Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Индукционные межмолекулярные взаимодействия. Межмолекулярные взаимодействия индукционные

    Выделяют и третий тип межмолекулярного взаимодействия— индукционное, приводящее к проявлению индукционного эффекта. Суть этого эффекта состоит в том, что электрическое поле одной молекулы усиливает диполь второй молекулы, что приводит к росту сил притяжения. Индукционное взаимодейст- [c.73]

    Входящая в выражение для вклада индукционного межмолекулярного взаимодействия величина [ (/ )Р находится суммированием по вкладам всех ионов цеолита. Отметим, что вклад индукционного электростатического взаимодействия атома А молекулы [c.210]


    Хотя стабильность соединения обусловливается в первую очередь прочностью химических связей, в полимерах дополнительным источ- ником их стабильности могут быть силы вторичные — ван-дер-вааль-, совы. Эти силы определяют когезию, т. е. притяжение между моле-V— кулярными цепями. Они влияют на температуры стеклования и плавления и в некоторой степени на стойкость к термическому разложению. Величина сил межмолекулярного взаимодействия зависит от средней длины цепи, полярности макромолекул, их симметрии и степени ориентации . Эти силы имеют различную природу они могут обусловливаться притяжением между разноименными диполями (дипольный эффект, до 8,7 ккал моль) взаимодействием между постоянными и индуцированными диполями (индукционный эффект, до 0,5 ккал моль) временным смещением ядер и электронов при колебаниях (дисперсионный эффект, 2—6 ккал моль). И, наконец, следует упомянуть о водородной связи (порядка 6—10 ккал моль) — взаимодействии атома водорода с двумя другими атомами (преимущественно Р, О, Ы), — которую можно рассматривать как прочную вторичную или слабую первичную связь. [c.17]

    Согласно [107, 141, 160, 166—169], снижение теплот адсорбции с уменьшением концентрации катионов наблюдается и для ряда н-алканов. По [107], это связано, главным образом, с уменьшением индукционной составляющей энергии межмолекулярного взаимодействия молекул к-алканов с цеолитом. Снижение же дисперсионной составляющей должно в меньшей степени сказываться на теплотах адсорбции, так как изменения концентрации катионов Na+ невелики по сравнению с суммарным числом катионов и ионов кислорода в решетке цеолита. Как и в случае цеолитов Na-X, катионы Na+ в цеолите Na-Y (ввиду их сравнительно низкой поляризуемости) не должны быть преимущественными адсорбционными центрами по отношению к молекулам н-алканов. К тому же, как предполагается в [167], атомы углерода таких молекул могут оказаться недоступными для прямого контакта с катионами. Таким образом, теплоты адсорбции отражают прежде всего взаимодействие протонов н-алканов с ионами кислорода решетки. Уменьшение плотности отрицательного заряда решетки, по [167], может быть также одной из причин снижения теплот адсорбции н-алканов при переходе от цеолита Na-X к Na-Y. [c.147]

    Удобно выделить неспецифические взаимодействия, общие для всех молекул. Сюда относятся универсальные дисперсионные и индукционные межмолекулярные взаимодействия, В соответствии [c.6]


    Специфика распределения межмолекулярных сил и молекулярная масса полимера оказывают заметное влияние на уровень локального накопления механической энергии на химических связях. Роль этих факторов может затушевать различия в прочности связей основной цепи. Силы межмолекулярного взаимодействия определяют когезионную прочность материала, которая в свою очередь влияет на значения температур стеклования и плавления и в значительной степени — на стабильность макромолекул при нагреве и сдвиге. Величина и эффективность вторичных сил взаимодействия зависят от средней длины цепи, полярности, симметрии и ориентации макромолекул. Эти силы являются следствием притяжения диполей одного или разных знаков (до 33,5 кДж/моль), взаимодействия постоянных и индуцированных диполей (индукционный эффект достигает 2,1 кДж/моль), временных перемещений ядер и электронов при вибрации, которые вызывают возникновение сил притяжения (дисперсионный эффект порядка 8,4— 25,2 кДж/моль). И, наконец, следует учитывать водородные связи, создающие усилия притяжения атомов водорода к атомам фтора, кислорода или азота до 42 кДж/моль [114, 236]. [c.99]

    Относительная величина рассмотренных видов межмолекуляр-ных сил зависит от полярности и от поляризуемости молекул вещества. Чем больше полярность молекул, тем бол зше ориентационные силы. Чем больше деформируемость, чем слабее связаны внешние электроны атомов, т. е. чем эти атомы крупнее, тем значительнее дисперсионные силы. Таким образом, в ряду однотипных веществ дисперсионное взаимодействие возрастает с увеличением размеров атомов, составляющих молекулы этих веществ. Например, в случае НС1 на долю дисперсионных сил приходится 81% всего межмолекулярного взаимодействия, для НВг эта величина составляет 95%, а для HI 99,5%, Индукционные силы почти всегда малы. [c.158]

    Энергия межмолекулярного взаимодействия составляет как правило 8—16 кДж/моль. Вклад индукционного взаимодействия обычно невелик. [c.137]

    Физическая адсорбция обусловливается тремя составляющими межмолекулярного притяжения—дисперсионным взаимодействием, ориентационным взаимодействием и индукционным взаимодействием ( 27). [c.372]

    Квантовомеханические расчеты показывают, что энергия межмолекулярного взаимодействия в случае дальнодействующих сил складывается из энергии возмущения первого порядка — электростатической, и второго порядка — индукционной и дисперсионной. [c.94]

    Таким образом, молекулы полярных присадок вызывают изменения в первоначальной кристаллической структуре парафинов, причем степень такого изменения, очевидно, определяется силой слабых межмолекулярных взаимодействий молекул присадок с углеводородами различной молекулярной массы и природы. Парафиновые углеводороды являются неполярными соединениями, в которых межмолекулярные взаимодействия осуществляются за счет дисперсионных сил. В полярных веществах наряду с дисперсионным взаимодействием существует ориентационное и индукционное взаимодействия, энергия которых может быть значительно выше энергии дисперсионного взаимодействия. В неполярных веществах индукционное и ориентационное взаимодействия незначительны. Дисперсионные силы на единицу площади поверхности не зависят от природы вещества [158], поэтому, вычитая силовое поле, обусловленное действием дисперсионных сил, из силового поля полярных групп, можно получить значение силового поля, обусловленного действием ориентационных и индукционных сил. В общем случае изменение энергии межмолекулярного взаимодействия при смешении углеводородов с ПАВ определяется по уравнению [c.159]

    Все эти силы действуют одновременно, но вклады их в общую энергию межмолекулярного взаимодействия различны и зависят от природы и полярности НЖФ и сорбата. Ориентационные, индукционные и специфические межмолекулярные взаимодействия обусловлены полярностью и поэтому называются полярными. Дисперсионные силы обусловлены главным образом отсутствием полярности как у НЖФ, так и у сорбата, и называются неполярными. [c.192]

    Наконец, в группу О выделяются молекулы, в функциональных группах которых электронная плотность сконцентрирована на одном из центров и понижена на другом. К ним относятся вода, спирты, первичные и вторичные амины. Межмолекулярное взаимодействие молекул группы О с молекулами группы А остается неспецифическим (в основном это дисперсионное и отчасти индукционное притяжение). Межмолекулярное же взаимодействие молекул группы В с молекулами групп В и С, а также друг с другом включает обычно значительный вклад специфического взаимодействия. Кроме диполь-дипольного, диполь-квадрупольного и других электростатических ориентационных взаимодействий сюда относятся также еще более специфические направленные межмолекулярные взаимодействия, такие как водородная связь и другие [c.12]


    Потенциалы межмолекулярного взаимодействия в атом-ионном приближении с учетом индукционного электростатического протяжения [c.209]

    В случае адсорбции цеолитом полярных неорганических молекул О2, N2, СО, СО2 и ЫНз, состоящих из нескольких атомов и имеющих электрический дипольный и (или) квадрупольный моменты, расчет вкладов энергии дисперсионного и индукционного притяжения и энергии отталкивания в общую потенциальную энергию Ф также можно провести в атом-ионном приближении. Однако кроме этого здесь надо учесть вклады в энергию межмолекулярного взаимодействия электростатического ориентационного взаимодействия электрических моментов молекулы с ионами решетки цеолита. Таким образом, в этом приближении потенциальная энергия Ф равна  [c.216]

    Вклад ориентационной, индукционной и дисперсионной составляющих в полную энергию межмолекулярного взаимодействия [c.67]

    Какие силы межмолекулярного взаимодействия называются ориентационными, индукционными и дисперсионными Какова природа этих сил  [c.381]

    Энергия межмолекулярного взаимодействия слагается из энергии притяжения и р и отталкивания [/ т. Первая из них — сумма энергий ориентационного, индукционного и дисперсионного взаимодействия — [c.261]

    Одновременно происходит некоторая деформация каждой из них под действием ближе расположенного полюса соседней молекулы. Возникающие в результате этой деформации индуцированные диполи взаимодействуют друг с другом аналогично постоянным, что создает т. н. индукционные силы, также проявляющиеся во взаимном притяжении молекул. Наложение этих сил на ориентационные связано с увеличением длин диполей (В, рис. П1-49) и ведет к усилению межмолекулярного взаимодействия. [c.103]

    Ориентационные и индукционные взаимодействия имеют место в системах, образованных полярными молекулами, т. е. молекулами, обладающими постоянными мультипольными моментами (что касается индукционного взаимодействия, то по крайней мере одна из молекул рассматриваемой пары должна иметь постоянный мультипольный момент, чтобы ф 0). Полная энергия взаимодействия между полярными молекулами не исчерпывается, однако суммой ориентационного и индукционного вкладов. В системах, образованных неполярными молекулами (инертные газы, например), ориентационные и индукционные эффекты отсутствуют. Однако энергия межмолекулярных взаимодействий для них не равна нулю, наиболее явным свидетельством чего является сжижение газов при понижении температуры и сжатии. [c.277]

    Простейшим случаем межмолекулярных взаимодействий является универсальное неспецифическое дисперсионное притяжение, вызываемое флуктуациями электронной плотности во взаимодействующих системах. Поэтому дисперсионное взаимодействие увеличивается с ростом поляризуемости партнеров. Если в молекуле компонента или (и) в адсорбенте имеются ионы, жесткие диполи, квадруполи и т. д., неспецифическое взаимодействие может также включать комбинацию дисперсионного и электростатического индукционного или поляризационного притяжения. Дисперсионное притяжение имеет место в любом варианте хроматографии. Однако, его относительный вклад в общее взаимодействие может быть больше или меньше в зависимости от электростатического индукционного взаимодействия и вкладов других видов взаимодействия. В газовой и молекулярной жидкостной хроматографии в зависимости от сложности разделяемой смеси, а также подбора адсорбента и элюента можно использовать различные комбинации видов неспецифйческого и специфического взаимодействия, которые подробнее рассматриваются ниже. (Во всех случаях наряду [c.10]

    Ван-дер-ваальсово взаимодействие двух молекул на сравнительно больших расстояниях имеет характер возмущения электронного облака одной молекулы электронным облаком другой. При этом энергия системы понижается на величину энергии возмущения, называемую энергией межмолекулярного взаимодействия. Она состоит, как показывает квантовомеханический расчет, из энергии возмущения первого порядка, так называемой электростатической, и энергии возмущения второго порядка — индукционной и дисперсионной. Электростатическое взаимодействие возникает между электрически заряженными атомами (ионами), постоянными дипольными моментами полярных молекул, квадрупольными, октупольными и другими электрическими моментами молекул. Взаимодействие между ионами рассматривается особо. Для нейтральных же молекул в электростатическом взаимодействии важно так называемое ориентационное взаимодействие постоянных дипольных моментов молекул. Ориентационное, индукционное и дисперсионное взаимодействия— три важнейшие составляющие ван-дер-ваальсовых сил притяжения. Эти силы называют дальнодействующими, так как энергия взаимодействия довольно медленно спадает с расстоянием и пропорциональна г ", где н<6. [c.255]

    Итак, между молекулами в веществах проявляется взаимодействие, которое в большинстве случаев складывается из трех видов взаимодействия дисперсионного, ориентационного и индукционного. Межмолекулярное взаимодействие часто называют вандерваальсовым взаимодействием по имени голландского ученого Ван дер Ваальса, который впервые учел его, изучая состояние реальных газов. [c.208]

    С другой стороны, молекулы полимера по сравнению с молекулами растворителя являются настоящими гигантами и состоят из сотен сегментов. Более того, эти длинные молекулы существуют не в виде распрямлен- ных цепей, а в виде плотно сложенных статистических клубков, которые, в свою очередь, тоже не дискретны, а взаимопроникают и сильно перепле-1 таются друг с другом. Следует отметить, что между различными сегмен- тами одной и той же цепи и между соседними цепями существуют когезионные силы и силы притяжения. Молекулярные клубки и их сегменты удерживаются вместе дисперсионными и индукционными силами диполь-дипольного взаимодействия и водородного связьшания, действующими I как внутри, так и межмолекулярно. Из-за того что молекулы полимера очень велики и находятся в свернутом виде, а также из-за сил притяжения для установления взаимодействия между молекулами растворителя и молекулами полимера требуется некоторое время для того, чтобы преодолеть эти силы и высвободить отдельные молекулы из переплетения макромолекулярных цепей, давая им возможность покинуть полимерную фазу. Этим и объясняется разница в поведении при растворении низко-и высокомолекулярных веществ. [c.263]

    Межмолекулярные взаимодействия. Для растворов ПАВ в малополярной среде, какой является смазочное масло, характерны все виды энергетических межмолекулярных взаимодействий химическое (ковалентная, координационная, ионная связи), ван-дер-ваальсово (ориентационные, индукционные и дисперсионные силы), внутримолекулярное и межмолекулярное (водородная связь), электронодонорно-акцепторное (ЭДА-ком-плексы с переносом заряда, ионное межмолекулярное взаимодействие и взаимодействие стабильных свободных радикалов). Энергия некоторых из перечисленных взаимодействий относительно высока (до 210 кДж/моль), значительно выше обычных ван-дер-ваальсовых сил (л 4 кДж/моль), а в некоторых случаях она приближается к энергии химических связей (350— 600 кДж/моль). [c.203]

    Различают три вида межмолекулярного взаимодействия ориеитацрюнное, индукционное и дисперсионное. [c.71]

    Последний член уравнения 1)—— характеризует ван-дер-ваальсовскос притяжение молекул, являющееся результатом действия ориентационных, индукционных и дисперсионных сил. Константа межмолекулярного притяжения Кб в общем случае включает три составляющие, описывающие соответственно взаимодействие двух постоянных диполей (ориентационное взаимодействие), диполя с неполярной молекулой (индукционное взаимодействие) и взаимодействие двух неполярных молекул [c.17]

    Известно, что каждая частица вещества в отсутствие внешних силовых полей находится под воздействием двух конкурирующих энергетических факторов теплового движения и межмолекулярного взаимодействия. При нагревании вещества тепловое движение молекул и их ассоциатов становится интенсивнее, в результате чего возрастают среднестатистические расстояния между частицами. Так как все виды межмолекулярного взаимодействия (диполь-дипольное, индукционное, дисперсионное, водородная связь и т.п.) ослабевают обратно пропорционально шестой степени расстояния между взаимодействующими частицами, то очевидно, что при нафсвании полимера происходит существенное уменьшение межмолекулярного взаимодействия и повышение подвижности макромолекул. [c.123]

    Влияние полярности НЖФ на селективность и порядок разделения компонентов обусловлено соотношением вклада сил межмолекулярного взаимодействия сорбата с НЖФ в общую энергию этого вза-кмодействия. Межмолекулярные силы (когезионные силы Бан-дер-Ваальса) имеют электростатическую природу. Они подразделяются на ориентационные, индукционные и дисперсионные. [c.192]

    Индукционные силы — результат взаимодействия между постоянным диполем анализируемого вещества и индуцированным диполем жидкой фазы или наоборот. Это взаимодействие не зависит от температуры. Энергия его мала по сравнению с энергией других межмолекулярных взаимодействий. Максимальный вклад индукционного взаимодействия в удерживаемые объемы составляет 5-107о. [c.193]

    Молекулы взаимодействуют друг с другом. Для объяснения межмолекулярных взаимодействий были созданы химическая и физическая теории, предполагающие только химическую или только физическую природу межмолекулярных сил. Среди физических рассматривались ван-дер-ваальсовы силы, которые возникают в связи с ориентационным взаимодействием полярных молекул, обладающих постоянным моментом диполя, индукционным взаимодействием молекул, способных поляризоваться под действием соседних молекул, и дисперсионным взаимодействием мгновенных атомных диполей, имеющих постоянно меняющийся дипольный момент за счет несимметричного распределения зарядов колеблющихся ядер и двигающихся электронов. [c.25]

    Свойства веществ обусловливаются не только внутримолекулярными, но и межмолекулярными взаимодействиями. Межмолекулярные взаимодействия проявляются в процессах конденсации, растворения, сжатия реальных газов и т. д. и называются силами Ван-дер-Ваальса. Они отличаются от химических сил взаимодействия тем, что имеют электрическую природу, проявляются на значительно больших расстояниях, характеризуются небольшими энергиями (10—20 Дж/моль), а также отсутствием насыщаемости и специфичности. Энергия химических сил в 7—10 раз больше межмолекулярных. Как показывают квантово-механические расчеты, энергия ван-дер-ваальсова взаимодействия слагается из электростатической, индукционной и дисперсионной энергией. [c.235]

    Выбор повторяющихся объемов в полостях цеолитов и силовых центров в их решетке. Потенциалы межмолекулярного взаимодействия с цеолитом в атом-ионном приближении с учетом индукционного электростатического притяжения и зависимость потенциала от положения молекулы в полости. Полузмпирический расчет константы Генри для адсорбции цеолитами благородных газов, алканов и ненапряженных цикланов. Расчет константы Генри для адсорбции цеолитом полярных молекул в атом-ионном приближении и в приближении точечных диполей и квадруполей. Расчеты для неорганических полярных молекул, этилена и бензола. Хроматоскопическая оценка квадрупольного момента циклопропана. Расчеты для адсорбции си-лнкалитом и возможности расчета для аморфных кремнеземов. [c.205]

    Рассмотрим возможность молекулярно-статистического расчета термодинамических характеристик адсорбции в атом-ионном приближении для потенциальной функции межмолекулярного взаимодействия молекула — ионный адсорбент. Заряды на образующих молекулы атомах, как и истинные заряды ионов адсорбента, часто неизвестны с нужной для расчета константы Генри точностью. Поэтому следует найти атом-ионные потенциалы межмолекулярного взаимодействия и уточнить их параметры, используя экспериментальные значения константы Генри для адсорбции опорных молекул данного класса адсорбатов. Далее, как и в рассмотренном в лекции 9 случае адсорбции на ГТС, надо проверить возможность переноса полученных атом-ионных потенциалов на другие молекулы данного класса. Использование атом-ионного приближения при адсорбции на ионных адсорбентах неполярных молекул требует учета дополнительного вклада в атом-ион-ный потенциал, вносимого поляризацией неполярной молекулы электростатическим полем ионного адсорбента (индукционное притяжение, см. табл. 1.1). Кроме того, при адсорбции ионными адсорбентами полярных молекул в рамках классического электростати- ческого притяжения надо учесть взаимодействие жестких электри- ческих дипольных и квадрупольных моментов молекулы с электростатическим полем ионного адсорбента (ориентационное притяжение, см. табл. 1.1). Затруднения, связанные с локализацией этих моментов в молекуле, значительно усложняют расчеты константы Генри для адсорбции полярных молекул на ионном адсорбенте. [c.205]

    ПОЛЯ молекулы с катионами Na+ дает вклад притяжения, а соответствующее взаимодействие с анионами рещетки цеолита дает вклад отталкивания, причем суммарный вклад притяжения преобладает. Это притяжение должно вызвать соответствующее увеличение общей энергии отталкивания. Однако его трудно учесть в рамках атом-ионного приближения, описывающего основной (для адсорбции большинства молекул) вклад в энергию отталкивания. В рассматриваемых ниже случаях, за исключением адсорбции цеолитом NaX сильно полярных молекул NH3, вклад ориентационного эффекта притяжения по своему значению не является определяющим. Поэтому соответствующим еще меньшим по значению изменением общей энергии отталкивания можно или пренебречь, или учесть его косвенно принять, что оно компенсирует поправку р для вкладов дисперсионного и электростатического индукционного притяжения в общую энергию межмолекулярного взаимодействия молекулы адсорбата с цеолитом. Поправка р, как было показано для случая адсорбции полярных молекул [см. уравнение (11.9)], уменьшает преобладающие в атом-ионном потенциале ф1...1 вклады притяжения, что формально эквивалентно соответствующему увеличению отталкивания. Поэтому в дальнейшем при расчете Ф для адсорбции полярных молекул цеолитом в ФА...япоправка р не вводится. [c.218]

    Межмолекулярное взаимодействие имеет электрическую природу и складывается из вандерваальсовых сил притяжения (ориентационных, индукционных, дисперсионных) и сил отталкивания. [c.124]

    Сравнение различных свойств (температуры плавления и кипения, тепловые эффекты испарения) гидридов элементов IV—VII групп периодической системы показывает, что гидриды элементов второго периода (HF, Н2О, NH3) занимают особое положение по сравнению с другими однотипными соединениями врядах НР—H l-HBr-HI, НгО-НгЗ-НгЗе-НаТе, NH3-PH3-—АзНз—ЗЬНз. Анализ указанных данных показывает, что полная энергия межмолекулярного взаимодействия выше, чем определяемая через сумму ориентационного, индукционного и дисперсионного взаимодействий. Все это свидетельствовало о существовании еще одной своеобразной формы связи — связи через водородный атом, называемый водородной связью. [c.127]

Таблица 1.6. Вклад ориентационной, индукционной и дисперсионной составляющей в анергню межмолекулярного взаимодействия Таблица 1.6. Вклад ориентационной, индукционной и дисперсионной составляющей в анергню межмолекулярного взаимодействия
    В соответствии с основной идеей теории возмущений волновая функция реагирующей системы строится из волновых функщ1Й исходных (невозмущенных) реагентов. Полная энергия этой системы склады вается из энергий отдельных реагентов и членов возмущения, составляющих так называемую энергию взаимодействия. Знак и величина последней определяются конкретным видом параметра возмущения в выражении типа (1.85) для полной энергии. В общем случае этот член должен включать все виды энергетических взаимодействий между двумя сближающимися молекулами (ионами, радикалами) кулоновские, индукционные, обменное отталкивание, перенос заряда, дисперсионные. Конкретный вид получаемых при этом уравнений зависит также и от особенностей принятого расчетного приближения (МОХ, ППП, NDO и пр.). Рассмотрим наиболее простой вариант, основанный на применении МО Хюккеля, — метод межмолекулярных орбиталей (ММО). [c.512]

    В квантовой механике нахождение межмолекулярных потенциалов сводится к решению уравнения Шредингера при различных относительных положениях взаимодействующих молекул. Межмолекулярное взаимодействие, определяемое взаимодействием электронных оболочек молекул, условно можно представить в виде суммы следующих главных вкладов отталкива-тельного электростатического (кулоновского) индукционного (поляризационного) дисперсионного и вклада, обусловленного переносом заряда. Взаимодействия, которые связаны с заметным переносом заряда, относят к специфическим. Эти взаимодействия являются промежуточными между универсальными неспецифическими) межмолекулярными взаимодействиями и химической связью. На специфических взаимодействиях остановимся позднее. [c.117]

    Все три типа межмолекулярного взаимодействия — ориентационное, индукционное и дисперсионное — часто называют в а и -дер-ваальсовыми силами. Так они названы в честь голландского физика Ван-дер-Ваальса, который впервые принял их во внимание для объяснения свойств реальных газов (уравнение Ван-дер-Ваальса). [c.53]


Смотреть страницы где упоминается термин Индукционные межмолекулярные взаимодействия. Межмолекулярные взаимодействия индукционные: [c.217]    [c.289]    [c.63]    [c.70]    [c.210]    [c.35]   
Введение в молекулярную спектроскопию (1975) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Взаимодействие индукционное

Взаимодействие межмолекулярное

Взаимодействие межмолекулярное индукционное

Межмолекулярные



© 2024 chem21.info Реклама на сайте