Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Железо атмосферная

    Бессемеровский процесс — получение стали из чугуна в конверторе путем окисления кремния, марганца, углерода и железа атмосферным воздухом, обогащенным кислородом. Процесс был предложен в Англии Г. Бессемером ( 85И. [c.26]

    Из изложенного ясно, что при постройке ректификационных установок в первую очередь следует обратить внимание ка выбор того материала, из которого должны быть сделаны аппараты и трубопроводы установки. При этом необходимо принимать во внимание не только действие на материал аппарата того продукта, с которым придется работать, но также и действие на аппарат окружающего воздуха и влаги. При этом иногда приходится отказываться от применения материала, хотя и стойкого по отношению к разделяемым продуктам, но не стойкого к действию атмосферы. Общеизвестно например, что во многих производствах пищевой и химико-фармацевтической промышленности избегают применять железо даже там, где оно вполне стойко к обрабатываемым продуктам, но где образующаяся при действии на железо атмосферного воздуха ржавчина может ухудшить качество продукта в смысле его чистоты. [c.85]


    Благодаря использованию высокоактивных катализаторов без железа, работавших пр,и более низких температурах, исследователям удалось провести синтез при атмосферном давлении и направить его так, чтобы продуктами реакции являлись почти исключительно углеводороды, кипящие главным образом в интервале выкипания бензина и среднего масла (керосина), вместе с небольшим количеством высококипящих парафинов и почти без кислородных соединений. [c.74]

    В воде FeS нерастворим поэтому, накапливаясь на поверхности металла, сернистое железо играет до некоторой степени роль защитной пленки, предотвращающей дальнейшую коррозию. При взаимодействии FeS с соляной кислотой пленка превращается в хлорное железо, легко растворимое в воде. Наличие соляной кислоты способствует обнажению чистого металла, и его коррозия возрастает. Поэтому содержание солей в нефтях, выделяющих при переработке H2S, особенно опасно. Следовательно, сернистые нефти необходимо предварительно полностью обессоливать. Хлориды способствуют увеличению образования сероводорода при перегонке примерно в 2—3 раза. Сероводород (HgS) крайне ядовитый газ, вызывающий отравление обслуживающего персонала и загрязнение атмосферного воздуха. [c.10]

    В присутствии газов-разбавителей, например окиси углерода, ацетилен может воспламеняться и при 250—300 °С. Некоторые твердые вещества также понижают температуру самовоспламенения ацетилена в 1,5—2 раза. Так, в присутствии карбида кальция температура самовоспламенения ацетилена при атмосферном давлении составляет 500 °С. Окислы меди, железа и других металлов, являясь весьма активными катализаторами, в значительной мере способствуют снижению температуры разложения ацетилена. Наименьшая температура, при которой возможен взрывной распад ацетилена, находящегося под избыточным давлением 400 кПа, составляет в присутствии меди 240 °С, а в присутствии окислов железа 280 °С. [c.21]

    Ацетальдегид получают гидратацией ацетилена водой при температуре 85 °С и атмосферном давлении. Катализатором служит водный раствор сернокислой двухвалентной ртути, содержащий также серную кислоту и сернокислое железо. Катализатор регенерируют азотной кислотой и воздухом. Ацетальдегид может быть синтезирован также окислением этанола воздухом при температуре 538 °С и избыточном давлении 0,35—0,70 ат на серебряной сетке как катализаторе. [c.331]


    Под атмосферным давлением олефины можно гидрировать при температурах около 00—550° С. За этим пределом преобладает дегидрирование. Применение давления и катализатора дает возможность провести процесс гидрирования при комнатной температуре и даже ниже те же условия требуются для доведения до минимума дегидрирования при более высоких температурах. Гидрирование особенно усиливается при повышении давления. Довольно широкий ряд металлов относится к активным катализаторам гидрирования. Наиболее интересны никель, палладий, платина, кобальт, железо, активированная никелем медь. Первые три из них, будучи приготовлены специальным образом, активны при комнатной температуре и атмосферном давлении. Металлические катализаторы легко отравляются серо -мышьяксодержащими [c.89]

    Рнс. 268. Влияние относительной влажности воздуха на скорость атмосферной коррозии железа Б воздухе с 0,01% 50а в течение 55 суток [c.378]

    Образующиеся продукты атмосферной коррозии металлов, как правило, остаются на металле, хорошо с ним сцепленными, и оказывают большее (на свинце и алюминии) или меньшее (на никеле и цинке) защитное действие, уменьшая скорость коррозии со временем (рис. 271). Ускорение коррозии железа в начальный период обусловлено большой гигроскопичностью продуктов коррозии (ржавчины), защитное действие которых начинает сказываться только при значительной толщине. [c.381]

Рис. 274. Карта СССР атмосферной коррозии железа Рис. 274. Карта <a href="/info/1445357">СССР атмосферной</a> коррозии железа
    На рис. 274 приведена карта Советского Союза по атмосферной коррозии железа применительно к условиям сельской местности. Аналогичные карты составлены также для цинка, кадмия, меди и алюминия. Влияние загрязненности атмосферы и других факторов на скорость атмосферной коррозии металлов может быть учтено введением соответствующих поправочных коэффициентов, что позволяет, по А. И. Голубеву и М. X. Кадырову, прогнозирование коррозии металлов в атмосферных условиях. [c.383]

    При испытаниях использовался абсорбент с исходной концентрацией железа 7 г/л. В дальнейшем при снижении температуры атмосферного воздуха ниже нуля раствор переводили в зимнюю форму добавлением этиленгликоля. При этом концентрация железа снижалась до 4 г/л. В обоих случаях достигалась полная очистка кислых газов от сероводорода при высоте столба абсорбента 4 м сероводород на выходе установки на обнаруживался. В период испытаний температура атмосферного воздуха изменялась от -10 до +10°С, однако температура абсорбента за счет тепла реакции превышала 25°С, что позволяло поддерживать высокую скорость реакций на стадиях абсорбции и регенерации. [c.142]

    Нередко состояния, относительно мало устойчивые в термодинамическом смысле, практически длительно сохраняются во времени, что дает возможность применять вещества в таких состояниях. Так, окислы железа являются более устойчивыми в обычных условиях в присутствии кислорода, чем металлическое железо. Однако это не мешает широко применять металлическое железо в атмосферных условиях, хотя при этом и происходит некоторая потеря железа (ржавление), а в соответствующих условиях железо приобретает пирофорные свойства (см. примечание к стр. 358). Также и углекислый гае в обычных условиях является более устойчивым, чем уголь или графит. Однако это не препятствует их- применению в присутствии кислорода, хотя при определенных условиях может произойти самовозгорание угля. [c.227]

    Известно, что связывание электрона на катоде всегда осуществляется тем или другим окислителем. Для обычных процессов коррозии в атмосферных условиях, в особенности при коррозии черных металлов (железа, стали), обычно электроны связываются кислородом кислородная деполяризация). Кислород воздуха, растворяясь в соприкасающейся с металлом водной среде, в частности в пленке влаги, может связывать электроны по реакции [c.456]

    В практическом отношении течение процессов коррозии (как электрохимической, так и любой другой) сильно зависит также от образования на поверхности металла окисных или других пленок. Большая роль их в защите металла от коррозии была впервые четко показана в работах В. А. Кистяковского. Например, алюминий окисляется легче железа и обладает более высоким положительным электродным потенциалом. Однако практически он более устойчив, чем железо, в атмосферных условиях, так как, окисляясь кислородом воздуха, покрывается компактной пленкой окиси. Пленка, изолируя поверхность металла от соприкосновения с воздухом, прекращает дальнейшее взаимодействие. В этих случаях толщина пленки достигает 50—100 А и более, при этом меняется внешний вид металла, он теряет свой металлический блеск. Однако весьма часто подобную же роль играют и более тонкие пленки, не изменяющие заметно внешнего вида металла. Так, в результате образования FeO на поверхности железа повышается его стойкость ( 152). [c.458]


    Характер развития атмосферной коррозии во времени у разных металлов заметно отличается вследствие неодинаковости защитных свойств образующихся продуктов коррозии. Свинец и алюминий образуют хорошую защитную пленку из продуктов коррозии, и зависимость величины коррозии от времени для этих металлов имеет вид затухающей логарифмической кривой (рис. 138). Защитные свойства продуктов коррозии меди, олова и особенно никеля несколько ниже. Скорость коррозии цинка по мере образования слоя продуктов коррозии сначала уменьшается во времени,. а затем остается постоянной. Для железа в [c.180]

    Никель в чистом виде находит широкое применение в качестве защитного гальванического покрытия для изделий из железа и стали в целях повышения их коррозионной стойкости в атмосферных условиях. Основное применение никель находит в качестве легирующего элемента для изготовления различных марок высококачественных нержавеющих сталей. [c.255]

    Олово обладает недостаточно высокой механической прочностью. Нормальный электродный потенциал олова Sn 5A Sn- ++ 2е равен — 0,136 в. Пассивируется олово слабо. Коррозионная стойкость олова в атмосферных условиях, в дистиллированной, пресной и соленой воде очень высока. Этим объясняется широкое применение олова для защиты от коррозии в воде и в атмосферных условиях железа, потенциал которого более отрицателен, чем у олова. Однако так называемая белая (луженая) жесть во влажной загрязненной атмосфере быстро разрушается вследствие пористости защитного оловянного слоя. [c.265]

    Другая опасность монооксида углерода состоит в его способности реагировать с металлами, образуя карбонилы. Монооксид углерода реагирует с железом или никелем при температурах 25—175 С и давлениях от атмосферного до 1000 фунт/дюйм и выше. Карбонилы являются очень плотными газами и собираются в резервуарах, ямах или подвалах строений. Они обычно имеют запах плесени, который по ошибке можно принять за нормальный запах этих подвалов. Карбонилы металлов практически невозможно вывести из организма человека. Поэтому совершенно необходимо избегать их воздействия как на органы дыхания, так и на кожу. [c.144]

    В результате этой реакции образуются водород, используемый для гидрирования, и азот — для получения нитридов металлов в восстановительной атмосфере. Безводный аммиак пропускают через трубчатый реактор (рис. 2) при температуре около 600 °С. Обычно процесс ведут при атмосферном давлении или при давлении 25 фунт/дюйм . В качестве катализаторов применяют восстановленные оксиды железа и никеля, а также металлический рутений на активированном угле или а-оксиде алюминия. [c.152]

    В СССР наибольшее распространение получили катализатор-ные сетки следующего состава (в вес. %) для работы при атмосферном давлении Р1 —92,5 Рс1 —4% № — 3,5 для работы при повышенном давлении — Р1 — 92,5 НЬ-7,5. Эти сетки обладают высокой активностью, избирательностью, имеют хорошую механическую прочность и в короткий срок легко поддаются регенерации. Платиновые катализаторы чувствительны к некоторым примесям, содержащимся в исходном газе. Так, наличие в газе 0,00002% РНз снижает степень конверсии до 80%. Менее сильными ядами яв- ляются НгЗ, пары ацетилена, смазочных масел, окислы железа и другие вещества. Регенерацию сеток производят обработкой их 10—15% раствором НС1 при 60—70°С в течение 2 ч. Затем сетки [c.161]

    Удобным источником окиси углерода является карбонил никеля (с пентакарбонилом железа реакция не идет), взаимодействие которого с ацетиленом проходит под атмосферным давлением при 40—42°, т. е. ниже температуры кипения никель-карбонила (42°). [c.489]

    Одной из особенностей водорода является его способность в некоторых условиях (повышенные температура и давление) диффундировать в металлы. Поглощение водорода большинством металлов (Fe, Со, Ni, Pt, Pd и др.) увеличивается с повышением температуры и давления. При охлаждении металла и снижении давления большая часть поглощаемого водорода выделяется. Наибольшая растворимость наблюдается в палладии 850 объемов Нг на 1 объем Pd [17 В условиях атмосферного давления диффузия чистого водорода в мягкое железо начинается при температуре около 400°С и становится весьма заметной при 700 °С, когда в 1 объеме металла растворяется 0,14 объема Нг. В температурном интервале 1450—1550°С наблюдается резкий скачок растворимости — с 0,87 до 2,05 объема Нг в 1 объеме металла, что связано с переходом железа в другое агрегатное состояние (температура плавления железа равна 1539°С). [c.18]

    Работы по зачистке резервуаров опасны и требуют соблюдения противопожарных мер и правил техники безопасности. Специальные меры безопасности должны быть приняты при зачистке резервуаров из-под сернистых нефтей или нефтепродуктов. Помимо обычных отложений в таких резервуарах образуются пирофорные соединения, которые состоят в основном из сернистого железа, способного к самовозгоранию при атмосферных условиях. [c.64]

    Хотя эта реакция обычно не рассматривается как дегидрогенизация, ей присущи все отличительные признаки этого процесса. Разложение аммиака используется для получения небольших количеств восстановительного газа, как, например, в металлургическом производстве. Реакцию проводят при температуре 875-1000°С, атмосферном давлении и среднечасовой скорости подачи газа 2000 Как и в процессах риформинга природных газов, в качестве катализаторов применяют никель или окись железа на таких огнеупорных носителях, как муллит. [c.83]

    Небезынтересно, что еще М. И. Коновалов в своей магистерской диссертации [53] почти 90 лет назад отмечал дегидрирующую особенность кислорода. Очевидно, — иисал он, — нафтены способны под влиянием окислителей не только окисляться, но и конденсироваться, теряя часть своего водорода . Этот интересный факт,—ио справедливому мнению В. В. Марковникова и В. Н. Оглоблина,— может объяснить пути образования высокомолекулярных частей нефти в природе, в коей не может быть недостатка в различных окислителях (глина, окись железа, атмосферный воздух) . [c.136]

    Вьпцелачивание железа атмосферными осадками наблюдается также на свалках бытовых отходов. Специальными геохимическими исследованиями И.Л. Башарской и др. [19а] установлено, что ежегодно на свалки с бытовыми отходами (исключая металлолом) поступает 61,2 тыс. т железа, которое вьшосится в грунтовые воды. [c.295]

    Юроун с сотр. [29] также установили, что даже в отсутствие света диоксид серы окисляется в воздухе при наличии некоторых оксидов металлов (алюминия, кальция и железа). Атмосферные частицы могут оказывать такое же влияние, но поскольку эти эффекты изучены лишь качественно, значение такого окисления не может быть оценено. По-видимому, оно не слишком велико [30]. Окисление ЗОг до серной кислоты в промышленных районах было изучено Бенарье с сотр. [31]. Изучено также [5, Ъ2  [c.265]

    Первым катализатором для синтеза углеводородов была смесь окислов железа и цинка, которую использоейли при атмосферном давлении и 370° на смеси СО Н2 = 1 3. В последующем железный катализатор не применялся. [c.74]

    Первые нефтеперегонные заводы в России бьши построены в 17 16 г. В это время перегонка нефти осуществлялась в кубовых батареях периодического и непрерывного действия при температуре от -t-80 до 320 "С, давлении около атмосферного. Материа)гом для батарей служило сварочное железо, позднее применялась литая низко-упсеродисгая сталь. [c.16]

    Азотная кислота получается преимущественно окислением аммиака в присутствии катализатора из сплава 90% платины и 10% родия в виде 20 слоев сеток (с размером отверстий 0,175 мм), изготовленных из проволоки толщиной 0,076 мм. Эта сетка имеет металлическую поверхность 1,5 м /м . В качестве катализатора используют также гранулированную смесь окиси железа и окиси висмута. В платиновый конвертор, работающий при давлении 7 кгс/см , при суточной производительности 55 т 100%-ной HNOз загружают 2977 г сплава. После зажигания реакция протекает автотермично путем соответствующего предварительного подогрева газовой смеси поддерживается температура 882—910 °С. При этих условиях время реакции составляет примерно 0,0001 сек, тогда как при атмосферном давлении требуется от 0,01 до 0,02 сек. Кислород адсорбируется на поверхности катализатора и реагирует с аммиаком, который диффундирует к поверхности. Скоростью диффузии аммиака определяется общая скорость процесса . [c.326]

    Однако на первый взгляд эта идея практически неосуществима. В самом деле, Н2304 при обычных условиях кинит с разложением при 335, а этилсер-пая кислота разлагается (вне условий катализа) при 160—170 °С [11]. Следовательно, при атмосферном давлении реакция между этиленом и серной кислотой в паровой фазе невозможна. Для понижения температуры кипения,, а следовательно, и температуры паров Н28 04 можно было бы использовать вакуум но даже в вакууме вряд ли удалось бы найти условия существования моноэтилового эфира серной кислоты, так как в результате применения железа в качестве материала для реакционной аппаратуры можно ожидать понижения температуры разложения этилсерной кислоты, как и в присутствии Си, Ag, N1, когда распад этилсерной кислоты начинается уже при 100 °С. [c.28]

    K4Fe( N)lд, идентичен спектрам соединений, синтезированных либо из сульфата железа(П) и KзFe( N)g, либо путем окисления атмосферным кислородом соединения, полученного из сульфата железа(П) и К4ре(СЫ)(,. Спектры этих соединений говорят о том, что катион в них — высокоспиновое железо(1П), тогда как анион — низкоспиновое железо(П). [c.300]

    Для улучшения условий работы внутри печей доохлаждение их рекомендуется производить воздухоохладителем (рис. VI- ) конструкции ЛИОТ—ВНИИТБ. Аппарат представляет собой передвижной агрегат, в котором на баке из листового железа смонтированы центробежный насос и вентилятор. Насос, забирая из бака воду, подает ее во входной коллектор вентилятора, куда поступает также атмосферный воздух, всасываемый вентилятором. Увлажненный воздух через гибкий диффузор и души-рующий патрубок нагнетается вентилятором в топку печи. Производительность агрегата по воздуху составляет 15 ООО м /ч. Емкость водяного бака рассчитана н а непрерывную работу в течение б—7 ч. [c.185]

Рис. 269. Влияние частиц угля, 5Юг и (ЫН1)г501 на скорость атмосферной коррозии железа при отсутствии и наличии ЗОа и воздуха Рис. 269. <a href="/info/364866">Влияние частиц</a> угля, 5Юг и (ЫН1)г501 на <a href="/info/748082">скорость атмосферной коррозии</a> железа при отсутствии и наличии ЗОа и воздуха
    Изучение строения и свойств кристаллических тел, получившее сильное развитие в последнее время, выявило, в частности, что наряду с соединениями, в которых элементы проявляют обычные степени окисления, существует довольно много соединений, не отвечающих им, которые называют соединениями нестехиометриче-ского состава. Так, соединение состава РеО является неустойчивым в обычных условиях и вместо него реально существует соединение состава Рео.мтО, которое устойчиво в кристаллическом состоянии. Причины таких соотношений могут быть различными. В приведенном примере они связаны с более высокой концентрацией вакансий атомов железа, чем вакансий атомов кислорода при обычном в атмосферных условиях парциальном давлении кислорода в воздухе. [c.346]

    Пентакарбонил железа Ь е(С0)5 представляет собой кипящую при 102° С жидкость, пары которой при давлении 0,1 Мн1м и температуре выше 140° С практически полностью диссоциируют на Ре и СО. Распад пентакарбонила железа сопровол<дается увеличением объема в 5 рая. Однако эта реакция может протекать до конца лишь с малой скоростью. Имеются указания, что небольшие количества жидкого пентакарбонила железа могут образоваться даже при атмосферном давлении и 20° С. Максимальное количество псптакарбоиила железа образуется при температуре около 200° С. [c.153]

    Анодные о. ащитные покрытия (цинковые и кадмиевые) могут защищать стальные конструкции от коррозш в воде (водопроводные трубы) и в растворах пейтральиых солей или от атмосферной коррозни (кровельное железо). В более агрессивных условиях эффективность цинковых или кадмиевых нок )ы-тнй невелика вследствие высокой растворимости этих металлов. [c.320]

    На промышленных предприятиях, в колхозах и совхозах рабочие жидкости на складах ГСМ также содержат большое количество загрязнений. По данным [21], в пробах рабочих жидкостей, взятых на складах ГСМ разных климатических зон, содержание твердых загрязнений было от 0,01 до 0,24% (масс.), а содержание воды от 0,001 до 1,0% (масс.). Исследование загрязненности рабочих жидкостей в гидравлических системах тратгго-ров, эксплуатируемых в разных климатических зонах, показало, что содержание твердых загрязнений после 300—1000 ч эксплуатации может составлять от 0,02 до 0,24% (масс.). Химический анализ неорганических загрязнений показал, что в них преобладает двуокись кремния (70—85%), содержится также много окиси алюминия (10—15%) и окиси железа, т. е. эти загрязнения имеют преимущественно атмосферное происхождение. Размер частиц загрязнений в этих условиях, как правило, не превышает 60—70 мкм. [c.57]

    Влияние условий деметаллизации на физико-химические свойства катализатора. Очень важно, чтобы в процессе деметаллизации физико-химические свойства катализатора остались на прежнем уровне. Наши данные свидетельствуют о том, что свойства катализатора (прочность, насыпная плотность, удельная поверхность, обгленная способность, содержание алюминия) после деметаллизации при атмосферном и повышенном давлении остаются такими же, как и у исходного, независимо от степени извлечения металлов [389]. Так, при удалении около 80% никеля содержание алюминия на катализаторах не изменяется. Прочность катализаторов после деметаллизации также не изменилась. Аналогичные данные получают и при деметаллизации с целью удаления железа. [c.250]

    Активность и селективность катализаторов после деметаллизации существенно улучшаются увеличивается выход бензина, уменьшается выход кокса, газа (по объему) и содержание в нем водорода. Как видно из рис. 102, кривые зависимости выхода бензина и кокса от содержания никеля и железа на катализаторе до и после деметаллизации совпадают. Иными словами, условия де-металлизации (обработка водородом при высокой температуре с последующей обработкой окисью углерода) не влияют на активность и селективность катализатора. Это подтверждается такж результатами холостого опыта , заключающегося в том, что деметаллизации при атмосферном и повышенном давлении подвергали свежий алюмосиликатный катализатор промышленного производства. Показатели крекинга этого катализатора до и после деметаллизации практически одинаковы. [c.250]

    При нормальной темпора-турп на магнии, никеле и железе образуется фазовая фторндная пленка. эаи1,и-щающая металл от коррозии. Обработка магния фтористым водородом применяется для заш.иты его от атмосферной коррозии н коррозии в воде при температурах до 100 С. [c.853]

    Новым направлением в фиксации атмосферного азота является так называемый ферментативный метод с использованием комплексных соединений переходных металлов (железа, хрома, молибдена), в котором используется принцип естественной фиксации азота растениями в прирбдных условиях  [c.186]

    В этом новом, относительно недавно внедренном в практику методе, метанол окисляется в избытке воздуха при температуре 350—430°С и атмосферном давлении на окисном железо-мо-либденовом катализаторе состава МоОз-Гв2(Мо04)з. Этот катализатор имеет высокую активность и малочувствителен к каталитическим ядам. [c.297]

    В конце тридцатых и начале сороковых годов появляются зкспериментальные работы по крекингу алканов, в которых изучают не только состав продуктов, но также кинетику термического распада индивидуальных алканов с точностью, достаточной для суждения о скорости крекинга и характере управляющих им кинетических закономерностей. В этих работах [14—20], в которых режим эксперимента регистрировали точно по сравению с ранними исследованиями [4], была изучена кинетика термического распада газообразных алканов в довольно широком интервале температуры (450 — 700°С) при атмосферном давлении, в реакторах из различных материалов (кварц, пирекс, медь, железо, монель-металл и др.), пустых или набитых кусочками материала самих реакторов. Большинство кинетических опытов были проведены динамическим методом (в струе), с предварительным подогревом газов или паров в предреакторе, малом времени контакта в реакционной зоне, с последующим химическим анализом продуктов в каждом из опытов, которые отличались, по температуре или по времени контакта. Более подробное изложение выше цитированных работ можно найти в Успехах химии [21] и кандидятской диссертации автора [221. [c.19]


Смотреть страницы где упоминается термин Железо атмосферная: [c.295]    [c.64]    [c.298]    [c.55]    [c.171]    [c.238]   
Коррозия химической аппаратуры и коррозионностойкие материалы (1950) -- [ c.42 ]




ПОИСК





Смотрите так же термины и статьи:

Атмосферная коррозия алюминия его сплавов вольфрама железа кадмиевых покрытий кадмия латуни магния

Атмосферная коррозия железа и других металлов

Атмосферная коррозия сварочного железа

Двуокись серы атмосферная, коррозия железа

Железо коррозия атмосферная

Изучение коррозии металлов при помощи тяжелого изотопа кислорода. I. Влажная атмосферная коррозия железа



© 2025 chem21.info Реклама на сайте