Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Соединения влияние охлаждения

    Известно [27, 30], что ограничение значений твердости металла сварного шва является одним из практических методов снижения склонности сварного соединения к сероводородному растрескиванию. Как следует из [11, 12, 25, 31], на образование трещин в сварном соединении оказывает влияние неоднородность структуры металла, наличие в ней зон, склонных к растрескиванию, уровни действующих и остаточных напряжений. Именно в сварных соединениях локализуется большая часть разрушений металла, связанных с сероводородным растрескиванием. Наиболее негативное влияние оказывает быстрое охлаждение шва с образованием перлитно-бейнитной смеси с мартенситом. Стойкость к сероводородному растрескиванию металла сварного шва меньше, чем основного металла не только из-за наличия остаточных напряжений, но и вследствие присутствия различных дефектов. Для сталей повышенной прочности характерно сероводородное растрескивание по сварному шву и зоне термического влияния. Для сталей обычной прочности избирательное разрушение по шву и зоне термического влияния отмечается лишь при переохлаждении. [c.63]


    Влияние температуры. Из приведенного уравнения видно, что соединение водорода с азотом сопровождается выделением, а распад аммиака на водород и азот — поглощением теплоты. В этом случае сообщение теплоты извне (повышение температуры) сдвигает равновесие влево — в сторону разложения аммиака, т. е. благоприятствует эндотермической реакции. Наоборот, охлаждение системы (понижение температуры) вызовет смещение равновесия вправо, в сторону образования аммиака, т. е. способствует экзотермической реакции. Следовательно, чем большим тепловым эффектом обладает данный процесс, тем сильнее смещается равновесие с изменением температуры. В про- [c.41]

    На свойства сталей большое влияние оказывает также их термическая обработка, вызывающая вторичные изменения в соотношении соединений и структуре сплавов. Так, при медленном охлаждении отпуске) стали аустенит постепенно разлагается на цементит и феррит, и сталь становится мягкой. При быстрой же охлаждении закалке) стали аустенит превращается в мартенсит [c.583]

    Коррозионный процесс разрушения стали при высоких температурах замедляется, так как образуются стойкие поверхностные пленки. Наружный слой пленок, состоящий из Ре5 и РеЗг, не содержит хрома, имеет рыхлое строение и способен отслаиваться. Внутренний же слой, обладая повышенной адгезионной способностью, соединен с основным металлом, имеет шпинельную структуру, состоит из смешанных сульфидов хрома и железа и часто содержит больше хрома, чем основной металл. Такой слой надежно защищает металл от коррозии, интенсивность которой обратно пропорциональна толщине пленки и особенно велика в начальный период эксплуатации труб. Затем скорость коррозии уменьшается. Прочность и плотность пленок на металле зависит от цикличности процессов. Теплосмены — нагревы и охлаждения — приводят к разрыхлению и отслаиванию пленок под влиянием термических напряжений, что прежде всего заметно при частых процессах регенерации, проводимых на установках. [c.149]

    Склонность стали к МКК возникает также при медленном охлаждении ее с прохождением через область опасных температур, например при длительной сварке. В месте сварки металл разогревается до температуры плавления (примерно 1400 °С) опасная же область температур локализуется на расстоянии нескольких миллиметров от шва (зона термического влияния). В агрессивной среде сварное соединение подвергается МКК в околошовной зоне. [c.446]


    На свойства сталей большое влияние оказывает также их термическая обработка, вызывающая вторичные изменения в соотношении соединений и структуре сплавов. Так, при медленном охлаждении (отпуске) стали аустенит постепенно разлагается на цементит и феррит, и сталь становится мягкой. При быстром же охлаждении (закалке) стали аустенит превращается ь мартенсит (пересыщенный твердый раствор С в а-Ре), и сталь приобретает большую твердость и некоторую хрупкость. [c.621]

    Мышьяк и его соединения ядовиты. Подобно фосфору, мышьяк встречается в нескольких модификациях. Обычная форма —металлический, или серый, мышьяк. Он проводит электрический ток. Мышьяк возгоняется, не плавясь, при 633 °С. Плотность пара до 800 °С соответствует формуле AS4, выше 1700° — формуле Asj. Пары мышьяка бесцветны. При резком охлаждении паров получается желтый мышьяк. По химическим свойствам он подобен белому фос( юру, но менее устойчив. При слабом нагревании, а также под влиянием света желтый мышьяк переходит в серый (металлический) мышьяк. [c.306]

    Само явление, изучавшееся в дальнейшем преимущественно на соединениях радия, было названо радиоактивностью. Опыт показывал, что активность препарата определяется исключительно содержанием нем радия и совершенно не зависит от того, в виде какого соединения он находится. Активность препарата практически не зависит также и от внешних условий нагревание или охлаждение, действие света, электричества и т. д. не оказывают на нее сколько-нибудь заметного влияния. Все эти факты заставляли сделать предположение, в корне противоречившее установившимся взглядам, — предположение, что радиоактивные явления обязаны своим происхождением самопроизвольному распаду атомов радия и других радиоактивных элементов. Тем самым был постав- [c.67]

    Чем симметричнее сами частицы, чем симметричнее они расположены и чем меньше связь между ними в жидком состоянии, тем больше оснований предполагать, что охлаждение жидкости приведет к ее кристаллизации. Действительно, расплавленные металлы, расположение атомов в кристаллической решетке которых близко к плотнейшей упаковке, легко кристаллизуются, а расплавленные силикаты часто переходят в стеклообразное состояние, Органические соединения, содержащие много гидроксильных групп (например, глицерин), в отличие от углеводородов, затвердевая, обычно не кристаллизуются - сказывается влияние водородных связей. [c.171]

    Изложенное означает, что энтропия является мерой неупорядоченности состояния системы. Энтропия растет не только с повышением температуры, но при переходе вешества из состояния с меньшей энергией в состояние с большей энергией, например при плавлении (и возгонке) твердого вещества, при кипении жидкости. Ростом энтропии сопровождаются и процессы расширения газа, растворения кристаллов, химическое взаимодействие, протекающее с увеличением объема, например диссоциация соединения, когда вследствие роста числа частиц их неупорядоченность возрастает. Наоборот, все процессы, связанные с увеличением упорядоченности системы, такие как охлаждение, отвердевание, конденсация, сжатие, кристаллизация из растворов, химическая реакция, протекающая с уменьшением объема, например полимеризация, сопровождаются уменьшением энтропии. Возрастание энтропии вещества при повышении температуры иллюстрирует рис. 2.5. Влияние давления на энтропию можно показать на следующем примере при Т - 500 К и р-101 кПа энтропия аммиака составляет 212 Дж/(моль К), при 7 -500 К и р-30300 кПа эта величина равна 146 Дж/(моль-К), т. е. с увеличением давления энтропия снижается, но незначительно. [c.189]

    Органические стекла образуются в большинстве случаев высокомолекулярными соединениями, содержащими гидроксильные или другие группы, способные к образованию водородной связи. Большие молекулы таких веществ под влиянием сил химической связи утрачивают способность к переориентировке при охлаждении жидкости и сохраняют неупорядоченное состояние при отвердевании. [c.65]

    На свойства сталей большое влияние оказывает их термическая обработка, вызывающая изменения в соотношении соединений и структуре сплавов. Так, при медленном охлаждении (отпуске) сталь 634 [c.634]

    Большую опасность представляет коррозионное растрескивание швов сварных соединений. Для запщты сварных конструкций необходимо снизить уровень растягивающих остаточных напряжений, возникающих в процессе сварки. Одним из рациональных путей снижения уровня напряжений может быть отжиг, практически полностью снимающий остаточные сварочные напряжения, однако для крупногабаритных конструкций этот способ неприемлем, В таком случае рекомендуется местный нагрев зоны термического влияния по обеим сторонам шва газовыми горелками с последующим охлаждением водой [8,19], [c.124]

    Подогрев способствует перлитному превращению и является действенным средством исключения закалочных структур, Поэюму он служи в качесгве предварительной термической обработки сварных соединений (нагрев до сварки и в процессе ее). Меняя скороаь охлаждения, можно получить желаемую твердость в зоне термического влияния. [c.162]


    Вероятно, влияние ТМО сказывается в том, что анизотропные по форме домены магнитной фазы, присутствующие в ферромагнитном включении, во внешнем однородном магнитном поле выстраиваются по направлению поля. Охлаждением образца в магнитном поле до комнатной температуры эта упорядоченная ориентация замораживается , и в веществе создается одноосная магнитная анизотропия. В упорядочивающихся сплавах типа N1—Мп образование одноосной магнитной анизотропии обусловлено направленным упорядочением атомов в соединении. [c.447]

    На рисунке 2.16 приведены макроструктуры сварных соединений, выполненных с охлаждением на воздухе (а) и водой (б). Измерения твердости шва и зоны термического влияния показали, что охлаждение водой не приводит к заметному увеличению твердости. При этом трещины в сварных соединениях отсутствовали. [c.647]

Рис.9.3.23. Влияние скорости охлаждения V при отпуске на значения остаточных напряжений в сварном шве разнородного соединения (о, — вдоль шва а, — поперек шва) Рис.9.3.23. <a href="/info/1003259">Влияние скорости охлаждения</a> V при отпуске на <a href="/info/615486">значения остаточных</a> напряжений в сварном шве <a href="/info/1448149">разнородного соединения</a> (о, — вдоль шва а, — поперек шва)
    Если V < V, образование закалочных структур исключается, В зоне термического влияния наиболее желательными являются пластичные хорошо обрабатываемые структуры типа перлита и сорбита. Поэтому получение качественных соединений непременно связано с достижением желаемых аруктур в основном регулированием скорости охлаждения.  [c.161]

    Установленные выше закономерности поведения мягких и твердых прослоек в сварных соединениях положены в основу разработки новой технологии сварки закали-ваюшихся сталей типа 15Х5М [253]. Основные принципы, использованные при разработке указанной технологии, изложены в работах [22, 284]. Поэтому здесь рассмотрим лишь новые результаты исследований, поставленных с целью расширения области применения этой технологии сварки для изготовления оборудования, работающего в коррозионных средах. Разработанная технология сварки предпола1 ает регулирование термических циклов (РТЦ) путем принудительного охлаждения участков зоны термического влияния [22, 24, 95]. Теоретические основы технологии сварки с РТЦ низколегированных сталей разработаны в МИНГ им. И.М. Губкина под руководством О.И. Стеклова и А.Н. Хакимова. [c.267]

    Пластические массы (пластмассы, полимерные композиты) — это композиционные материалы на основе высокомолекулярных соединений, способные под влиянием нагревания и давления приобретать нужную форму (формоваться), а затем устойчиво сохранять (после охлаждения и отверждения) приданную им форму. Пластмассы кроме высокомолекз лярного соединения содержат другие вещества наполнители, пластификаторы, стабилизаторы, отвердители. [c.649]

    Температура нитрования — также весьма важный фактор, влияющий на ход процесса. Нитрование является реакцией экзотермической, а в случае применения смеси азотной и серной кислот (при нитровании ароматических соединений) большое количество тепла выделяется дополнительно в результате разбавления серной кислоты водой, образующейся в процессе реакции. Поэтому, как правило, при аитровании ароматических соединений приходится прибегать к внешнему охлаждению и постепенному смешиванию реагентов. Изменение температуры нитрования оказывает влияние как на количество вступающих в молекулу нитрогрупп, так и на место вступления [c.10]

    При этом большинство легируюш,их добавок переходит в твердый раствор г. ц. к., как это видно на рис. 85. В результате быстрого охлаждения до комнатной температуры может быть получен твердый раствор, пересыщенный вакансиями, медью и другими легирующими добавками. Во время старения ири температурах от комнатной до температуры, соответствующей линии предельного растворения (см. рис. 85), пересыщенной твердый раствор распадается. В определенных условиях это может приводить к значительному упрочнению сплава. Распределение медн в сплаве оказывает также определяющее влияние на сопротивление межкристаллитной коррозии и КР- Термодинамически устойчивый конечный продукт распада пересыщенного твердого раствора А1 — Си представляет собой двухфазную структуру, состоящую из насыщенного твердого раствора а (г. ц. к.) и равновесной фазы 9, имеющей тетрагональную кристаллическую решетку и близкой по составу соединению СиАЬ. Из-за различия кристаллических решеток равновесная фаза 0 некогерентна с твердым раствором г. ц. к. Высокая межфазная энергия поверхности раздела фаз (>1000 эрг/см ) [119] приводит к высокой энергии активации для зарождения фазы 0. Поэтому образованию равновесной фазы может предшествовать ряд превращений метастабильных фаз, энергия активации которых при зарождении ниже. Последовательность образования выделений достаточно полно была изучена и может быть представлена в виде следующего ряда [97, 119, 120]  [c.235]

    У сталей типа XI7, содержащих до 0,03 % С, несмотря на его столь незначительное количество, полное ферритное состояние при высоких температурах не достигается из-за натнчия у - фазы, претерпевающей при последующем охлаждении мартенситное превращение. Коррозия сварных соединений из стали XI7 имеет характер общего разрушения. МКК этой стали проявляется после ее нагрева до 900 °С и выше с последующим быстрым охлаждением, а также у сварных соединений в зоне термического влияния. Нагрев стали XI7 до высоких температур, вызывающий ее склонность к МКК. отрицательно влияет и на сопротивляемость стати общей коррозии. [c.16]

    Сталь XI7 обладает-удовлетворительной свариваемостью. В качестве присадочного материала применяют электроды из сташ Х18Н10Б (и ей подобных) с обмазкой марки ЦЛ-11. Перед сваркой рекомендуется подогрев кромок до 200-300 °С. Сварные соединения из стали XI7 в зоне термического влияния имеют низкую стойкость к МКК и общей коррозии. Для ее повышения рекомендуется проводить дополнительный отпуск изделия или детали либо местный нагрев сварного соединения до температур 740-800 С с последующим охлаждением на воздухе. Если термообработка сварной конструкции затруднительна, ее изготавливают клепаной. [c.17]

    В современных двигателях система охлаждения сконструирована таким образом, что предотвращается чрезмерное повышение температуры работающего масла и в летнее время в наиболее жаркой зоне при работе двигателя на максимальных оборотах и нагрузке температура охлаждающей жидкости сохраняется ниже, чем температура кипения охлаждающей жидкости. В результате этого большинство двигателей оказываются переохлажденными нри работе в менее жестких условиях, в частности в переменных, умеренных или легких условиях эксплуатации. Это значит, что знач тельная часть двигателей в процессе каждодневной эксплуатации большую часть времени работает при слишком низкой температуре охлаждающей жидкости и масла (см. главы XI и XVIII). Сказанное выше оказывает решающее влияние на количество прорывающихся из камеры сгорания в картер и загрязняющих масло продуктов — сажи, воды, соединений свинца и тяжелых фракций топлив. [c.312]

    Осаждение, т. е. вьщеление одного из соединений газовой или жидкой Смеси веществ в осадок, кристаллический или аморфный, основывается на изменении условий сольватации. Сильно понизить влияние сольватации и выделить твердое вещество в чистом ввде можно несколькими методами. Первый (простейший) путь состоит в повышении концентрации вещества за счет упаривания растворителя до состояния пересыщения раствора. Тогда при охлаждении такого раствора вещество выпадает в осадок обычно в ввде микро- или макрокристаллов (кристаллизация). Чаще всего для синтеза выбирается такой растворитель, в котором хорошо растворяются (сольватируются) исходные реагенты и трудно растворяется продукт реакции. Тогда он частично или полностью выпадает из раствора в осадок. Раствор, в котором еще остался продукт реакции, может бьтть упарен. С целью максимально полного вьщеления про дукта должны быть сделаны приквдочные расчеты растворимости конечного продукта. Однако это возможно, если известно ставдартное значение его растворимости 5° и энтальпии растворения. Определение растворимости и термодинамических параметров растворения органических веществ в важнейших классах растворителей является первостепенной практической задачей. По существу синтез каждого нового соединения должен сопровождаться определением количественных параметров процесса растворения, что позволило бы оценить и снизить потери вещества. Это важно и в экономическом отношении, и в экологическом плане. [c.91]

    Влияние термической обработки на физические свойства суперионного проводника BigPbsOiv описано в [228]. Это соединение испытывает превращения из тетрагональной в -модификацию через промежуточную /фазу при 590 °С. -Фаза имеет высокую ионную проводимость, но при охлаждении превращается в тетрагональную. [c.275]

    Тем не менее, при определенных ограничениях режимов сварки, возможно обеспечивать равнопрочность сварного соединения и основного металла, несмотря на наличие в них мягких прослоек. Основным способом повышения работоспособности таких сварных соединений являются уменьшение относительной толщины мягких прослоек путем регулирования термических циклов сварки (уменьшение погонной энергии и сопзпгствующее охлаждение наложение дополнительных швов в зоне термического влияния при малых погонных энергиях сварка на медных подкладках и др.). Заметим, что иногда механическая неоднородность может создаваться преднамеренно, например, с целью повышения технологической прочности предлагается производить мягкими или композиционными швами. При использовании этого технологического приема необходимо учитывать характер нагружения и температурные условия. При ударных нагрузках и отрицательных температурах возникает опасность хрупкого разрушения мягких прослоек и, в особенности, тонких. В мягких прослойках при нагружении реализуется объемное напряженное состояние, жесткость которого зависит от их толщины. Чем тоньше прослойка, тем более вероятно ее хрупкое разрушение. [c.278]

    Увеличение эффективности соединения вследствие образования химических авязей и влияние этого фактора н,а усталостную прочность стыка может быть проиллюстрировано рис. 259. Усталостная прочность стыка выше при проклейке амесью, -быстро охлажденной после механохимической обработки (вальцевания) и использованной сразу же после приготовления [750]. Хранение смеси, ее медленное охлаждение или исключение охлаждения, а также уменьшение продолжительиости вальцевания снижают работоспособность стыка протекторной и брекерной резин при окрепле-нии этой смесью. [c.300]

    Несвязанные поры образуются в порохах и ВВ при изготовления (пузырьковая технологическая пористость, раковины), а также в процессе эксплуатации при хранении или горении (трещины, пористость). Существенное влияние на образование пор оказывают физико-механические свойства системы. По данным американских исследователей [124], особенно склонны к образованию такого типа пор смесевые пороха, которые представляют гетерогенную смесь, содержащую в своем составе ком поненты с резко различающимися свойствами эластичное горюче-связующее, кристаллический окислитель (ПХА) и металлические присадки. При горении заряда канального типа прочно скрепленного с корпусом двигателя, вследствие воздействия пороховых газов происходит растяжение пороха, что приводит к нарушению адгезионных связей между горючим и окислителем. Вокруг частиц наполнителя образуются отслоения (пустоты). Отслоение связки от окислителя является основным физическим процессом, определяющим процесс порообразования [124]. Указанный процесс происходит не только при воздействии механических, но и температурных напряжений. Поскольку коэффициент линейного расширения смесевого пороха (— 10 Иград) на порядок величины превышает соответствующие значения для стали, то при охлаждении в системе заряд — стальной корпус возникают температурные растягивающие напряжения. Существенно различаются также коэффициенты линейного расширения компонентов самого пороха, следствием чего является образование при низких температурах замороженной пористости [160]. Концентрация напряжений в местах отслозний и разрыв связки при определенных условиях приводит к соединению пор и образованию трещин. [c.98]

    Содержащиеся в прямогонных реактивных топливах в небольших количествах кислород- и азоторганические соединения не оказывают отрицательного влияния на их низкотемпературные свойства. Большое количество продуктов окисления накапливается при хранении топлив, содержащих компоненты термического крекинга. При охлаждении таких топлив до температур минус 20—50° происходит их помутнение за счет образования белых кристаллов продуктов оки сления диеновых углеводородов Си—С13. Эти кристаллы одновременно с кристаллами льда вызывают быструю забивку топливных фильтpoiв, а иногда выпадают в виде осадка на дно резервуаров при хранении топлив в зимних условиях. [c.47]

    В сварных бислойных соединениях существенное влияние на распределение и уровень остаточных напряжений как после сварки, так и после термообработки может оказать различие коэффициентов линейного расширения соединяемых элементов. Как видно из рис.9.3.21 и рис.9.3.22, последующая термообработка сварных разнородных дисков не только не приводит к устранению остаточных напряжений, но и способствует появлению в зоне соединения резких градиентов напряжений [96, 94]. При усталостном нагружении таких разнородных соединений наличие высокого уровня остаточных напряжений может приводить к снижению их работоспособности. Применительно к лопастям колес крупных гидротурбин было показано, что при термообработке таких колес снижению способствует медленное охлаждение от температур отпуска до температур порядка 500 °С. Из рис.9.3.23 видно, что охлаждение сварных плит 0Х12НД-Л + 15Г2В-Л со ско- [c.322]

    Как указывалось ранее, литиевые смазки промышленного производства в отличие от модельных систем содержат в своем составе примеси различных соединений (иногда специально добавляемых), которые, воздействуя на процесс кристаллизации мыла, заметно влияют на свойства образующихся смазок. Целью настоящего исследования, развивающего ранее начатые изыскания [9], является изучение влияния добавок соединений различной природы на прочностные и синеретические свойства смазки и ее субмикроструктуру. В качестве добавок было исследовано влияние ряда насыщенных жирных кислот, щелочи, нонилового спирта, дифениламина, олеата и нафтената лития. Смазки готовились как по режиму быстрого, так и по режиму медленного охлаждения до температуры на основе модельных систем 1) LiSt (10%) — неполярное вазелиновое масло и 2) LiSt (10%) — масло МВП. Добавки вводились в систему мыло — масло перед ее нагреванием до изотропного раствора. [c.581]


Смотреть страницы где упоминается термин Соединения влияние охлаждения: [c.504]    [c.273]    [c.407]    [c.301]    [c.243]    [c.241]    [c.161]    [c.372]    [c.48]    [c.411]    [c.382]    [c.115]    [c.417]    [c.584]   
Технология тонких пленок Часть 1 (1977) -- [ c.298 , c.299 ]




ПОИСК







© 2025 chem21.info Реклама на сайте