Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вольфрамит, определение урана

    Изучена [899] экстракция W(VI) 20%-ным раствором ТБФ в бензине из растворов 1, 3 и 6 Л/ H I. Вместе с вольфрамом экстрагируются многие ионы r(VI), Fe(II, III), Ge(IV), Hg(II), Mo(VI), Pt(IV), Sb(V), Te(VI), U(IV, VI), V(V) плохо экстрагируются u, Se(VI), Th, Ti(III) и Zn. Экстрагированием раствором ТБФ в додекане уран отделяют от вольфрама при определении вольфрама в уране и его рудах [892]. [c.60]

    Анализ урана и сплавов U—Nb, U — Zr—Nb. Роданидный метод применяют [68] для определения вольфрама в уране, сплавах и—Nb и и—Zr—Nb после отделения вольфрама соосаждением его с МнО(ОН)2. В присутствии О—250 мг урана 50 мкг вольфрама соосаждается на 96,2—97,2%. [c.116]


    Цитраты и тартраты мешают. Относительная ошибка метода в зависимости от содержания алюминия колеблется в пределах от 5 до 15%. Флуориметрический оксихинолиновый метод использован для определения алюминия в сталях и бронзах [767], в магнии [451], в уране [451], в солях висмута [451], в фосфатных породах [779], в растительных материалах [1125], в воде [ 016], в вольфраме и окиси вольфрама [672]. [c.136]

    Многие спектральные методы, разработанные для определения натрия в элементах, применимы для определения натрия в сплавах и соединениях этих элементов. Поэтому такие методы также рассмотрены в данном разделе. Спектральные методы применяют для определения натрия в рубидии [42, 421], магнии [1112], кальции [485], алюминии [537, 690, 820, 844, 956, 974, 1006, 1112, 1114, 1208, 1215], графите [936], кремнии [138], олове [388], свинце [495, 522, 773], ванадии [78], мышьяке [1007], сурьме [115, 149, 1007], ниобии [35], тантале [129], селене [123, 969, ИЗО], теллуре [123, 140, 1198], хроме [406, 679], молибдене [179, 469, 862], вольфраме [35, 469, 798, 898, 1013], уране [156, 589, 1054], осмии [124, плутонии [1245]. [c.163]

    Прямое определение Sb в сочетании с рядом других элементов производится в самых разнообразных материалах, в том числе в алюминии [54, 55, 1134, бериллии и его соединениях [305, 1297], боре [778, 11171 и фосфиде бора [26], ванадии и его окислах [234, 491, 1117], висмуте [809, 909, 1134], вольфраме и его соединениях [195, 739, 795, 1265], вольфрамовых рудах [1480], германии и его соединениях [559, 634, 905], горных породах [386, 730, 1182, 1240, 1336, 1443, 1599], графите и углероде [235, 397, 612], жаропрочных и тугоплавких сплавах [176, 177, 379, 1278, 1593], железе [425, 1134, 14411, железных рудах и минералах [198, 386, 636, 971, 1336], сталях [176, 546, 1278, 1441, 1593] и чугуне [61, 274, 546, 1250], золоте [404, 754, 909, 1095] и его сплавах [196, 389,390, 1167], индии [1168, 1308] и сплавах на его основе [814, 815, 1267], иттрии и его окислах [234, 272], алюмоиттриевом гранате [82], кадмии [598, 599, 1134] и кадмиевых сплавах [819], кобальте [60, 153, 1134], кремнии [252, 1619], кварце [154], карбиде кремния 109, 110, 288, 789, 790, 1353], кремниево-медных сплавах 594], силикатах [1586], технических стеклах [612, 1579], меди 129, 482, 964, 997, 1176, 1599, 1609, 1645, 1654], медных сплавах 96, 482, 1048, 1188, 1457,1463, 1566], окиси меди [199], продуктах медеплавильного производства [3601 и медных электролитах [1298, 1600], молибдене и его соединениях [104, 237, 308, 795, 1325, 1347, 1443], мышьяке [472, 1134], никеле и никелевых сплавах [486], ниобии и его окислах [49, 972], олове [582, 744, 782, 812, 900, 1684] и его сплавах [1210, 1494, 1495], полупроводниковых материалах [668, 678, 806, 1298, 16841, припоях [210, 1101], свинце [481, 534, 908, 1154, 1155,1193, 1543,1655], свинцовых сплавах [126, 871], рудах [53, 667, 806, 1143] и пылях [811], РЗЭ и их окислах [234, 353], селене [154, 155, 499, 747, 818, 1134], селениде ртути [715], сере [189, 1134], серебре [388, 390, 391, 909, 1598], хло- иде серебра [1362], стеклоуглероде [397], сульфидных рудах 638], тантале [237], теллуре [156, 591, 592, 1134, 1613], теллуровом баббите [1656] и теллуриде свинца [342], типографских сплавах [323], титане и двуокиси титана [288, 306, 1262], тории и его окислах [272], уране [1447], окислах урана [878, 1182, 1240] и урановых рудах [1443], ферросплавах [792, 793], фосфоритах [879], хроме [555, 729, 792] и его окислах [54, 55, 571], цинке [976] и цинковых рудах и минералах [1142], цирконии [679] и двуокиси циркония [1368], производственных растворах [205, 882, 1290, 1323, 1324, 1483], сточных и природных водах [429], азотной, серной, соляной, уксусной, фтористоводородной и бромистоводородной кислотах [111, 121, 407, 552, 574, 10081, воздушной пыли [121. [c.81]


    Разработаны методы определения кобальта в металлических никеле [88, 109, 584, 775, 957, 1002, 1082, 1188, 1200, 1417, 1518], натрии [1321, 1458], меди [686], магнии [343, 830], алюминии [1395], цирконии и титане [343, 927, 1071, 1081, 1445, 1499], свинце [186], висмуте [233], уране [1387], стеллите [73], победите [357], в сплавах кобальт — платина [1488], хром — кобальт [96], вольфрам— кобальт [520], в карбидах вольфрама и титана [1208] и других объектах [227]. [c.198]

    До определенной валентности в редукторе восстанавливаются железо, титан, европий, хром, молибден и ванадий. Уран частично восстанавливается ниже четырехвалентного, но этого можно избежать, если проводить восстановление в охлажденных растворах и после восстановления дать им некоторое время постоять на воздухе как описано в гл. Уран (стр. 530). Восстановление вольфрама, ниобия и рения также идет не д определенной валентности, но способ устранения этого, как для урана, неизвестен. [c.137]

    Главными методами отделения железа от остальных элементов являются 1) обработка сероводородом в кислом растворе (стр. 83), в результате которой металлы группы сероводорода, например висмут или мышьяк, осаждаются, а железо остается в растворе 2) осаждение сульфидом аммония в растворе, содержащем тартрат аммония (стр. 115) нри этом железо осаждается в виде сульфида железа, а алюминий, титан и другие элементы остаются в растворе 3) осаждение едким натром (стр. 109), в результате которого железо переходит в осадок и отделяется от ванадия, вольфрама, молибдена, мышьяка, алюминия и фосфора 4) сплавление с карбонатом натрия с последующим выщелачиванием плава водой (стр. 511), дающее практически тот же результат, что и предыдущий метод, с тем лишь различием, что алюминий в этом случае обычно отделяется не полностью, хром окисляется и переходит в раствор, а уран частью остается в остатке, частью переходит в раствор 5) извлечение эфиром из разбавленного солянокислого раствора (стр. 161), которое применяется главным образом для удаления большей части железа, если оно присутствует в таких больших количествах, что создаются затруднения при определении других элементов. [c.437]

    Потенциометрическое определение ванадия. I. Восстановление пятивалентного ванадия пятивалентным вольфрамом или четырехвалентным ураном. [c.186]

    Экстракция оксината была использована для выделения алюминия и (или) определения его в железе [831], металлическом никеле [1143], тории [616], окиси тория [333], окиси вольфрама [327], в свинце, сурьме, олове и их сплавах 832), магнии высокой чистоты [701, 1637], кальции [958], хроме высокой чистоты [497], уране [40, 1297, 1525], редкоземельных элементах [1064], щелочных элементах [504, 1523], в кислотах высокой чистоты и в двуокиси кремния [820], в сталях [49, 189, 479, 485, 643, 1119, 1262], жаропрочных сплавах [1157], сплавах, не содержащих железа [520], морской воде [680, 681], промышленных водах [352), силикатных и карбонатных материалах [829, 1094), полиэтилене [129], стекле [189], монацитах [1250], в различных металлах с использованием активационного анализа [1364] и ряде других объектов [1440, 1523]. [c.126]

    Этот метод был применен для определения кислорода в меди, боре, таллии, кремнии, германии, титане, мышьяке, сурьме, селене, теллуре, уране, иоде, висмуте, ванадии, хроме, ниобии, тантале, вольфраме и свинце. [c.823]

    Образование характерно окрашенных и сравнительно устойчивых золей ферроцианидных соединений используется для фотометрического, нефелометрического и спектрофотометрического определения цинка [984], цезия [11851, кобальта [891], хрома [1340], меди [129, 1186, 1360], уранила [1017], галлия [1144], молибдена [228, 1186, 1187] и вольфрама [1146]. [c.280]

    Найдены условия избирательной сорбции уранил-иона, молибдена и вольфрама на полиамфолитах и разработаны методы нейтронно-активационного определения ряда примесей в металлическом молибдене, примесей Мо и W в цирконии и ванадии, примесей р. з. э. в металлическом уране. [c.221]

    Метод пригоден для определения титана в его сплавах с ураном, цирконием, молибденом, вольфрамом, ниобием. [c.136]

    Анализ молибдена и вольфрама. Применение сплавов урана с различными металлами для производства тепловыделяющих элементов заставляет предъявлять к этим металлам практически те же требования чистоты, как и к урану. Поэтому возникает необходимость анализа таких металлов, как Мо, W, Nb и др. Применение метода фракционной дистилляции, измененного с учетом свойств основного компонента пробы, приносит в этих случаях успех при определении большого числа примесей. [c.339]

    Определение тория [25] при pH 1,5—1,8 возможно в присутствии 500-кратных количеств ионов уранила, 100-кратных — ионов Fe3+ (в присутствии аскорбиновой кислоты) и РЗЭ. Метод применен для анализа тория в вольфраме [26]. [c.105]

    Условия осаждения ионов уранила аммиаком аналогичны условиям для определения бериллия [75]. Комплексон не оказывает влияния на осаждение и количественное выделение диураната аммония. Аммиак не должен содержать карбоната аммония. Поэтому лучше получать раствор аммиака непосредственно в лаборатории пропусканием газа из баллона в дестиллированную прокипяченную воду и предохранять раствор по мере возможности от влияния углекислоты воздуха. Мешающее влияние комплексона, выражающееся в медленном выделении (МН4)2и20,, наблюдалось только при высоком содержании хлорида аммония. Сульфаты и нитраты не мешают. Определение урана можно проводить однократным или двукратным осаждением в присутствии почти всех элементов. Определению мешает присутствие титана и бериллия, затем ниобия, сурьмы и олова. Вольфраматы образуют с ионом уранила нерастворимый вольфрамат уранила иО.,Н4( У04)3-ЗВ. О. Однако небольшие количества вольфрама определению не мешают. Аналогично ведет себя и молибден. При повторном осаждении получаются удовлетворительные результаты. Из анионов мешают фосфат-, арсенит- и арсенат-ионы. При анализе руд и минералов большинство мешающих элементов удаляется в основных операциях хода анализа (олово, сурьма и вольфрам при выпаривании с кислотами, остальные выделяются сероводородом). Определение урана можно проводить в присутствии тория, лантана и остальных редкоземельных металлов. [c.96]


    Определение ликвидуса до 2400° в системе уран—вольфрам и до 2000° в системе уран—тантал описано Шраммом, Гордоном и Кауфманом [41]. В первом случае уран расплавляли в вол1ьфрамовом тигле и выдерживали при определенной температуре в течение времени, достаточного для того, чтобы обеспечить равновесное растворение вольфрама в уране. Расплавление проводилось в индукционной печи, показанной на рис. 50. После того как металл застывал, тигель отделяли от полученного таким образом образца сплава и поверхность образца зачищали. Затем слиток подвергали химическому анализу для установления состава ликвидуса при данной температуре. [c.183]

    Перекись водорода была рекомендована для обнаружения [152, 198, 457, 1447] и фотометрического определения молибдена [41 702, 713, 1443, 1521], в частности в сталях [702, 1443], чугу-нах [1443], ферромолибдене [713], в сплавах с ураном [417] и других объектах [713]. Она применялась также при хроматографическом разделении молибдена, вольфрама и ванадия (стр. 133). [c.19]

    Шестивалентный молибден осаждают [643] при комнатной температуре и pH 2 добавлением 1%-ного водного раствора тиокарбогидразида с таким же значением pH. При pH 2 уран не осаждается. Отфильтрованный осадок промывают 1%-иым раствором НС1, прокаливают при 500° С до МоОз, которую и взвешивают. В случае определения 70—80 мг Мо в присутствии вольфрама и урана ошибка колеблется в пределах от —1,3 до + 0,2%. [c.79]

    Фотометрические методы определения мышьяка в виде мышья-ковомолибдеповой сини находят широкое применение. Они используются для определения мышьяка в его соединениях [529], железе, чугуне и стали [48, 540, 666, 698, 773, 785, 790, 885, 917, 943, 949, 952, 996, 1131-1133, 1147], ферросплавах [217, 702, 703, 1203], меди и медных сплавах [158, 195, 197, 216, 515, 562, 815, 886, 952, 1043, 1133, 1209, 1210], рудах и продуктах медного и свинцово-цинкового производства [21, 81], железных рудах [652, 822, 949, 1108], свинце [158, 264, 627, 695, 886, 926, 952, 990, 1133], серебре и его сплавах [1070], Вольфраме и его рудах [1203], олове [307, 585, 661, 1208], сурьме [91, 197, 198, 264, 284, 837, 886, 894, 952, 956], висмуте [265, 764], цинке [158, 627, 926, 952], ниобии и ванадии [284], галлии [284, 2881, индии [284, 289, 430], таллии [284, 287], кремпии [284, 872], германии ]б99, 700, 872], селене [637, 1016, ИЗО], теллуре [758], хроме и его окислах [198, 216], алюминии [144], кадмии [158], олове [886], молибдене и его окислах [459], никеле [402, 562], боре [893], уране [661, 760, 849, 928], минералах [415, 869, 994], пиритах и пиритных огарках [302, 491], фосфорной [940, 941], азотной [892], серной [939] и соляной [197, 452] кислотах, природных водах [785, 942, 993], дистиллированной воде [452], фосфатах [942] и фосфорсодержащих продуктах [980, 1091], силикатах и силикатных породах [869, 942, 964, [c.61]

    Определение ниобия в сплавах с молибденом, ураном, цирконием и вольфрамом [186]. Определению 0,25—2% ниобия с использованием ПАР в оксалатном растворе не мешают до 5 мг XV, до 10 мг Мо и и, до 1 лгг 2г. При добавлении 0,25 мл 0,025 М раствора ЭДТА определению не мешают до 50 мкг А1, Со, Ре и N1, мешает тантал. [c.130]

    Для фотометрического определения молибдена и вольфрама в металлическом уране разработана методика, по которой сначала экстрагируют молибден с помощью дитиола. Затем водную фазу обрабатывают двухлористым оловом и извлекают вольфрам в виде его комплекса с дитиолом. Содержание молибдена и вольфрама определяют фотометрированием полученных экстрактов [308]. Аналогичные варианты предложены для экстракционно-фотометрического определения вольфрама в циркалое-2 [309] и металлическом бериллии [310]. [c.250]

    Перекись водорода образует окрашенные комплексы с некоторыми переходными элементами, преимущественно с высоковалент-ны ми. Для фотометрического анализа наиболее важны желтые соединения перекиси водорода с титаном, ванадием, ниобием и ураном. Описаны также методы определения тантала и вольфрама по поглощению в ультрафиолете их комплексов с перекисью водорода. Иютенсивяо окрашенное перекисное соединение — надхромовая кислота неудобна для фотометрического анализа из-за своей неустойчивости. Комплексы молибдена и церия с перекисью окрашены слабее и для этих элементов известно немало других реактивов, тем не менее реакции их с перекисью водорода нередко избирательны, поэтому они применяются в фотометрическом анализе. Известны также неокрашенные соединения ряда металлов [12] с перекисью водорода. [c.251]

    Комнлексообразующее действие комплексона III успешно используется в аналитической практике для устранения-влияния посторонних элементов. Так, нанример, способность двух- и трехвалентных металлов образовывать прочные комплексные соединения с комплексоном III дает возможность осаждать уран и титан а также и бериллий (который в отличие от большинства двухвалентных металлов не образует комплексных соединений с комплексоном III) аммиаком в присутствии многих элементов, в том числе алюминия и железа, что имеет весьма важное практическое значение. Описано также применение комплексона III при определении вольфрама и молибдена осаждением оксихинолином в ацетатной среде. Установлено, что в этих условиях осаждаются только молибден, вольфрам, уран и ванадий (V) [c.158]

    Умеренйые количества сульфата аммония, например 10 г, или вольфрама до 0,25 г на 100 мл определению не мешают. Молибден, уран, титан, свинец и платина влияния не оказывают. [c.500]

    На возможность колориметрического определения ниобия по его реакции с роданидом в солянокислых растворах, содержащих хлорид олова (II) и винную кислоту, впервые указали Л. Н. Моньякова и П. Ф. Федоров По их наблюдениям образующееся в этих условиях соединение экстрагируется эфиром, и содержание ниобия можно определить по интенсивности желтой окраски эфирного слоя. Механизм этой реакции и влияние на нее различных факторов, подробно изученные И. П. Алимариным и Р. Л. Подвальной , рассмотрены ниже. Титан также дает окрашенный в желтый цвет роданидный комплекс, но чувствительность реакции на титан во много раз меньше, чем на ниобий, и при соотношении ] Ь Т1 = 1 30 еще возможно достаточно точное определение ниобия при условии, если концентрация Т10г в анализируемом растворе не превышает 0,3 мг в 10 мл. Тантал в условиях определения ниобия дает с роданид-ионами бесцветный комплекс. Определению ниобия мешают молибден, фольфрам, уран, ванадий, железо, хром, кобальт, медь, золото и платина, образующие в этих условиях окрашенные соединения с роданидом. При экстрагировании эфиром устраняется влияние хрома, урана, железа и меди, которые остаются в водном слое. Совместно с ниобием эфиром извлекаются окрашенные роданиды молибдена, вольфрама, титана, кобальта и йлатины. Соединения золота, селена и теллура восстанавли-. ваются до элементарного состояния и покрывают стенки сосуда, что мешает наблюдению окраски ниобиевого комплекса. [c.689]

    Перекись водорода и перекись натрия препятствуют полному осаждению циркония на холоду при кипячении в их присутствии цирконий полностью осаждается. При осаждении гидроокиси циркония щелочами отделяются следующие элементы мюминий, галлий, цинк, молибден, вольфрам, ванадий, бериллий, мышьяк и Сурьма. В присутствии карбонатов отделяется уран. Для этой цели к щелочи прибавляют I—2 г Na Og. Прибавление перекиси водорода улучшает отделение. В осадке с цирконием находятся железо, титан, марганец, хром, кобальт, никель, медь, кадмий, серебро, индий, таллий, торий и редкоземельные элементы. Магний и щелочноземельные металлы при достаточном содержании карбонатов также полностью осаждаются. Этот метод может иметь некоторое значение для отделения циркония от молибдена, вольфрама, ванадия, алюминия и бериллия. По данным Руффа [700], бериллий не отделяется щелочью количественно, так же как и алюминий, особенно в присутствии больших количеств аммонийных солей. Осаждение гидроокиси циркония аммиаком может применяться при гравиметрическом определении циркония. Но этот метод используется лишь в случае отсутствия примесей, осаждаемых аммиаком. [c.53]

    Определению молибдена в виде роданида не. мешают алюминий, кобальт, уран, тантал. Мешающее влияние вольфрама можно устранить, связывая вольфрам в виннокислый комплекс, который пренякствует реакции вольфрама с роданидами. Основны-ми мешающими элементами являются хром и ванадий, хотя эти помехи мало сказываются, если применяется метод экстрагирования соединения роданида молибдена. [c.179]

    Аниопообменные разделения в хлоридных средах применялись для определения микроколичеств урана в морской воде [65 ] и в различных твердых продуктах [62]. Перед поглощением урана анионитом в С1-форме железо восстанавливают до двухвалентного состояния с помощью аскорбиновой кислоты. После поглощения колонку промывают 4M HG1 с добавлением аскорбиновой кислоты таким путем удаляют большинство примесей, мешающих полярографическому определению урана. В заключение выделяют уран из колонки 1М НС1. При этих условиях, однако, уран не отделяется от вольфрама и молибдена, мешающих его полярографическому определению. В более позднем методе [61 ] после восстановления аскорбиновой кислотой для разделения применяют смесь 4M водного раствора соляной кислоты с этанолом (1 4). При использовании этого смешанного растворителя уран удерживается анионитом при более низких концентрациях соляной кислоты, чем в водных растворах. После промывания колонки той же смесью уран элюируют 0,1АГ раствором НС1, насыщенным этиловым эфиром. Этим методом можно отделить уран от 500-кратного избытка фольфрама (VI) и.ли молибдена (VI). Метод применялся для определения урана в фосфатах, бокситах и золах углей. Поглощение урана из солянокисло-этанольных смесей использовалось и для его отделения от других элементов [57]. [c.338]

    Экстракцию Mo(VI) из хлоридных растворов довольно широко используют для решения прикладных задач. Разработан [1032] комбинированный спектральный метод определения молибдена в гранитах и аналогичных породах, включающий экстракцию элемента ТБФ. Предложены методики экстракционного выделения и последующего определения молибдена в ванадии и ванадатах [1024], индии [851], кобальтово-марганцевых катализаторах и пы-лях рафинирования меди [398], продуктах деления урана-233 и плутония-239 [1037], в металлическом уране [1038, 1040] и его окиси [1040], сталях [1025], никеле [1038, в растворах [346, 399, 1027—1029]. Представляют интерес методы фотометрического определения молибдена, в которых окраска развивается непосредственно в экстрактах после прибавления каких-либо реагентов [1027—1029]. В радиохимии экстракция Mo(VI) из хлоридных растворов может быть использована, например, нри определении радиоизотоиной чистоты препаратов молибдена, вольфрама и рения [621], а в технологии — для выделения молибдена из сложных по составу растворов, в частности, полученных при выщелачивании молибдено-вольфрамовых концентратов [623, 1030, 1034, 1043, 1047] и при переработке кобальто-марганцевых катализаторов и пылей рафинирования меди [397, 398], молибденитовых и шеелито-повеллитовых концентратов и дрз гих продуктов [1045, 1046]. [c.179]

    Это определение по существу проводится таким же способом. После отделения оксихинолята вольфрама [ У702(С9Нб0К)г] осаждают количественно в слабоаммиачном растворе медь или уран. Оксихиноляты обоих металлов после высушивания определяют весовым путем. Определение можно проводить в присутствии свинца, висмута, кобальта, никеля, марганца и цинка. Мешают только титан, бериллий и алюминий. [c.160]

    Много органических реактивов было также снова исследовано при совместном их действии с комплексонами. Уже известное определение урана 8-оксихинолином (стр. 157) было успешно применено при анализе сплавов урана с висмутом [45]. В щелочном растворе в присутствии комплексона уран количественно выделяется оксином. Затем, подкисляя фильтрат, выделяют количественно висмут в виде оксихинолята. Весовое определение алюминия оксином в растворе комплексона, цианида калия и тартрата следует считать высоксселективным [46], поскольку оно позволяет определять алюминий в присутствии целого ряда элементов, в том числе и железа. Этот метод был использован для анализа сплавов алюминия с медью. Оксиновый метод определения вольфрама (стр. 159) был практически использован для анализа смеси вольфрама и тория [47]. В аликвотной части раствора определяют вольфрам осаждением оксихинолином с последующим йодометрическим титрованием. В другой части раствора можно определить торий прямым титрованием комплексоном при одновременном Маскировании вольфрама перекисью водорода. [c.540]

    Экстракция никеля при помощи диметплглиоксима была использована для выделения и определения этого элемента в меди и ее сплавах [730, 1271], железе и его соединениях [731, 740], кадмии 1394], в высокочистых хроме [1374], ниобии, тантале, молибдене и вольфраме 11488], в бериллии [1347], уране 11015], галогенидах щелочных металлов высокой частоты [117], в силикатных породах и рудах [183, 875], биологических материалах и пищевых продуктах [12, 875], нефтях и жирах методом активационного анализа [1255, 1589] и в других материалах. [c.151]

    Методы одноцветной и двухцветной окраски были применены для определения следов кадмия в цинке [288, 296], металлическом уране [452, 682, 869, 1613], металлическом висмуте [946], хроме [711], алюминии и его солях [1062, 1336], железе [1423], никелевых ваннах [916], вольфраме [336], силикатных породах [876, 960], морской воде [713], в кислотах высокой чистоты [1430] и биологических материалах [185, 937]. [c.212]

    Ряд реактивов, первоначально описанных для качественного открытия алюминия, затем был предложен и для его количественного определения (в их числе и З-окси-2-нафтойная кислота, позволяющая путем капельной реакции открывать 0,0002 мкг А1) [158]. Такие реактивы сведены в табл. IV-2. Морин применен для определения алюминия в воде [367]. При использовании 8-оксихинальдина для анализа окиси тория влияние мешающих элементов устраняют путем экстракции теноилтрифтора-цетоном и введения соответствующих комплексообразователей [228]. Известная флуоресцентная реакция алюминия с 8-оксихи-нолином применена для его прямого определения в воде [288], в бронзе [229], в вольфраме и его окислах [204], в металлических магнии [151] и уране [152], в солях висмута (после удаления последнего электролизом на ртутном катоде) [153] и в реактивных кислотах [320]. Реакция с понтахром сине-черным Р (эриохром сине-черным В) [360] использована при анализе сталей, бронз и минералов [355], морской воды [337], сульфида цинка (то же, после отделения мешающих примесей электролизом на ртутном катоде) [204], металлических магния [257, 259], германия [119] и сурьмы [123]. Отмечено применение для тех же целей понтахром фиолетового SW [327]. Салицилал-2-аминофенол, предложенный ранее для качественных целей [242], был использован для анализа реактивов высокой степени чистоты [35, 36, 76]. Указанная в табл. IV-2 чувствительность достигнута при условии тщательной очистки используемых буферных растворов. Для устранения помех со стороны больших количеств железа при анализе сталей предложено осаждать его избытком едкого натра в присутствии пергидроля [295], а при анализе силикатов — восстанавливать до двухвалентного состояния с последующей маскировкой 2,2 -дипиридилом [354] в обоих случаях определение алюминия производят путем его фотометри-рования в виде 8-оксихинолината. [c.143]

    Экстракцию оксихинолината вольфрама широко применяют в аналитической химии. Эберле [618] применял экстракцию для фотометрического определения вольфрама в сталях, цирконии, циркалое, уране и бериллии. Для отделения молибдена вначале экстрагируют при pH 2 оксихинолинат молибдена из фторидного раствора, затем вводят борную кислоту и экстрагируют 8-окси-хинолинат вольфрама. Виноградов и Дронова [67] экстрагировали 8-оксихинолинат вольфрама смесью хлороформа с бутанолом (2 1) в присутствии молибдена, связанного в комплексонат после его восстановления гидразином. Кислотность водной фазы — pH 2—3. При содержании молибдена 100, 200 и 500 мг он экстрагируется хлороформом в количестве 0,125—0,205, 100—0,425 и 0,150 — 1,5 мг соответственно. [c.64]

    Соедиаение количественно экстрагируется при кислотности водной фазы pH 3,5—5 в присутствии борной кислоты оптимальная кислотность водной фазы pH 2,0 [619]. Метод применен для определения вольфрама в цирконии, циркалое, уране, бериллии и сталях. Если в образце присутствует молибден, его предварительно экстрагируют в форме оксихинолината из фторидного раствора, после введения Н3ВО3 экстрагируют оксихинолинат [c.131]

    Количественные определения содержания урана и тория проводят обычно по линиям -серии этих элементов. Эти линии расположены в удобной области рентгеновского спектра, требуют для своего возбуждения относительно небольшого напряжения. Для урана, например, длина волны наиболее интенсивной линии -серии, которая чаще других используется для анализа элемента, равна 908,7 X, а потенциал возбуждения 21,7 кв. Поэтому анализ образцов, содержащих уран или торий, осуществляется обычно с помощью одной из моделей коротковолнового (невакуумного) спектрографа при рабочем напряжении на трубке порядка 50 кв. Наложение линий других элементов на аналитические линии урана и тория при работе в двух первых порядках отражения приведено в табл. 24. Видно, что наиболее интенсивные линии этих элементов практически свободны от наложений. Несмотря на то, что при определении небольших содержаний урана и тория иногда приходится считаться с мешающим влиянием некоторых линий платины, иттрия или редких земель, это никогда не создает непреодолимых для проведения анализа затруднений. В качестве элемента сравнения чаще других используется стронций, К - и /С глинии которого расположены неподалеку от аналитических линий урана и тория. Можно проводить определение тория также сопоставлением интенсивности его Р -линии с интенсивностью одноименных линий вольфрама или урана. При этом предполагается, конечно, что в испытуемой пробе уран первоначально отсутствует. [c.200]


Смотреть страницы где упоминается термин Вольфрамит, определение урана: [c.172]    [c.111]    [c.207]    [c.66]    [c.239]   
Люминесцентный анализ неорганических веществ (1966) -- [ c.370 ]




ПОИСК





Смотрите так же термины и статьи:

Вольфрамиты

Уранил определение



© 2025 chem21.info Реклама на сайте