Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окись конверсии метана

    Поскольку ядами катализаторов являются окись углерода и сероводород, водород, применяемый для синтеза, тщательно очищается. Водород, полученный конверсией природного газа, может содержать окись углерода, метан и аргон (если он был в исходном газе). Перед синтезом аммиака водород промывают жидким азотом для удаления указанных примесей, [c.367]


    На рис. 1 и 2 представлены кривые изменения выхода окиси углерода на моль израсходованного кислорода и газа, построенные по данным материального баланса названных опытов. Из табл. 3 видно, что при 700° в газе сгорает водород и окись углерода, метан же остается несгоревшим. С повышением температуры, в результате ускорения реакции (1), содержание метана в реакционном газе постепенно снижается. Однако это снижение наблюдается лишь до 900—950°. Выше этих температур уменьшение СН4, в условиях наших опытов, не наблюдалось. В отношении других компонентов реакционного газа наблюдалось с ростом температуры увеличение концентрации окиси углерода и уменьшение содержания в газе двуокиси углерода и водорода. Но для этих компонентов относительное влияние роста температуры на изменение содержания указанных компонентов наиболее заметно ниже 900—950°. Такая зависимость состава реакционных газов от температуры может быть объяснена,во-первых, тем, что степень конверсии метана углекислотой, возрастающая с температурой, становится близкой к полной при указанных температурах (900—950°), во-вторых,— характером кривой изменения константы равновесия реакции водяного газа. [c.343]

    В результате одновременного протекания всех трех указанных реакций может получаться равновесная смесь газов, содержащая пять компонентов, т. е. метан, водяной пар, окись углерода, двуокись углерода и водород (табл. 12) [19]. Приведенные данные показывают, что для наибольшей полноты превращения метана необходимы температуры 1200° К и выше. В этих условиях содержание двуокиси углерода в равновесной смеси незначительно и конверсия метана водяным паром сопровождается почти исключительно образованием окиси [c.30]

    Термодинамические исследования показали, что, изменяя условия проведения этого процесса, из жидких углеводородов можно получить метан или газ с повышенным содержанием водорода. Экспериментальные исследования показали, что паровая конверсия н-гептапа на никель-хромовом катализаторе идет уже при температуре 240° С и, следовательно, является низкотемпературной. В начальный период испытания наблюдается заметное падение активности катализатора с последующей ее стабилизацией [59]. Для данного процесса перспективным является предложенный нами никелевый катализатор, нанесенный на активную окись алюминия. [c.124]


    Приведенные уравнения показывают, что в продуктах реакций конверсии могут содержаться окись углерода, непрореагировавшие гомологи метана, а также непрореагировавшие или образовавшиеся водород, метан, водяной пар и углекислота. [c.245]

    Схема процесса представлена на рис. 13.6. В качестве примера рассматривается очистка водорода, получаемого паровой конверсией углеводородов природного газа. Выходящая из реактора газовая смесь, содержащая главным образом водород, окись и двуокись углерода, охлаждается добавкой водяного пара и конденсата примерно до 370° С и пропускается через, конвертор СО первой ступени, заполненный катализатором. Здесь 90—95% присутствующей окиси углерода превращается в двуокись с образованием эквивалентного количества водорода. Первая ступень конверсии служит в основном для получения дополнительного водорода и поэтому не может рассматриваться как операция очистки газа в узком смысле этого термина. Горячий газ, выходящий из конвертора СО, охлаждается примерно до 38° С, после чего двуокись углерода удаляют обычными регенеративными жидкостными процессами (этаноламиновая или поташная очистка). Очищенный от двуокиси углерода газ снова подогревается в печи и после добавки водяного пара проходит через конвертор второй ступени, за которым следует вторичная очистка от двуокиси углерода. Для получения водорода весьма высокой чистоты может быть добавлена третья ступень конверсии и удаления двуокиси углерода. Газ, получаемый по схеме с трехступенчатой конверсией СО, имеет следующий типичный состав (в % объемн.) окись углерода 0,02, двуокись углерода 0,01, метан 0,27, водород 99,7. [c.332]

    При паровой каталитической конверсии метана в результате устанавливающегося равновесия в продуктах прз ращения содержатся метан, окись углерода, углекислота и водород. При переработке [c.16]

    Полученный химическими методами водород содержит различное количество таких примесей, как окись и двуокись углерода, азот, кислород, метан, сероводород, инертные газы и др., которые, как правило, должны быть удалены до поступления водорода на дальнейшую переработку. Поэтому современная технологическая схема производства водорода любым химическим методом включает не менее четырех основных стадий собственно получение водорода, конверсию окиси углерода, удаление двуокиси углерода и окончательную очистку газа от остальных примесей. Такие многоступенчатые схемы процесса довольно громоздки и требуют крупных капиталовложений и больших эксплуатационных расходов. [c.9]

    В зависимости от температурных условий конверсии превалирует та или иная реакция. В результате протекания реакций (1)—(3) может образоваться равновесная смесь, содержащая метан, водяной пар, двуокись и окись углерода и водород. Состав такой смеси при разных температурах рассчитан А. А. Введенским (по данным работ Вагмана, Кильпатрика, Тайлора, Питцера и Россини). [c.53]

    В практических условиях конверсии метана с водяным паром вследствие одновременного протекания приведенных выше реакций образуется газовая смесь, содержащая метан, водяной пар, окись и двуокись углерода и водород. Состав такой газовой смеси определяется состоянием равновесия конверсии СО по реакции (1.2). Изменение равновесного состава газовой смеси, получаемой в результате конверсии метана при атмосферном давлении, различных температурах и разных соотношениях водяного пара и метана, представлено в табл. 1-2. [c.24]

    Обычный процесс, в котором цикл превращения водяного газа используется для попеременного окисления и восстановления закиси — окиси железа (магнетита), теперь заменен каталитическим процессом конверсии окиси углерода. В обоих случаях углекислый газ можно удалить поглощением под давлением в водяных скрубберах, а остающуюся окись углерода — промывкой аммиачным раствором закиси меди, каталитическим гидрированием в сравнительно малоактивный метан или селективным низкотемпературным сожжением до углекислого газа. При окислении и восстановлений магнетита имеют место следующие приближенные [c.237]

    Для получения синтез-газа, содержащего водород и окись углерода в объемном соотношении 2 1 (используют его для синтеза метанола), производят конверсию метана с водяным паром или с кислородом затем из с.меси удаляют двуокись углерода. Попутный нефтяной газ и газы нефтепереработки, состоящие из метана и этана с примесью пропана, можно также подвергать конверсии гомологи метана конвертируются легче, чем метан. [c.251]

    Перед поступлением в криогенный блок синтез-газ, получаемый паровой конверсией природного газа или нафты, очищается от СОг и Н2О. После охлаждения в теплообменниках 1,2 и 6 смеси, состоящей из Нг, СО и СН4, до 90 К и отделения образовавшегося конденсата в сепараторе 7 она направляется в промывную колонну 5, где промывается жидким метаном. Отмытый метаном газ, состоящий в основном из водорода (99 молярных долей, %), подогревается в теплообменнике 2, и часть его направляется на расширение в турбодетандер 3. Жидкость, выводимая из куба колонны 5, в основном состоит из СО и СН4. Для удаления из этой жидкости растворившегося в ней Н она дросселируется в сепаратор (на рис. 72 не показан), в котором отделяется испарившийся водород. Извлечение СО из смеси СО - СН4 после подогрева в теплообменнике 8 производится в ректификационной колонне 10. Окись углерода, отводимая с верха колонны, последовательно подогревается в теплообменниках 9 и 13 и сжимается в компрессоре 14. Часть этого потока используется в испарителе 4 и для циркуляции, где после охлаждения и конденсации в аппаратах 13, 11 и 9 в качестве флегмы подается на верхнюю тарелку ректификационной колонны 10, обеспечивая проведение процесса ректификации. При использовании этого метода можно получить окись углерода с молярной долей примесей менее 0,1 % СН4 и 0,1 % Нг. [c.202]


    Несколько отличаются от описанных технологические схемы на основе отходов производства ацетилена (синтез-газ). Этот газ содержит водород и окись углерода в соотношении, близком к двум,, однако присутствуют до 5,5 объемн. % СН4, 2—3 объемн. % N2, ацетилен и его производные, этилен и соединения азота. Это затрудняет использование газа без предварительной подготовки. Имеется несколько способов переработки синтез-газа в метанол. Обычно его подвергают паро-кислородной, паро-углекислотной или высокотемпературной конверсии. Одновременно с окислением метана конвертируется и большинство присутствующих в газе органических примесей. Существуют схемы, в которых компоненты газовой смеси разделяются на установках глубокого холода или метан выделяется промывкой жидким азотом. После конверсии газ очищает- [c.87]

    Из представленных в табл. 5 данных видно, что окись углерода почти полностью переходит в метан и воду, в то время как двуокись углерода в гораздо меньшей степени реагирует с водородом. Если сделать баланс по СО, то можно увидеть, что конверсии подверглось примерно 80% исходного количества, в то время как СО2 преимущественно перераспределяется — обладая относительно высокой растворимостью, переходит в рафинат и выводится в сбросной газ из сепаратора низкого давления и стабилизационной колонны. [c.40]

    Помимо горения природного газа и окиси углерода, непосредственно при. взаимодействии с кислородом в ряде случаев окись углерода и метан подвергаются действию кислорода, связанного в молекуле воды и двуокиси углерода. Реакции подобного типа получили название реакций конверсии. Процессы конверсии углеводородных газов и окиси углерода широко распространены в химической промышленности для получения дешевых восстановительных газов. [c.104]

Рис. XI.2. Зависимость превращения бензина в метан и окись углерода от условий процесса каталитической конверсии с водяным паром. Рис. XI.2. <a href="/info/25861">Зависимость превращения</a> бензина в метан и <a href="/info/11665">окись углерода</a> от <a href="/info/311088">условий процесса каталитической</a> конверсии с водяным паром.
    По одному из методов [8] метан и водяной пар, нагретые предварительно до 650°С, смешивали с кислородом и пропускали сверху вниз через реактор. Нижняя часть реактора была наполнена никелевым катализатором, предназначенным для конверсии непрореагировавшего метана в окись углерода и водород. Максимальная температура в зоне сожжения составляла 1200— 1500° С газы выходили из реактора при 800—900° и имели следующий состав (в объемных процентах)  [c.36]

    Был поставлен ряд опытов для изучения реакции (1). Метан и пары серы пропускали над различными катализаторами, при этом было установлено, что наиболее эффективными являются окись алюминия, активированная двуокисью марганца, или пятиокись ванадия. Конверсия составляла приблизительно 100% при температурах ниже 700° С. Возможно, что результаты этих исследований были использованы при разработке промышленного метода [22], по которому реакцию между метаном и сероводородом проводят в присутствии катализаторов при 500—700° С. [c.86]

    Основным компонентом углеводородных газов является метан. Поэтому сущность копверсионного метода получения азотоводородной смеси состоит в разложении при высокой температуре метана и его гомологов на водород и окись углерода с помощью окислителей — водяного пара или кислорода. Окислители могут применяться в различных сочетаниях. Конверсия метана с водяным паром и кислородом протекает по реакциям СН4 + НаО СО -Ь ЗНа — 206,4 кДж (—49,3 ккал) [c.33]

    Еще меньше ясности имеется в отношении механизма паровой конверсии высших углеводородов. Установлено лишь, что в процессе паровой конверсии гомологов метана происходит преобразование их в метан, т. е. протекает процесс частичной конверсии. Цредпола-гается [44], что углеводород на поверхности катализатора диссоциирует с образованием радикалов СН , которые реагируют с водяным паром и водородом. В результате взаимодействия радикалов с молекулами воды, адсорбированными на поверхности катализатора,, образуются окись углерода и водород, а с водородом — метан и углерод. Последний реагирует с водяным паром с образованием СО и На-Таким образом, рассмотренный механизм конверсии включает крекинг углеводородов, гидрирование продуктов крекинга й газификацию, а образование углерода является неизбежной промежуточной - тадией конверсии. [c.87]

    Газ, полученный в процессе паровой конверсии и паро-кислородной газификации, содержит наряду с водородом метан, окись и двуокись углерода. Концентрация окиси углерода в газе, полученном при конверсии различного углеводородного сырья, колеблется от 6—15%, а в газе, цолученном газификацией мазута, достигает 45%. [c.88]

    Взаимодействие с парами воды. Опытами ряда исследователей (Мейер, Мартин и Мейер, Сивонен, Дольх) в 1932—1938 гг. установлено, что в результате реакции Н2О с твердым углеродом образуются только СО и На и притом в эквимолекулярных количествах. Дольх пришел к выводу о том, что первичное взаимодей-йтвие углерода с паром протекает по уравнению С- -Н20 = = С0-1-Н2. Возникающая окись углерода подвергается гомогенной реакции конверсии С0+ Н20 = С02 + Н2. При достаточно высоких парциальных давлениях Нг и НгО и низких температурах образуется метан С + 2Н2=СН4. При этом, согласно [122], на угле сначала адсорбируется водород, а затем возникший комплекс раа-рушается молекулой воды  [c.213]

    Водородный показатель конвертируемых углеводородов. В основе общепринятых методов расчета равновесного состава газа конверсии углеводородов лежит хорошо обоснованное положение о том, что углеводороды с числом углеродных атомов в молекуле более единицы необратимо конвертируются в водород, метан, окись и двуокись углерода, между которыми устанавливается равновесие [3]. Исходные углеводороды (кроме метана) в установлении равновесия в системе при конверсии не участвуют. Единственно необходимой для расчета количественной характеристикой состава сырья является отношение водорода к углероду, которое можно выразить в виде простейшей формулы углеводородного сырья . Например, парафиновый углеводород с числом углеродных атомов п в молекуле характеризуется формулой углево-дпродного сырья , которая получается из равенства [c.6]

    Blake разработал процесс, в котором метан и водяной пар, взятые в соответствующих количествах, реагируют в присутствии катализатора (например никель — окись церия — окись алюминия) при температурах 400—700°, образуя водород и двуокись углерода с очень небольшим количеством окиси углерода или совсем без нее. Так при пользовании 10 объемами водяного пара и 5 объемами СН при 508° наблюдается конверсия метана на 90%, а получаемый сухой газообразный продукт содержит только 2% окиси углерода (после удаления СОг). [c.317]

    В нашей стране наибольшие количества метана используются в качестве бытового газа. Применение метана для органического синтеза — одна из труднейших задач, так как метан наиболее пассивен из всех парафиновых углеводородов. Однако эта задача в настоящее время принципиально (а в ряде случаев н практически) разрешена. Метан может быть превращен путе.м термического крекинга или под действием тлеющих разрядов в зысокореакционноспособный углеводоро д — ацетилен. Можно каталитически окислить метан до муравьиного альдегида или муравьиной кислоты хлорированием метана могут быть получены хлористый метил, хлористый метилен, хлороформ, четырех-хлористый углерод, а нитрованием — нитрометан. Метан также используется для промышленного синтеза синильной кислоты. Важный путь использования метана — конверсия его в окись углерода и водород (исходная смесь для синтеза метанола, син-тина и синтола), протекающая при действии на метан паров воды при высокой температуре в присутствии катализаторов. Наконец, большие количества метана используются для получения сажи (термическое разложение метана на углерод и водород), В Советском Союзе этим путем ежегодно получают сотни тысяч тонн сажи, предназначенной в качестве наполнителя для синтетического каучука и для других целей. [c.32]

    Для получения технического водорода из углеводородных газов конверсией с водяным паром применяются и другие схемы обработки газа после трубчатой печи. Так, имеются схемы, где вместо третьей ступени конверсии СО, газ с целью удаления остаточных СО и СОз направляется на каталитическое метани-рование, при котором окись углерода и углекислота восстанавливаются за счет водорода с образованием СН4. Этот метод, связанный с расходом водорода и появлением в газе метана, используется только в тех случаях, когда из газа нужно удалить сравнительно незначительные количества СО и СОз (в пределах десятых долей процента) и когда в водороде допускается некоторое количество метана. [c.181]

    Образующиеся в процессе конверсии углеводородов газы содержат Нг, СОг, СО, НгО и непрореагировавший метан. Для проведения синтеза аммиака полученный газ очищают от окиси и двуокиси углерода. Окись углерода конвертируют в двуокись в присутствии железо-хромового катализатора при температуре 370—480° С. Содержание окиси углерода в газе снижается с 16% на входе до 1% на выходе из конвертора. В процессе конверсии окиси углерода стали применять цинковый катализатор,, активный при температуре 200-—320Х. Фирма Girdler atalysts разработала катализатор типа G-66 , промышленные испытания которого показали, что содержание окиси углерода при его использовании может быть снижено с 20 до 0,2% при температуре 180°С. Срок службы нового катализатора — более пяти лет. Конверсий окиси углерода осуществляется в одну стадию вместо обычных двух, что снижает капиталовложения на 10—25% [50, 51]. [c.350]

    При рассмотрении схем по переработке водородного сырья заводов синтеза аммиака необходимо иметь в виду, что это сырье, если оно получается конверсией водяного пара, имеет пониженное содержание дейтерия по сравнению с природным водородом вследствие частичного перехода дейтерия в водяной пар. Обеднение может составлять 15—20%. В проекте фирмы Хайдрокарбон Рисерч перерабатываемый газ содержит около 71% водорода и 24% азота, остальное составляют окись углерода, углекислота, метан и аргон. Ввиду большой концентрации азота в схеме предусматривается специальное оборудование для тош ой очистки водорода перед поступлением его в ректификационную колонну. [c.90]

    Парафиновые углеводороды, предназначенные для целей синтеза, должны иметь достаточную степень чистоты, так как примеси гомологов обусловливают излишний расход реагентов и загрязняют целевые продукты. Так, согласно существующим требованиям, фракции С4 и С5 должны содержать не менее 96% основного вещества с примесью 2% ниже- и 2% выщекипящего гомолога. Метан, подвергаемый хлорированию, нередко получают более концентриро ванным (до 99%). Естественно, что метан, использув мый для крекинга в ацетилен или для конверсии в окись углерода и водород, не нуждается в тщательной очистке. Это относится также к этану, пропану и бутану, если они предназначены для пиролиза в олефины. [c.35]

    Этот метод находится еще в стадии разработки (бывш. 1G, Оппау, Саксе). Тепло, требуемое для образования ацетилена, выделяется непосредственно в процессе сжигания метана, который сжигают при недостатке воздуха. Исходным сырьем может служить газ, поступающий с коксовых заводов, или метан, получаемый по способу Лурги газификацией под давлением (стр. 90) с предварительным отделением метана на установке Линде. При этом получаются водород с примесью азота (который может быть использован для синтеза аммиака), окись углерода (которую можно подвергнуть конверсии) и, наконец, насыщенные и ненасыщенные углеводороды. [c.186]

    Для достижения максимальных выходов водорода при кон-версин метана водяным паром представляет интерес полная конверсия метана по реакции (12) с непосредственным получением в одну стадию водорода и двуокиси углерода. Однако такой одностадийный процесс термодинамически невыгоден, так как при пониженных температурах конверсии в продуктах реакции остается довольно значительное количество метана, а при повышенных температурах газ будет содержать большое количество окиси углерода. Следовательно, эндотермический процесс по реакции (7) термодинамически выгодно вести при высоких температурах, а реакцию (1) —при низких температурах. Поэтому на практике процесс получения водорода путем конверсии метана водяным паром проводят в две раздельные стадии. Сначала при относительно высоких температурах конвертируют метан до окиси углерода и водорода, затем полученную окись углерода при более низких температурах превращают в СОг и водород. [c.123]

    КОНВЕРСИЯ ГАЗОВ — процесс переработки га-.чов с целью изменения состава исходной газовой смеси.. Конвертируют обычно газообразные углеводороды (.метан и его гомологи) и окись углерода, с целью получения водорода или его смесей с окисью углерода. Пти смеси используются для синтеза органич. продуктов и в качестве газов-восстановителей в мстал-.тГургии или подвергаются дальнейшей переработке для получения чистого водорода. [c.338]

    В эти же годы большие усилия ученых и инженеров были направлены на разработку технически совершенных и экономичных методов производства чистых азота и водорода для синтеза аммиака [14—22]. Первые аммиачные заводы работали па азото-водородной смеси, получаемой из полуводяного газа методом конверсии окиси углерода с водяным паром, т. е. фактически сырьем были кокс и каменный уголь. Вскоре после первой мировой войны были разработаны промышленные методы производства водорода из коксового газа глубоким охлаждением его до температуры —200° С. При этом конденсируются все газообразные компоненты коксового газа — этилен, этан, метан, окись углерода, а остающийся нескондепсированным водород промывается жидким азотом для освобождения от следов окиси углерода. Были созданы совершенные электролизеры с униполярными электродами, а также высокопроизводительные электролизеры фильтр-прессного типа с биполярными электродами для электролиза воды, которые нашли широкое применение в Норвегии, Италии и Японии. В небольшом масштабе стал применяться железопаровой способ получения водорода, использовался побочный водород других производств, например производства хлора электролизом раствора поваренной соли. Наконец, был разработан метод производства водорода конверсией метана и углеводородов нефти с водяным паром при атмосферном давлении и под давлением 2—5,1 МПа. Последний метод оказался наиболее экономичным, получил большое распространение после второй мировой войны и начал постепенно вытеснять другие. [c.13]

    Жидкий азот очень хорошо растворяет окись углерода, а также аргон и метан. Поэтому в некоторых случаях его применяют вместо медиоаммиачного раствора для очистки газа от СО. Для установок конверсии природного газа, проводимой с применением кислорода, его обычно получают разделением воздуха. При этом образуется большое количество отбросного азота (стр. 123 сл.), который можно использовать в жидком виде для отмывки от окиси углерода конвертированного газа или коксового газа (стр. 157, 161). [c.258]

    Среди различных путей получения водорода из метана и высших углеводородов наибольшее распространение получил процесс конверсии с водяным паром. Как правило, этот процесс технологически ведется в две ступени в первой ступени при относительно высо кой температуре метан с водЯйым паром превращается в СО и Нг, во второй ступени при относительно низкой температуре дополнительно окись углерода с водяным паром превращается в водород. [c.167]

    Каталитическая конверсия углеводородов. На рис. XI.2 показа на зависимость превращения бензина в метан и окись углерода о условий процесса каталитического расщепления [251]. Из рисункг следует, что с увеличением давления процесса при neHSMennoN остаточном содержании метана должны повышаться температура процесса или соотношение пар газ. [c.230]


Смотреть страницы где упоминается термин Окись конверсии метана: [c.107]    [c.229]    [c.52]    [c.31]    [c.52]    [c.339]   
Технология связанного азота (1966) -- [ c.19 ]




ПОИСК





Смотрите так же термины и статьи:

Конверсия метана



© 2024 chem21.info Реклама на сайте