Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пропускания фактор

    В числе других факторов, ускоряющих окисление масел, следует отметить роль поверхности соприкосновения масла с воздухом или кислородом. Чем больше эта поверхность, тем интенсивнее идет окисление. Скорость окисления в большой степени зависит также от скорости диффузии кислорода в масло. Поэтому все, что способствует диффузии, ускоряет окисление. Очень резкое ускорение окисления (вплоть до взрыва) может происходить при распылении масла в среде кислорода. Окисление, проводимое в условиях продувки воздуха или кислорода через слой масла, всегда оказывается более интенсивным, чем при пропускании воздуха или кислорода над поверхностью масла. Но и в этом последнем случае, чем больше свободная поверхность масла, чем выше концентрация кислорода в газовой фазе и чем больше давление, при котором ведут процесс, тем интенсивнее происходит диффузия кислорода в масло и тем быстрее протекает окисление [35]. [c.79]


    Инструментальные факторы, обусловливающие отклонения от закона Бугера — Ламберта — Бера, связаны с недостаточной монохроматичностью лучистого потока и проявляются чаще всего при работе на фотоэлектроколориметрах. Это объясняется тем, что монохроматизации в этих приборах достигается с помощью светофильтров, пропускающих излучение в определенных интервалах длин волн. При работе с обычными светофильтрами, пропускающими излучение в достаточно широком интервале длин волн, результатом измерения является интегральное поглощение. По мере увеличения концентрации поглощающего вещества может измениться контур полосы поглощения или какого-то участка спектра. Поэтому поглощение, измеренное в интервале длин волн, соответствующем этому участку, будет возрастать не вполне симбатно увеличению концентрации. При этом прямопропорциональная зависимость между интегральным поглощением и концентрацией поглощающего вещества нару-щается. Это явление наблюдается чаще всего для растворов желтого цвета и при работе на приборах старых моделей. При использовании светофильтров с меньшей полосой пропускания, например интерференционных, а также при работе на более совершенных приборах — спектрофотометрах этот эффект сильно уменьшается или устраняется вовсе. [c.58]

    Ионообменная хроматография, имея свои особенности, подчиняется общим законам сорбции. На процесс ионного обмена оказывают влияние природа ионообменника и ионов раствора, а также ряд экспериментальных факторов параметры колонки, размер зерен ионообменника, скорость пропускания раствора, состав подвижной фазы, температура и др. [c.224]

    Те же факторы влияют в обратном направлении на процесс десорбции, проводимый обычно после адсорбции. Десорбция ускоряется с повышением температуры адсорбента и снижением давления над ним, а также при пропускании через адсорбент паров, вытесняющих поглощенное вещество. [c.714]

    Недостаток оптических методов, таких, как индекс отделения воды (метод 3) и пропускание света чфез мутный раствор (метод 5) — влияние на результаты размера капелек воды в эмульсии, а также их числа. В первоначальной форме метод определения индекса отделения воды был слишком нечувствительным, но при модификации с учетом фактора жесткости воды его надежность значительно повысилась. [c.180]

    Факторы коагуляции коллоидных систем могут быть весьма разнообразными. Так, например, коагуляция может быть вызвана повышением температуры, длительным диализом, добавлением электролитов, разного рода механическими воздействиями (размешиванием, встряхиванием, взбалтыванием), сильным охлаждением, ультрацентрифугированием, концентрированием, пропусканием электрического тока, а также действием на данный золь других золей. В ряде случаев коагуляция может происходить в результате чисто химических реакций, протекающих в золях (явление старения). [c.226]


    Процессу коагуляции способствуют повышение температуры, замораживание, механическое воздействие, пропускание электрического тока, старение золя, добавление электролита. Под действием электролита наиболее легко коагулируют золи, у которых основным фактором устойчивости является двойной электрический слой (ДЭС). [c.199]

    Динамическая активность адсорбента существенно отличается от его статической активности. Статическая адсорбционная активность при данной температуре и концентрации газа определяется количеством адсорбтива, поглощенного единицей массы адсорбента при установлении равновесия. Динамическая активность адсорбента характеризуется длительностью пропускания газа или его смеси с воздухом через слой адсорбента до момента обнаружения первых следов газа за слоем адсорбента. Эта величина зависит как от статической активности адсорбента, так и от других факторов, а именно от соотношения между толщиной и площадью слоя адсорбента, диаметра зерен адсорбента, концентрации газа и скорости его протеканий. Поэтому динамическую адсорбцию можно характеризовать только временем, протекающим до проскока газа через слой адсорбента при данных условиях процесса, и нельзя характеризовать количеством газа, адсорбированным единицей массы или объема адсорбента. Динамическая активность адсорбента подробно изучалась в Советском Союзе И, А. Шиловым, а затем М. М. Дубининым и другими учеными. [c.112]

    Сначала вычисляют предварительное или кажущееся число переноса, пренебрегая влиянием электрической проводимости растворителя и изменениями объема у электродов. В дальнейшем, вводя поправки, учитывающие эти факторы, рассчитывают истинное число переноса. Схема определения чисел переноса представлена на рис. 77. Границу ао между двумя растворами электролитов в трубке (рис. 77) получают наслаиванием одного из растворов АР на другой Щ растворы имеют общий ион Р. При пропускании в течение т секунд постоянного тока граница поднимется в положение а . При перемещении ионов А вверх по трубке через любое сечение трубки, расположенное выше переносится Рс У Кл, где Р — число Фарадея, Сд — концентрация ионов А (в г-экв/л), V — объем, равный произведению поперечного сечения трубки на расстояние пройденное границей, I — сила [c.369]

    Изучение факторов, влияющих на точность спектрофотометрических измерений [19] — [27], показывает, что причины ошибок в спектрофотометрии могут быть весьма разнообразны и многочисленны. Ошибки возникают, например, за счет действий оператора, условий проведения реакций, недостаточной чистоты кювет, непостоянства их установки в кюветные отделения, невоспроизводимости настройки шкалы прибора на О и 100% пропускания, непостоянства излучения источника освещения, нестабильности работы фотоэлектрической системы [24] — [27]. [c.30]

    Для получения металлического иттрия широкое применение нашли три способа. В двух из них исходным сырьем служит фторид. Первый метод заключается в прямом восстановлении УРз литием описанным выше способом при 1575°. После переплавки в дуговой печи в вакууме содержание кислорода 0,14—0,20%. Основной фактор, влияющий на содержание кислорода в металле,— качество исходного фторида. 99%-ный металл получен из У з, очищенного пропусканием газообразного НР через расплав смеси УРз и Ь1Р при 1000°, восстановлением парами лития [148]. [c.143]

    Коагуляция может наступить при действии на коллоидную систему таких различных по своей природе факторов, как длительный диализ (очистка золей), добавление растворов электролитов, добавление неэлектролитов, механическое воздействие (размешивание или встряхивание), сильное охлаждение или нагревание, пропускание электрического тока и, наконец, действие лучистой энергии. [c.221]

    Скорость любого коррозионного процесса, протекающего по электрохимическому механизму, зависит от скорости двух сопряженных реакций — катодной и анодной. О скорости этих реакций обычно судят по изменению потенциала электрода при пропускании через него электрического тока, т. е. по коррозионной диаграмме, построенной для данного металла в выбранной среде (см. рис. 1.3). По наклону поляризационных кривых можно судить, какая из электродных реакций определяет суммарную скорость коррозионного процесса. По этим кривым можно рассчитать и относительную долю начальной разности потенциалов, которая теряется на сопротивлении. Эта величина является контролирующим фактором, или мерой контроля коррозионного процесса, данной электрохимической реакцией [4]. [c.16]

    На скорость элюирования коллоидных частиц влияют такие факторы, как диаметр самих частиц, диаметр частиц неподвижного слоя, скорость пропускания жидкого элюента. [c.74]

    Рис 4 5 Зависимость фактора эффек >а- ьным, а пропускание - ми-тивности рассеяния от а для капелек нимальным На рис 4 о приве-воды дены кривые для сечения рас- [c.122]


    В УФ-области спектра теоретическое разрешение всегда меньше, чем 2пм. Большинство современных решеток обеспечивает теоретическое разрешение лучше 1 пм. Вторым фактором, влияющим на практическое разрешение, является спектральная полоса пропускания дисперсионной системы. Спектральная полоса пропускания есть результат произведения обратной линейной дисперсии на результирующую спектральную ширину щели. Эта ширина равна или ширине выходной щели, или ширине изображения входной щели, в зависимости от того, которое из двух больше. Ширины щели обычно составляют 10-100 мкм. Некоторые примеры спектральной полосы пропускания приведены в табл. 8.1-5. [c.33]

    Один из главнейших моментов разработки процесса — выявление факторов, определяющих скорость процесса в масшта-бп()оваппой установке, и их количественное измерение. Важное значение для увеличения скоростей массо- и теплопередачи имеет организация процесса перемешивания либо пропусканием п(ггока через местное сужение, барбогнрованием жидкостей газами, либо механическими мешалками. [c.234]

    Как описано в ])яде патентов Рида [76], весьма сходные результаты получены при пропускании хлора и двуокиси серы через углеводород. Этот метод обычно известен под названием реакция Рида . Реакция нашла некоторое ограниченное промышленное применение в США и Германии для производства алкилсульфокпслот, легко получаемых нри гидролизе алкилсульфонилхлоридов [56, 7]. При производстве но этому методу сульфонатов (применяемых как детергенты и смачивающие агенты) из разнообразных парафинов предпочтение отдавали углеводородам, содержащим в молекуле от 12 до 16 атомов углерода. Получены также сульфонаты из парафина и более высокоплавкого парафина, получаемого но процессу Фишера—Тропша [7]. В парафинах с длинными цепями сульфонилхлорид может замещаться, но-видимому, в любое положение. Из простых парафинов пропан дает приблизительно равные выходы пропан-1-сульфонил-хлорида и вторичного производного. к-Бутан дает приблизите.тьно 1/д бутан-1-сульфонилхлорида и бутан-2-сульфонилхлорида изобутан дает только первичное производное. По данным [28] нри использовании в качестве катализатора азосоединения реакция протекает при температурах от Одо 75° без света. Имеются сведения, что добавка фосфорной кислоты [23, 26] в реакционную смесь нейтрализует вредное влияние загрязнений железа. Промышленному применению процесса препятствуют нежелательное образование хлоридов и другие факторы. [c.92]

    Одним из факторов, учитываемых при выборе холодильных жидкостей, является их энтальпия испарения. Небольшое количество фтороуглерода с Ж = 102 помещено в сосуд с электрическим нагревателем. При давлении 650 мм рт. ст. жидкость кипит при 351 К. При пропускании через нагреватель, помещенный в кипящую жидкость, тока в 0,232 А от 12-вольтного источника в течение 650 с получилось Г,871 г дистиллята. Определите молярную энтальпию и внутреннюю энергию испарения фтороуглерода. [c.65]

    Было установлено, что смеси кислот образуют смешанные кетоны. Так, например, над МпО при 450—500° смесь бензойной и уксусной кислот дает ацетофенон, смесь бензойной и масляной—бутиро-фенон и т. д. И. Г. Лакомкин [23] исследовал влияние температуры, скорости пропускания, соотношения кислот в смеси и других факторов на реакцию образования ацетофенона из бензойной и уксусной кислот над МпО или ThO . Было установлено, что в оптимальных условиях — при 550—600° и соотношении jHg OOH СНдСООН = 1 2 получается до 95% ацетофенона. [c.465]

    Выбранная совокупность признаков обеспечивает адекватность термических и термомеханических напряжений в электродах электродуговых печей. Учет режимного фактора может бьггь обеспечен способом создания разрушающего градиента температур - пропусканием электрического тока, позволяющего варьировать токовые нафузки в широких пределах. [c.42]

    При мытье Щ ерсти-сырья Типол обычно применяется совмесг-110 с содой его действие наиболее эффективно с такими солями, как поваренная или сульфат натрия. Выбор рецепта зависит от качества шерсти, подлежа1цей промывке, от типа машины, от скорости пропускания шерсти и от других факторов, меняющихся в зависимости от условий, существующих па каждом даииом предприятии. [c.167]

    Все измерения в метрологии делят на прямые и косвенные. При прямых непосредственных измерениях числовое значение измеряемой величины х сразу получается из показаний прибора, при помощи которого выполняется данное измерение, например значение оптической плотности или пропускания при отсчете по шкале оптической плотности (пропускания) спектрофотометра или фотоколориметра. Результат каждого прямого измерения включает случайную погрешность, которая зависит от большого числа случайных факторов. Если отклонения, вызванные случайныл1И факторами, сравнимы по абсолютному значению с чувствительностью прибора, то они обнаруживаются приборами, и при п измерениях одной и той же величины получаются результаты Ль Х2, л ,, х , которые могут отлй  [c.26]

    Кривую 5 = (p(lg ) называют характеристической кривой фотоэмульсии (рис. 3.10). Она имеет ряд замечательных особенностей. Во-первых, логарифипческий масштаб позволяет сжать шкалу освещенностей. Во-вторых, выбор единиц освещенности не сказывается на форме кривой. Переход от одних единиц к другим приводит лишь к смещению всей кривой, так как lgаЕ = lg а Е. Поэтому при построении кривой освещенность можно выражать в любых удобных единицах, чаще всего — в единицах коэффициента пропускания ступенчатого ослабителя т/. Кривая имеет прямолинейный участок ВС (область нормальных почернений), в пределах которого фактор контрастности [c.77]

    Факторы коагуляции коллоидных систем бывают весьма разнообразными. Коагуляция может быть вызвана повышением температуры, длительным диализом, добавлением электролитов, разного рода механическими воздействиями (размешиванием, встряхиванием, взбалтыванием), сильным охлаждением, ультрацен-трифугиронанием, концентрированием, пропусканием электрического тока, а также действием на данный золь других золей. В ряде случаев коагуляция может происходить в результате химических реакций, протекающих в золях (явление старения). Поскольку главное условие уменьшения устойчивости коллоидных растворов— потеря электрического заряда, основными методами их коагулирования являются методы снятия зарядов. Чаще всего в практике для этой цели пользуются воздействием иа коллоидные растворы различных электролитов. [c.367]

    Кроме особенностей в методике регистрации спектров, отличительной чертой метода ИК-спектроскопии отражения-поглощения является и интерпретация спектров. Сопоставление спектрального хода оптических постоянных слоев в области полосы поглощения и спектрального хода фактора поглощения показывает, что для слабопоглощающпх (к<0,2) молекулярных веществ спектры отражения-поглощения совпадают со спектрами пропускания, и их интерпретацию следует проводить аналогично спектрам пропускания. Для сильнопоглощающих веществ, например оксидных слоев, положение максимума поглощения в спектре отражения-поглощения не совпадает с максимумом коэффициента поглощения 2, а зависит также от показателя преломления Лз слоя и находится с высокочастотной стороны от максимума в области, где 2— 2- Эта частота близка к частоте продольных колебаний атомов вещества слоя и является вполне характеристичной, т. е. позволяет выполнять качественный анализ исследуемых соединений. [c.150]

    Советским электрохимикам удалось создать тонкую экспериментальную методику исследования электродных процессов оо-строение поляризационных кривых в стационарных и нестационарных условиях, метод с использованием переменных токов, ос-циллографический метод, позволяющий установить временную зависимость потенциала электрода при пропускании тока постоянной силы, метод меченых атомов и др. Новые инструментальные методы раскрыли перед исследавателями более широкие горизонты. Так, было показано, что основным фактором, определяющим возникновение скачка потенциала на границе между металлом и раствором, является двойной электрический слой из зарядов металла и ионов раствора. Было найдено, что на условия появления и величину скачка потенциала между металлом и раствором большое влияние оказывает адсорбция и ориентация дипольных молекул. Сопоставление данных, полученных при изучении электрокапиллярных я влений, пролило яркий свет на роль поверхностно активных и коллоидных веществ, адсорбирующихся на поверхности электродов. [c.3]

    Ионообменные реакции, используемые для определения обменной емкости, приведены в табл. 21. Обменную емкость биполярных (амфотерных) ионитов характеризуют по катионам и анионам. Следует иметь в виду, что величины СОЕ и ДОЕ, определяемые по реакциям 2, 3, 4, 6, относятся к строго фиксированным условиям эксперимента, так как состояние соответствующих равновесий, т. е. полнота протекания обменных реакций,зависит от концентрации реагента и количества ионита, а также скорости пропускания раствора реагента через ионообменную колонку (при определении ДОЕ). На величину ПОЕ эти факторы не влияют, поскольку используемые для определения реакции нейтрализации 1 и 5 протекают в любых условиях практически до конца. В динамических условиях работы колонки указанные факторы мало влияют на определение ПДОЕ. Это обусловлено тем, что равновесия реакций 2, 3, 4, 6 практически полностью сдвигаются вправо вследствие увлечения [c.167]

    ИОНЫ появляются в следующей последовательности А, В, С, D. В реальных условиях из-за влияния кинетического фактора при малом различии селективности ионита к отдельным ионам наблюдается некоторое перекрывание зон. Получаемые в результате этого смешанные фракции могут быть повторно разделены. Примером вытеснительной хроматографии ионов может служить разделение смеси Na l и КС1 на Н-форме сульфокатионита с использованием в качестве вытесняющего раствора СаСЬ. Полученные в этом случае выходные кривые (рис. XI. 5, б) иллюстрируют появление отдельных зон по мере пропускания раствора СаС1г через колонку, первоначально содержавшую в верхней части смешанную зону ионы Na+ и К+. Вытеснительную хроматографию успешно применяют для препаративных целей. [c.689]

    В электрокальцинаторах (рис. 2) кокс прокаливают путем пропускания электрического тока. При этом из-за большого электрического сопротивления материала, а также из-за образования микроразрядов между его частицами выделяется большое количество тепла. Ток проводится через медные шины к подвешенному первому угольному электроду 7 и к угольной футеровке низа печи, служащей вторым электродом 9. Получающиеся микроразряды кратковременны, энергия нх различна и определяется размером частиц материала, степенью его прокалки, расстоянием между токопод-водящнми электродами, напрялчением и силой электрического тока, а также другими факторами. [c.19]

    Конденсационный путь образования Д.с. связан с зарождением новой фазы (или новых фаз) в пересьпценной метастабильной исходной фазе-будущей дисперсионной среде. Для возникновения высокодисперсной системы необходимо, чтобы число зародышей новой фазы было достаточно большим, а скорость их роста не слишком велика. Кроме того, требуется наличие факторов, ограничивающих возможности чрезмерного разрастания и сцепления частиц дисперсной фазы. Переход первоначально стабильной гомог. системы в метастабильное состояние может произойти в результате изменения термодинамич. параметров состояния (давления, т-ры, состава). Так образуются, напр., природные и искусственные аэрозоли (туман - из переохлажденных водяных паров, дьпкШ-из парогазовых смесей, выделяемых при неполном сгорании топлива), нек-рые полимерные системы-из р-ров при ухудшении термодинамич. качества р-рителя, органозоли металлов путем конденсации паров металла совместно с парами орг. жидкости или при пропускании первых через слой орг. жидкости, коллоидно-дисперсные поликристаллич. тела (металлич. сплавы, нек-рые виды горных пород и искусств, неорг материалов). [c.81]

    ПОЛЯРИЗАЦИЯ вэлектрохимии, отЕлонение значения электродного потенциала от равновесного при пропускании электрич. тока. Величина П. зависит от плотности тока , т.е. силы тока, отнесенной к единице пов-сти электрода, и обычно тем больше, чем больше г. При одном и том же значении г П. зависит от природы электрода и типа протекающей иа его пов-сти р-ции, состава р-ра, т-ры и др. факторов и может колебаться от долей мВ до неск. В. Знак П. зависит от направления протекания тока и при изменении направления меняется на обратный. [c.66]

    Суммируя, можно сказать, что если интерференционный спектрофотометр настроен на максимальное пропускание для регистрагши спектров с низким разрешением и сокращения времени сканирования, то усиление должно быть меньше, чем в аналогичном случае для дифракционного спектрометра, в 4 раза (другими словами, преимущество интерферометра перед дифракционным спектрометром меньше при низком разрешении). В то же время если для повышения разрешения интерференционного спектрофотометра нужно понизить геометрический фактор, то порядок подбора условий точно такой же, как и для дифракционного спектрофотометра. [c.57]

    Точность можно повысить в два раза и за счет другого фактора, применяя метод перекомпенсации [92]. Первый раз сканирование проводят, как было описано выше, а во время повторной записи образцы меняют местами. Кюветы остаются в прежнем положении. Разность при этом удваивается по сравнению с одним сканированием (рис. 6.6,6). Имеющиеся расхождения в пропускании кювет при этой процедуре автоматически компенсируются. В разностной спектроскопии можно достичь точности порядка 0,1 % и выше. Еще в 1953 г. разностный метод был использован для определения циклогексана (содержание 85 %) в нефтяных концентратах с воспроговодимостью и точностью 0,1 % [46]. [c.248]


Смотреть страницы где упоминается термин Пропускания фактор: [c.333]    [c.162]    [c.283]    [c.187]    [c.117]    [c.86]    [c.40]    [c.686]    [c.374]    [c.85]    [c.306]    [c.103]   
Аналитические возможности искровой масс-спектрометрии (1972) -- [ c.90 ]




ПОИСК





Смотрите так же термины и статьи:

Пропускание



© 2025 chem21.info Реклама на сайте