Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поликонденсационные полимеры и условия поликонденсации

    Возможность осуществления неравновесной поликонденсации в растворе или в условиях межфазного варианта, в мягких условиях, часто при невысоких температурах, близких к комнатной, позволяет использовать в поликонденсационном процессе термически нестойкие мономеры, сохранять в образующихся макромолекулах ненасыщенные и другие реакционноспособные группировки, избегать термическую деструкцию полимеров в процессе синтеза. Это, в частности, открыло пути успешного получения полимеров с высокими температурами плавления и [c.16]


    Развитие теории неравновесной (необратимой) поликонденсации, успехи в области ее препаративных методов создали широкие предпосылки по синтезу блок-сополимеров поликонденсационного типа. В первую очередь это относится к акцепторно-каталитической поликонденсации [4, 13, 15, 17], мягкие условия протекания которой позволяют осуществлять синтез блок-сополимеров при практически полном подавлении обменных процессов и открывают возможность, при должном знании закономерностей процесса, формирования блок-сополимеров непосредственно из мономеров (см. подразд. 4.2.6.1). Еще большие перспективы управления микроструктурой полимерной цепи в области поликонденсационных блок-сополимеров, а следовательно и их свойствами, открываются при использовании в качестве исходных веществ для их синтеза олигомеров и полимеров с концевыми функциональными группами [13, 15, 27, 69а, 344-370]. [c.80]

    Успешное познание законов формирования макромолекул в условиях поликонденсации во многом зависит от того, в какой мере выявлены основные закономерности, управляющие процессами образования смешанных полимеров. При этом как для поликонденсационных, так и для полимеризационных сополимеров особенно важное значение приобретают вопросы познания их состава и строения. [c.63]

    Для синтеза полимерных ароматических соединений, содержащих в макромолекулах определенные функциональные группы, применение большинства известных поликонденсационных методов весьма затруднительно. Действительно, содержащиеся в мономерах функциональные группы в условиях поликонденсации подвергаются различным химическим превращениям, приводящим к обрыву растущих цепей и образованию сложной смеси полимеров разветвленной или сетчатой структуры и продуктов, не поддающихся идентификации. [c.91]

    Исследованы обменные взаимодействия смесей различных полиэфиров, полиамидов, полиэфиров с полиамидами, а также гетероцепных полимеров с мономерами равновесной поликонденсацией [3, 5, 22, 309-337]. При проведении поликонденсационного процесса в определенных условиях, обеспечивающих протекание с должной скоростью обменных реакций, в конечном итоге происходит образование смешанного полимера со статистическим распределением звеньев по полимерной цепи (статистический сополимер). [c.77]

    Если в процессе поликонденсации полимеров типа АВ и ААВВ в системе все еще сохраняется некоторое число свободных концевых групп, то возможно дальнейшее протекание поликонденсационных процессов в твердой фазе с получением высокомолекулярных продуктов, если концентрация водных паров над сконденсированной фазой меньше равновесного значения для соответствующих условий. Реакция ускоряется при измельчении твердых частиц и при уменьшении концентрации воды вакуумированием. [c.66]


    Книга посвящена физической и органической химии высокомолекулярных соединений. Вначале рассмотрены специфические особенности полимеров, отличающие их от низкомолекулярных гомологов (гл. 1), а затем дан подробный анализ трех основных методов образования высокомолекулярных соединений поликонденсации, цепной полимеризации и полимеризации с раскрытием циклов (гл. 2—5 и 7). При рассмотрении полимеризационных и поликонденсационных методов образования полимеров большое внимание обращалось на кинетические и термодинамические особенности таких процессов, условия их проведения и возможность использования для синтеза полимеров различных классов. Не будет большим преувеличением сказать, что возможности полимерной химии таковы, что уже сейчас можно получать различные полимеры с заданными структурой и молекулярным весом. На протяжении всей книги мы стремились подчеркнуть влияние различных условий проведения реакции на скорость образования, молекулярный вес и структуру полимеров (разветвленная или сшитая). Нам хотелось бы также, чтобы после прочтения книги читатель ощутил сложность и многообразие процессов образования высокомолекулярных соединений, которыми располагает в настоящее время химик, работающий в области полимеров. [c.7]

    Из этих выражений очевидно, что при обратимых процессах поликонденсацин (при малых К) получение высокомолекулярных продуктов затруднено. Поэтому при проведении обратимых процессов поликондепсации применяют специальные приемы, обеспечивающие создание условий для сдвига поликонденсационного равновесия в сторону образования полимера. Это достигается максимальным удалением низкомолекулярных продуктов поликонденсации из зоны реакции. При этом согласно уравнению (3,4) молекулярная масса полимера увеличивается. [c.85]

    Наиболее вероятны первые два направления поликонденсации. Третья реакция в нейтральной среде наблюдается только при темп-рах выше 130—150 . С увеличением кислотности среды (pH 4—5) создаются более благоприятные условия для реакции между метилольными группами с образованием простой эфирной связи. Поэтому в слабокислых средах возникновение простых эфирных групп в макромолекулах полимера может происходить при 110—120% а в более кислых — уже при 70°. В щелочной среде скорость присоединения альдегида к фенолу значительно выше скорости других поликонденсационных процессов. [c.470]

    Появилось много новых направлений в области поликонденсации, например интенсивная разработка новых способов проведения поликонденсационных процессов, применение этого метода к синтезу многих новых классов полимеров и в первую очередь неорганических. Показана возможность регулирования структуры полимера путем изменения условий и способов поликонденсации. [c.9]

    Кроме основной реакции поликонденсации —реакции роста, т. е. реакции наращивания полимерной цепи, при осуществлении синтеза полимеров поликонденсационным методом в реальных условиях протекает ряд других реакций образование реакционных центров, обрыв полимерных цепей и т. д. В результате этого практически невозможно получить полимер с бесконечно большим молекулярным весом. Поэтому величина молекулярного веса по- [c.31]

    Отсюда очевиден статистический характер реакций роста при поликонденсации, отмеченный Флори , который считает это основным отличием поликонденсационных процессов от процессов полимеризации. Однако известны процессы поликонденсации, в которых образование полимера происходит преимущественно путем последовательного присоединения мономеров к полимерной цепи. Примером такого процесса может служить гетерофазная поликонденсация. Благодаря наличию границы раздела двух фаз создаются условия для направленной подачи мономеров в зону реакции, вследствие чего доля реакции п-мер + т-мер уменьшается, а доля реакции п-мер + мономер сильно возрастает. [c.47]

    Разделение системы на две фазы. Эта роль при межфазной поликонденсацни весьма многообразна. Как и при эмульсионной поликонденсацни, нри межфазной поликоиденсации граница раздела обеспечивает разделение реакционного объема на зоны с оптимальными условиями для каждой реакции, составляющей поликонденсационный процесс. Так, в водной фазе наиболее успешно протекает, например, реакция нейтрализации выделяющегося НС1 органическая фаза удобна для дозирования в реакционный объем дихлорангидридов карбоновых кислот, растворения (набухания) образующегося полимера. В ряде случаев в органической фазе протекает собственно процесс образования полимеров. Кроме того, разделение реакционной системы на две фазы резко меняет характер процесса поликонденсация на границе раздела фаз двухфазной системы теряет равновероятностный статистический характер, отличающий полностью гомогенные системы. [c.206]


    Впервые строгое количественное описание процесса гелеобразования при трехмерной поликонденсации, а также вычисления ММР образующегося полимера приведены в фундаментальных работах Флори [4—9], использовавшего впервые статистический (вероятностный) метод расчета таких систем. При построении теории Флори исходил из двух основных постулатов все процессы, приводящие к образованию циклических фрагментов, маловероятны и поэтому могут не учитываться все реакционноспособные функциональные группы обладают неизменной активностью на всем протяжении процесса независимо от их расположения в молекуле и размеров последней. Для некоторых систем Флори экспериментально доказал, что конверсия р функциональных групп в гель-точке в соответствии с развитой им теорией не зависит от температуры, катализатора и других условий проведения процесса и определяется только функциональностью и соотношениями исходных мономеров. Флори рассчитал несколько конкретных поликонденсационных систем, в которых [c.160]

    Протекание вторичных реакций, о которых говорилось выше в полимерах, полученных реакцией поликонденсации, не только вероятно, но при некоторых условиях становится и доминирующим 1. В полимерах, полученных по реакции радикальной полимеризации, межцепной обмен осуществляется не при всяких, а лишь при эффективных столкновениях, в которых участвует, по крайней мере, одно активное звено одной из взаимодействующих цепей. При поликонденсационном равновесии все молекулы являются в равной мере активными и одинаково подверженными деструктивным процессам гидролиза, аминолиза, ацидолиза и т. п. Поскольку эти процессы могут вызываться действием как мономера, так и свободными активными (МН —, —ОН, —СООН и т. д.) группами на концах полимерных цепей, реакция межцепного обмена (стр. 172) может протекать сравнительно легко, и при длительном выдерживании в образующемся [c.176]

    Строение поликонденсационных полимеров и их свойства. Как уже отмечалось, в зависимости от функциональности исходного сырья и условий реакции при поликонденсации образуются в основном два типа полимеров 1) линейные — постоянно плавкие и растворимые полимеры, не отверждающиеся при нагревании, их называют термопластичными 2) пространственные — сначала получают плавкие и растворимые низкомолекулярные олигомеры, которые называют термореактивными, затем при нагревании они переходят в неплавкое и нерастворимое состояние, образуя пространственный полимер. [c.150]

    На результаты электрофильного замещения большое влияние оказывают условия проведения процесса. В частности, на примере поликонденсации 4,4 -ди-фенилоксида с дихлорангидридом изофталевой кислоты [28] было установлено, что на молекулярную массу образующегося полиэфиркетона существенное влияние оказывают природа реакционной среды, концентрация реагентов, количество хлористого алюминия и др. Например, в среде метиленхлорида получаются более высокомолекулярные полимеры, чем в нитробензоле в первом случае получены полимеры с приведенной вязкостью в серной кислоте - 0,9 дл/г, во втором - 0,5 дл/г. При проведении реакции в метиленхлориде наилучшие результаты получаются при концентрации каждого из мономеров 1 моль в 2 л растворителя и соотношении хлористый алюминий хлорангидрид = 2,8 1 (моли). Поликонденсационный процесс осуществляют в следующем режиме реакционную смесь, вначале охлажденную до -70 °С, постепенно нагревают до комнатной температуры, при которой выдерживают 24 ч, а затем 1 ч при 40 °С [28]. [c.197]

    Научные работы посвящены исследованию пoликoJ дeн aции и физике полимеров, показал, что в поликонденсационных процессах реакционная способность функциональных групп не зависит от длины цепи взаимодействующих молекул (принцип Флори), Исследовал (1941 — 1952) кинетику трехмерной поликонденсации и молекулярно-массовое распределение образующихся при этом полимеров. Дал математическое описание условий нахождения в таких системах точки гелеобразования. Показал, как из данных по набуханию полимеров можно получить информацию о строении макромо-лекулярных сеток и термодинамические параметры взаимодействия полимера с низкомолекулярной жидкостью. Предложил теорию растворов полимеров на основе квазикристаллической модели, что [c.522]

    Равновесная поликонденсация. Успехи последних двух десятилетий в области химии высокомолекулярных соединений во многом связаны с новым этаном развития теории и практики поликонденсационных процессов. За этот период в области равновесной поликонденсации советскими учеными, в первую очередь В. В. Коршаком и его школой, накоплен большой экспериментальный матерная, на основе которого открыты и сформулированы основные законы образования макромолекул в условиях равновесного поликонденсационного процесса [59]. Исследования в области равновесной ноликонденсации получили дальнейшее развитие благодаря синтезу новых термостойких полигетероариленов циклоцепного строения и элементооргапических полимеров типа координационных. [c.118]

    Исследования закономерностей и механизма образования гетероцепных полимеров и влияния химическох о строения иа свойства полигетероариленов привели В. В. Коршака и его школу к устаповлению основных принципов построения полимерной цепи и условий синтеза и к созданию нового типа теплостойких растворимых линейных полимеров — кардовых полимеров (полиарилатов, полиамидов, полиимидов, полиоксадиазолов и др.) с ценными свойствами (см. [133]). Многолетние исследования закономерностей поликонденсации и свойств гетероцепных полимеров позволили заложить научные основы синтеза блок-сополимеров поликонденсационного типа, в частности многокомпонентных блок-сополимеров с заданными свойствами [80, 134]. [c.124]

    Обычно поликоиденсацию проводят при высоких концентрациях исходных веществ, что благоприятствует образованию линейного продукта. Циклизация — мономолекулярная (внутримолекулярная) реакция, в то время как линейная поликонденсация — это бимолекулярная (межмо.текулярная) реакция. С увеличением концентрации исходных веществ скорость последней возрастает значительно быстрее, чем скорость первой реакции. Таким образом, фактор концентрации реагентов накладывается на рассмотренные выше кинетический и термодинамический факторы, благоприятно влияя на протекание линейной полпконденсации. Именно этим объясняется отсутствие в реальных поликонденсационных системах колец с числом членов более 12 циклизация практически не идет, когда при поликонденсации возможно образование шести- или семичленных колец. Другим обстоятельством, которым можно воспользоваться для смещения равновесия в сторону линейной ноликонденсации, является невозможность в определенных условиях превращения. линейных структур в циклические и наоборот. Это позволяет сдвинуть равновесие между двумя структурами в сторону образования линейного полимера. [c.70]

    К числу макроскопических факторов, сильно влияющих на течение химических реакций , можно отнести агрегатное и фазовое состояния системы (жидкое, твердое), гидродинамические параметры (скорость перемешивания и т. д.), химический состав системы (концентрации мономеров, растворителя, катализатора и т. д.), давление, температуру и др. Следовательно, в разных условиях при поликонденсационном синтезе из одних и тех же мономеров могут получаться полимеры, резко различающиеся по молекулярным весам. Так, поликонденсацией диаминов с дихлорангидри-дами в расплаве трудно или почти невозможно получить высокомолекулярный полимер, тогда как проведение этого процесса в эмульсии или на границе раздела фаз дает такую возможность. [c.32]

    Изучены способы введения сульфогрупп в исходный мономер, в промежуточный продукт первой стадии поликонденсации дифенилоксида с формальдегидом и в нерастворимый продукт поликонденсации этих мономеров. Лучшие результаты были достигнуты в последнем случае, что представляет интерес, поско.льку для получения сульфофенольных ионитов нерастворимые фенолформальдегидные полимеры почти совершенно не применяются. Такой способ яв.ляется основным при получении сульфостироль-ных ионитов, причем трехмерные сополимеры стирола и дивинилбензола предварительно подвергают набуханию и сульфирование проводят в условиях, позволяющих свести к минимуму процессы окислительной деструкции ионитов. Именно по такому пути пошли авторы [279] при получении поликонденсационных ионитов. [c.251]

    Химические связи между звеньями в этих полимерах столь прочны, что они не разрываются в условиях проведения процесса под действием находящихся в системе реагентов, обеспечивая тем самым неравновесный характер поликонденсационного процесса. В настоявшее время мы располагаем еще очень небольшим количеством данных о механизме реакции полициклизации, однако в большинстве случаев это двухстадийный процесс. На первом этапе это может быть (в зависимости от условий синтеза) обычная равновесная реакция, приводящая к образованию полиамидов, полиэфиров, полигидразонов и т. п. соединений в зависимости от строения исходных веществ. На втором этапе происходит циклизация, т. е. замыказше гетероцикла, характерное для данной реакции. Этот-то этап в ряде случаев и представляет собой неравновесную поликонденсацию, поскольку образование прочных циклов является уже необратимым процессом вследствие устойчивости этих циклов к химическим воздействиям. [c.13]

    В случае продуктов полимеризации и поликонденсации многократно указывалось, что в соответствующих условиях получаются полимеры с реакционноспособными концевыми группами. Так можно получить линейные спиртовые полиэфиры с концевыми гидроксильными группами или кислые полиэфиры с концевыми карбоксильными группами. Далее, путем выбора подходящего инициатора полимеризации можно получить полимеры с концевыми гидроксильными группами. Такие полимеры могут взаимодействовать как гликоли с эквивалентными 1Соличе-ствами диизоцианатов, и из поликонденсационных блоков образуются тогда линейные макромолекулы существенно более высокого молекулярного веса. Так, из линейного спиртового полиэфира, например из гликоля и адипиновой кислоты с молекулярным весом около 2000, получают с 30% избытком диизоцианата (считая на содержание гидроксилов в полиэфире) соответствующее количество сополимера. Этот продукт ступенчатой блоксонолимеризации содержит примерно две-три полиэфирных цепи, связанные уретановыми группировками, образовавшимися из диизоцианата, и концевые изоцианатные группы [48, 685, 689]  [c.102]


Смотреть страницы где упоминается термин Поликонденсационные полимеры и условия поликонденсации: [c.290]    [c.476]   
Основы синтеза полимеров методом поликонденсации (1979) -- [ c.237 ]




ПОИСК





Смотрите так же термины и статьи:

Поликонденсационные полимеры



© 2025 chem21.info Реклама на сайте