракций высокосернистых нефтей был проверен на установке периодического действия Ишимбайского нефтеперерабатывающего завода [1, 2]. Экстрагировали дизельную фракцию 170— 310° С арланских нефтей (170, содержавшую 1,13вес.% серы. Было получено 5 500 кг сырых нефтяных сульфидов и более 130 т зимнего дизельного топлива, не уступавшего по качеству гидроочищенному дистилляту. Данные о термической стабильности при 150° С и коррозионной активности фракции 170—310° С до и после очистки приведены ниже  [c.147]

    Наиболее сильно коррозионные процессы влияют на износ деталей двигателей при пуске двигателя и его эксплуатации с длительными частыми остановками (конденсация воды с образованием серной кислоты). В наибольшей степени коррозионное воздействие сернистых соединений проявляется в цилиндро-лоршневой группе и выпускном тракте (глушителе) двигателей. Эффективный путь уменьшения коррозионной активности топлив - [c.92]

    Сшивание резола иронсходит при добавлении сильных неорганических нлн органических кислот, например соляной, фосфорной, /г-толуол- или фенолсульфоновой применяют также смесь соляной кислоты и этиленгликоля (1 1). Достоинством соляной кислоты является ее высокая активность, недостатком — коррозионная активность. Фосфорная кислота, придающая полученным пенопла-стам повышенную огнестойкость, обычно используется в комбинации с другими сильными кислотами, например с серной н л-толуол-сульфоновой. Фенолсульфоновая кислота способна встраиваться в макромолекулу резола, что уменьшает опасность коррозии металлов, контактирующих с пенопластом. Однако ее стоимость значительно выше стоимости неорганических кислот. Предложено также использовать в качестве отверждающего агента сульфонированные новолаки на основе фенола [23, 24] пли резорцина [25]. Обычно ФС кислотного отверждения отличаются высокой хрупкостью, малой ударной вязкостью и низкой стойкостью к абразивному износу, Эти недостатки до сих пор не устранены. [c.174]

    Разработка и промышленное применение эффективных методов снижения низкотемпературной сернокислотной коррозии котло-агрегатов требуют оперативной информации об условиях образования конденсата серной кислоты на поверхностях, находящихся в потоке уходящих газов, и степени его коррозионной активности [21]. [c.96]

    Параллельно с развитием ускоренных испытаний на воздействие осадками соли проводилось изучение сульфата, являющегося активным ионом и присутствующего в загрязненной промышленной среде в качестве ускорителя коррозии. Так, в 30-х годах Ивансом и Бриттеном было предложено использовать туман слабой серной кислоты, а Верноном — смесь разбавленной сернистой кислоты с сульфатом аммония в присутствии хлорида натрия или без него. В дальнейшем стали проводить коррозионные испытания серной кислотой в виде струи, испытания двуокисью серы (метод СКЬ) при использовании испарения раствора сернистой кислоты в высоковлажной среде. Испытание Кестерниха, схожее с испытанием методом СНЬ, широко применялось одно время в Европе для проверки качества изделий с покрытиями, а сейчас используется главным образом для проверки лакокрасочных покрытий. [c.161]

    Серная кислота при эквивалентной концентрации водородных ионов обладает примерно такой же коррозионной активностью, как и соляная кислота. Скорость коррозии железа возрастает с увеличением концентрации Н2504, достигая максимума в 47%-ной Н2504, после чего уменьшается, а при 100%-ной концентрации резко повышается. В 65%-ной серной [c.75]

    В нефтепродуктах присутствуют коррозионно-активные вещества — органические кислоты, меркаптаны, сера и сероводород, перешедшие из нефти и образовавшиеся при переработке. Органические кислоты образуются также при хранении нефтепродуктов в результате процессов окисления. Сульфиды, дисульфиды, полисульфиды, тиофены, а также другие более сложные сераорганические соединения без связей 5—Н пассивны к основным конструкционным материалам, однако они при хранении могут окисляться с образованием сульфоокисей, сульфонов, сульфиновых и сульфоновых кислот, а иногда серной, сернистой кислот и сероводорода, которые чрезвычайно коррозионно-активны. Среди азотистых опасны в коррозионном отношении лишь соединения основного характера, и то только к алюминию и его сплавам. Коррозионное действие гетероорганических соединений значительно усиливается в присутствии воды. [c.105]

    На кинетику, скорость и механизм электрохимической коррозии влияют свойства металла, нефтепродуктов, а также температура, время, давление, скорость движения среды, присутствие замедлителей коррозии. В атмосфере воздуха, воды и нефтепродуктов, содержащих коррозионно-активные компоненты, большинство металлов неустойчиво, в том числе железо,и медь, являющиеся основными компонентами конструкционных материалов технических средств складов и нефтебаз. Коррозионная стойкость металла не определяется его положением в периодической системе. Большинство наименее устойчивых металлов расположены в I группе периодической системы Ыа, К, НЬ, Сз, а наиболее устойчивые находятся в УИ1 группе Кб, Оз, 1г, Р1, однако и в I группе имеются стойкие ко многим агрессивным веществам металлы (Аи, Ag, Си), а в УИ1 есть металлы, легко поддающиеся коррозии (Ре). Коррозионная стойкость металлов не зависит от их положения в ряду напряжений. Так, алюминий Е = = —1,67 В) и свинец Е = 0,12 В) устойчивы в разбавленной серной кислоте, а железо Е = 0,44 В) неустойчиво. В растворах едкого натра глюминий неустойчив, а магний и железо относительно устойчивы и т. д. [c.112]

    Физико-химическое взаимодействие различных компонентов дымовых газов, по всей вероятности, в значительной степени влияет на процесс отпотевания низкотемпературных поверхностей нагрева. Этот процесс безусловно зависит от температуры и протекает в определенном интервале изменения ее от максимально возможной в данных условиях и до минимальной. Поэтому понятие температура точки росы , принятое для двухкомпонентной системы, состоящей из чистого газа и водяных паров, не точно отражает существо процесса. В связи с коррозионной активностью дымовых гаэоч правильней было бы говорить о предельной температуре, начиная с которой при ее понижении проявляются явления влажного или жидкостного характера, вызываемые конденсацией, а возможно и адсорбцией, и об интервале температур, в котором жидкость и дымовые газы могут находиться в состоянии равновесия. В зависимости от характера этого явления по-разному могут сказываться и вызываемые ими следствия и не обязательно во всех случаях при предельной температуре будут обнаруживаться коррозионные явления. Коррозионный процесс, вероятно, может начинаться и при другой температуре, приводящей к конденсации серной кислоты, солей или каких-либо других активных соединений в необходимом для начала коррозии количестве и соответствующей концентрации — такой температуре, при которой совокупность химических процессов приводит к усилению взаимодействия с металлом поверхностей нагрева. Это обстоятельство следует иметь в виду при анализе методов измерения температуры точки росы. [c.285]

    Ввод газообразной присадки в дымовые газы для предотвращения низкотемпературной коррозии имеет бесспорные преимущества перед твердыми присадками, так как благодаря диффузии обеспечивается весьма быстрое ее взаимодействие с коррозионно активными соединениями. При соответствующей технике ввода газообразного аммиака пары серной кислоты и серного ангидрида почти мгновенно нейтрализуются, образуя в зависимости от температурных условий и концентраций реагентов бисульфат аммония NH4HSO4 или сульфат аммония (NH4)2S04. [c.383]


Смотреть страницы где упоминается термин Серная кислота коррозионная активность: [c.294]    [c.305]    [c.38]    [c.59]    [c.29]    [c.247]   
Технология серной кислоты Издание 2 (1983) -- [ c.29 ]

Технология азотной кислоты Издание 3 (1970) -- [ c.448 ]

Технология серной кислоты (1983) -- [ c.29 ]




ПОИСК







© 2025 chem21.info Реклама на сайте