Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматография адсорбционная схема разделения

    Стадии схемы разделения показаны на рис. 1.3 и рассмотрены в разд. 1.2.3. Прежде чем переходить к крупномасштабному препаративному разделению, связанному с затратами на материал и рабочую силу, разделение, если это вообще возможно, следует предварительно оптимизировать и испытать в малом масштабе. Наилучшую методологию для этих целей дает аналитическая ЖХ, В некоторых ситуациях может быть также с успехом использована тонкослойная хроматография (ТСХ). Для правильного последующего масштабирования система малого масштаба должна иметь как молено больше общих параметров с системой большего масштаба, которая будет использована. Соответствие параметров особенно важно в распределительной и градиентной хроматографии. Оно несколько менее строго в случае простых разделений с помощью адсорбционной хроматографии, [c.56]


    Данная задача наглядно показывает возможности молекулярно-адсорбционной хроматографии. Схема работы близка по принципу к газовой хроматографии. Задача по разделению красителей на колонке с окисью алюминия в известной степени заменяет лабораторную работу по газовой хроматографии. При некоторой дополнительной затрате времени предлагаемую задачу можно в конце изменить, собирая не весь элюат каждого красителя в один сосуд, а отбирать отдельно и фотометрировать последовательно равные порции вытекающей жидкости. Это позволит составить выходную кривую для отдельных компонентов и познакомиться с методикой, принятой, например, для работ по разделению радиоактивных компонентов и т. п. В то же время построение выходной кривой делает такую задачу еще более близкой к газовой хроматографии задачу по газовой хроматографии трудно осуществить в учебной лаборатории за короткое время и самостоятельно. [c.62]

    При использовании стандартных схем разделения нефти [39] нейтральные кислородсодержащие соединения концентрируются во фракциях углеводородов. Их выделение из этих фракций может осуществляться с помощью линейной элюционно-адсорбционной хроматографии [40]. Данные об относительных значениях адсорбционной способности па оксиде алюминия модельных соединений позволяют провести разделение и классификацию нефтяных неуглеводородных соединений по структурно-групповому признаку и определить их структуры масс-спектрометрией высокого разрешения и другими методами [41, 42]. [c.47]

    На рис. 97 представлена блок-схема всего прибора, использованного Филлипсом [8, г] для вытеснительного анализа при помощи газо-адсорбционной хроматографии или для газо-жидкостной хроматографии. Смесь, подлежащую разделению, вводят через трубки 1 или 2, предназначенные для забора пробы в адсорбционную колонку 3 (или в распределительную колонку 4 для газо-жидкостной хроматографии), используя для этого поток азота из баллона. При вытеснительном анализе (с применением адсорбционной колонки) поток азота [c.295]

    На рис. 7.8 приведена схема выбора фаз для адсорбционной хроматографии. При замене на схеме стационарных фаз с различными активностями рядом растворителей различной полярности, можно также подобрать фазы для распределительной хроматографии. При выборе условий разделения исходят из тех же соображений, что и в случае жидкость-жидкостной экстракции. Число растворителей, применяемых в качестве подвижной фазы, чрезвычайно велико. Число сорбентов или носителей ограниченно. [c.349]


    Для ступенчатого градиентного элюирования хроматографических групп была использована возможность разделения смеси элюентов по способу фронтальной хроматографии [3, 5], согласно которому разделение элюентов должно идти по схеме, представленной на рис. 1. При разделении смеси, например, из трёх растворителей различной адсорбционной активности в предварительной колонке (см. рис. 1, а) первым из колонки выйдет некоторое количество наиболее слабо адсорбирующегося растворителя А в чистом виде, затем смесь растворителя А с более сильно адсорбирующимся растворителем В и, наконец, исходная смесь растворителей А, В и С. Поступая в разделительную колонку, растворитель А вытесняет с силикагеля слабо адсорбирующуюся часть образца (компонент а) и движется вместе с ним к выходу из колонки. Затем по этой же схеме десорбируются компоненты Ь и с. [c.6]

    Распределение вещества в системе делительных воронок описывается биномом согласно приведенным выше уравнениям. Распределение вещества в отобранных фракциях можно вычислить по теореме Паскаля [137]. Соответствующий график разделения приведен на рис. 380. Эту схему противоточного распределения применяют в тех случаях, когда коэффициенты распределения разделяемых веществ имеют очень низкие или слишком высокие значения, т. е. когда основная часть веществ переходит преимущественно в гидрофильную или гидрофобную фазу. Конечно, в таких случаях следует подумать о том, не будет ли более целесообразно применить распределительную хроматографию (при низком значении коэффициента распределения) или адсорбционную хроматографию (при высоком значении коэффициента распределения). [c.416]

    После второй мировой войны непрерывный адсорбционный метод был распространен на разделение смесей углеводородов. Основным элементом, отличающим послевоенные установки с движущимся слоем адсорбента, является включение в схему секции хроматографического разделения, в которой на основе принципа вытеснительной хроматографии производится разделение смеси на компоненты. При отводе продуктов десорбции на разных высотах колонны оказалось возможным получить достаточно чистые индивидуальные углеводороды без дополнительного фракционирования. [c.262]

    Основные узлы хроматографа соответствуют показанной на рис. 3.2 схеме. Разработано несколько типов устройств отбора проб как жидких (шприцы), так и газообразных (кран-дозатор, показанный на рис. 2.3). Любое из этих устройств может работать под управлением компьютера, при этом точность анализа увеличивается. Собственно разделение проводится в одной или нескольких хроматографических колонках, которые могут заполняться различными сорбентами. Длина колонки, температура, поток газа и свойства сорбентов — все это сильно влияет на эффективность разделения. Хроматограф может иметь одну или несколько колонок, расположенных параллельно или последовательно в зависимости от цели, которую нужно достичь. Элюируемые из колонки (колонок) компоненты обнаруживаются при помощи одного или нескольких детекторов. В хроматографии применяются следующие типы детекторов катарометры, пламенно-ионизационные, термоионные, электронного захвата, пламенно-фотометрические, атомно-адсорбционные, спектроскопические, электрохимические, радиометрические, фотоионизационные и т. д. Детекторы этих типов различаются по чувствительности, селективности и инерционности. В литературе [49, 50] описаны некоторые типы детекторов, обычно используемые в газовой хроматографии. [c.110]

    В работе освещены основные задачи и направления геохимических исследований и предложен перспективный на современном уровне развития инструментальной базы комплекс геохимических методов. Приведены типовые схемы анализа нефтей, методы определения физико-химических свойств, группового и структурно-группового состава нефтей и разделения (адсорбционная и тонкослойная хроматография, термодиффузия, комплексообразование и др.). [c.2]

    Экспериментальным путем была выявлена необходимость разделения перед анализом на насыщенную и ароматическую часть следующих фракций 100—150, 150—175 и 175—200° С. Было проверено несколько вариантов схем подготовки фракций с различным чередованием операций жидкостной адсорбционной хроматографии и ректификации, причем наименее трудоемкой оказалась схема с предварительным разделением ректификацией на фракции и последующим хроматографическим выделением насыщенных и ароматических углеводородов из этих фракций. К тому же точная ректификация небольших количеств, порядка десятых долей миллилитра (такое количество ароматических углеводородов, выкипающих выше 150° С, получалось практически из 150 мл нефти), является технически весьма трудно осуществимой. [c.115]

    На рис. 1 показана схема установки, использованная нами для осуществления одного из вариантов хроматографического режима. В этой установке разделение происходит в токе инертного газа в условиях, аналогичных проявите льной аналитической адсорбционной хроматографии. [c.28]


    Хроматографический метод разделения основан на различной адсорбционной способности компонентов газовой смеси. Основной частью хроматографа является хроматографическая колонка, представляющая собою металлическую трубку диаметром от 2 до 20 мм и длиной от 1 до 20 м, заполненную пористым адсорбентом (силикагелем, цеолитом и др.). Через колонку непрерывно движется инертный газ-носитель (азот, гелий, водород). В поток газа из дозатора поступает проба исследуемого газа. Газ-носитель вытесняет постепенно компоненты газовой смеси из адсорбента и доставляет их к детектору. Детектор регистрирует содержание компонентов исследуемой смеси. Чувствительный элемент детектора измеряет теплопроводность газа. В металлическом корпусе детектора имеются две ячейки с платиновыми спиралями, включенными в схему моста постоянного тока. Через одну измерительную ячейку проходит газ-носитель, выходящий из колонки хроматографа, через другую сравнительную ячейку — чистый газ-носитель. Разность напряжений, образующаяся между двумя спиралями, измеряется электронным самопишущим прибором. [c.154]

    Изложенный в разд. 1.3.1.2.3 метод выделения оксикислот [3 ] на стадии адсорбционно-хроматографического разделения уточнен применительно к концентратам монокарбоновых кислот промышленных фракций СЖК Сю—и j, — jo (см. схему). Метод прост и позволяет препаративно на силикагеле АСК выделить в виде метиловых эфиров ацетоксикислоты (суммарно). Для изучения компонентного состава этих соединений могут быть рекомендованы методы газо-жидкостной и тонкослойной хроматографии (см. разд. [c.91]

    Основной тенденцией развития методов разделения ВМСН в настоящее время является применение комплексных схем разделения с использованием различных хроматографических методов — адсорбционной, гельпроникающей, ионнообменной, координационной хроматографии. Причем, как правило, применяется колоночный препаративный вариант, позволяющий получать фракции ВМСН в количествах. [c.27]

    Сочетание ЭХ с жидкостно-адсорбционной хроматографией (ЖАХ) или каким-либо другим методом, в котором разделение основано на различиях в химическом строении, позволяет разделить образец на ряд фракций с разной молекулярной массой, а затем каждую фракцию разделить на под-фракции различного химического состава. Впервые такую схему разделения использовал Альтгельт для разделения асфальта [57]. Возможна и другая схема, где ЭХ используют в качестве дополнительного метода разделения фракций, полученных, например, методом ЖАХ. Но в принципе ЭХ должна быгь первой стадией разделения [59], так как это чистое разделение, т. е. разделение только по одному признаку по размеру молекул, в то время как в других методах (ЖАХ, дробное растворение и др.) разделение идет как по химическому строению, так и по молекулярной массе. [c.73]

    При изучении химического состава легких и средних дистиллятных фракций нефти, состоящих главным образом из углеводородов и иногда из сернистых соединений, изучаемый продукт обычно разделяют методом адсорбционной хроматографии на узкие фракции, в основном соответствующие определенным классам углеводородов. Симический состав узких фракций затем исследуют с помощью масс-спекгромирш, газовой хроматографии, УФч пектрофотоме 1рии. Приемы жидкостно-адсорбционной хроматографии, используемые для этой цели, аналогичны описанным в предьщущем разделе и особых затруднений не вызьшают. Возможный состав групп при использовании тех или иных адсорбентов и элюентов на основании изучения поведения модельных соединений и результатов исследования выделенных хроматографических групп также подробно о()суж-ден в предыдущих разделах этой главы и в гл. 2. Поэтому мы здесь не будем останавливаться на схемах разделения легких и средних фракций и перейдем к рассмотрению более сложной задачи — применению жидкостной [c.120]

    Ддя вьщеления азотистых соединений нефть (или нефтепродукт) разделяется методом жидкостно-адсорбционной хроматографии на свежеактивированном силикагеле [199]. н-Пентаном элюируется основная часть неад-сорбируемых углеводородов, а смесью бензол метанол (1 1) вытесняется остальной продукт. Азотистые соединения выделяются из бензол-метаноль-ного элюата экстракцией и анализируются методами ИК-, УФ- масс-спектрометрии, флюоресцентного и фосфоресцентного анализа. Как уже отмечалось, схема разделения USBM - API наиболее исчерпывающая, она дает возможность получить узкие фракции с определенными свойствами. Однако разделение по этой схеме длительно, трудоемко, требует тщательной работы, чтобы избежать потерь и изменения химического состава разделяемых продуктов за счет необратимой адсорбции или конверсии реакционно- [c.131]

    Сопоставление двух схем разделения с выделением кислых, основных и нейтральных соединений - и обычного разделения адсорбционной хроматографией с вьщелением 4-х углеводородных и 3-х полярных фракций проведено Бахтизиной [115] на примере ряда образцов битумов и остатков от перегонки нефтей. Один и тот же образец разделялся на силикагеле методом жидкостной ступенчатой вытеснительной хроматографии [109] и по схеме,аналогичной методу USBM-API (рис. 48).После вьщеления каждой неуглеводородной фракции по второму методу определялся групповой химический состав неактивного продукта по методу [109]. [c.133]

    Значение операций предварительного разделения. Чем сложнее состав неизвестного образца, тем меньше возможность успешного проведения идентификации его компонентов путем прямого ИК-исследования, поэтому очень важно использовать перед съемкой ИК-спектров различные способы разделения. Если приходится часто анализировать образцы определенного типа, например пластмассы, душистые вещества или пищевые продукты, то можно разработать простую схему разделения и анализа, по которой можно будет почти полностью идентифицировать составляющие весьма сложных смесей. В этих схемах для разделения смесей можно использовать экстракцию растворителем, адсорбционную хроматографию, ионный обмен, препаративную газо-жидкостную хроматографию с последующей записью ИК-спектров полученных фракций. Подобные аналитические схемы можно использовать для идентификации малых примесей и загрязняющих веществ, для характеристики параллельно образующихся продуктов, для определения состава ило-образных осадков, шламмов или побочных продуктов. [c.207]

    Естественно, что наряду с правильным выбором растворителей, вытесняющих жидкостей и рациональных методов обработки хроматограммы, весьма существенное значение имеет выбор подходящего адсорбента. Для адсорбционного хроматографического разделения нефтяных фракций на парафино-нафтеновую и ароматическую части лучшим адсорбентом в настоящее время является силикагель, впервые введенный в нефтяную практику Б. Тарасовым [79] в 1926 г. 1то касается характера пор силикагеля, то исследования Гримма [80] по разделению на силикагеле с разной пористостью бинарных жидких смесей, работы Е. А. Михайловой и Б. А. Казанского [1] по хроматографическо.му алсорбционному разделению жидких смесей углеводородов, в том числе бензинов, и исследования И. Е. Неймарка с сотрудниками [81] по выяснению роли структуры адсорбентов в молекулярной хроматографии совершенно однозначно показали, что наиболее избирательным и эффективным для разделения углеводородов является мелкопористый силикагель. Для разделения парафиновых углеводородов нормального и разветвленного строения и нафтеновых углеводородов в ряде работ [82, 83] и патентов [84—89] указана возможность использования активированного угля, особенно угля из шелухи кокосового ореха, который для этих целей является избирательным адсорбентом. В связи с этим необходимо отметить, что еще Л. Г. Гурвич [90] указывал на то, что мелкопористые адсорбенты лучше крупнопористых и что особенно мелкопористые угли получаются из скорлупы кокосовых и других тропических орехов. Описаны также схемы установок непрерывного действия [83] с использованием угля для этих целей. [c.53]

    Использование ступенчатых градиентов. Как отмечено в разд. 1.2.3 и на рис. 1.3, препаративную ЖХ можно использовать как быстрое средство выделения или обогащения классов соединений в условиях ступенчатого градиента. Иногда для простых смесей на этом может быть закончена необходимая очистка (см. пример на рис. 1.27). В других случаях для разделения сложного образца с компонентами, сильно отличающимися по полярности, может быть необходимо использовать многоступенчатую последовательность. Если оставить в стороне вопросы, связанные с растворимостью образца (см. разд. 1.6.2.2.6), то в адсорбционной ЖХ с помощью комбинации только четырех растворителей можно создать последовательность восьми градиентных ступеней и быстро разделить образец на фракции, которые затем можно индивидуально очистить в изократическом режиме. В каждой фракции спектр компонентов будет перекрывать диапазон к примерно только на 5—10 единиц. При скорости 1 мертвый объем в минуту процесс разделения, показанный в табл. 1.8, потенциально может быть закончен менее чем за 20 мин. Размер колонки может быть выбран в соответствии с имеющимся в наличии образцом. Для быстрого фракционирования образца можно аналогичным образом достаточно эффективно использовать градиентные схемы и в других методах разделения (ионный обмен, аффинная хроматография, распределение и т.д.). Классическая колоночная хроматография на открытых колонках часто выполнялась с использованием ступенчатого градиента, создаваемого элюотроп-ным рядом, подходящим для используемой неподвижной фазы. Однако, поскольку приготовление хорошей препаративной ЖХ-колонки требовало искусства и длительного времени. [c.100]

    Это позволило осуществить принципиально новый подход к методу определения группового состава мальтенов, давший возможность изготовить жидкостно-адсорбционный хроматограф и проводить анализ в течелие 30—40 мин. с разделением мальтенов на 3 группы парафино-нафте-ной е, ароматические и смо.ры. Принципиальная схема изготовленного в БашНИИ НП полуавтоматического жидкостноадсорбционного анализатора лредставлена на рис. 1. Анализатор состоит нз следующих основных йчоков  [c.82]

    Автором [38] описана схема анализа радиоактивно меченных производных липидов методами ХТС, колоночной хроматографии и хроматографии на бумаге. Смеси жирных спиртов, моно- и диглицеридов и других ацетилируе-мых липидов обрабатывают радиоактивным ацетангидридом и ацетильные производные фракционируют на отдельные классы соединений методом адсорбционной хроматографии на пластинах или на колонках с силикагелем. Количественное соотношение классов ацетилированных липидов определяют, проводя радиометрию элюатов. 1<аждую такую группу соединений можно подвергнуть дальнейшему разделению на силиконизованной бумаге. Количественный промер хроматограммы на бумаге радиоактивных производных липидов осуществляют проточным пропорциональным счетчиком, снабженным приспособлениями для автоматического перемещения полос бумаги и регистрации результатов измерений. [c.75]

    Таким образом, на основании полученных экспериментальных данных можно предложить схему выделения сераорганических соедпиений, включающую стадию экстрагирования бинарной системой и последующее их разделение методом жидкостной адсорбционной хроматографии. Использование данной схемы позволяет получить концентраты с различным содержанием сульфидной и тиофеновой серы. Сульфиды, в основном тиациклоалканы, благодаря большой адсорбируемости на сорбенте сосредоточены в гексан-бензольной фракции, ароматические соединения в основном сконцентрированы в гексановой фракции. [c.132]

    Этан I-H2/1-I-HI1, этилен I-H2/1-H3/] и бутан-2,3-Н4 (примечание 2) количественно разделяют адсорбционной хроматографией на силикагеле, элюируя последний азотом. Процесс разделения контролируют при помощи двух ламп для определения теплопроводности, соединенных по компенсационной схеме прн этом через одну лампу пропускают азот со скоростью приблизительно 40 мл1мин, в то время как во второй лампе находится десорбированный газ и азот. Как только измерительный прибор покажет, что десорбируется углеводород, поток газа направляют в охлаждаемую ловущку. После того как ббльщая часть азота будет откачана из ловушки с замороженным бутаном-2,3-Н4. бутановую фракцию испаряют в колбу емкостью 400 мл, снабженную ртутным затвором. После освобождения продукта реакции от остатков азота повторным замораживанием, эвакуированием и плавлением в вакууме упругость пара при комнатной температуре составляет 60 мм рт. ст. [c.232]

    Для углубленного исследования состава конечных композиций присадок к смазочным маслам предложен ряд схем многоступенчатого препаратного разделения и анализа [533,543—545], в основу которых входяг препаративные методы — диализ, жидкостная адсорбционная хроматография, экстракция и гидролиз, а также препаративная и аналитическая тонкослойная хроматография, аналитическая газо-жидкостная и гель-хроматография, ИК-спектроскопия и т. д. Образцы композиций присадок неизвестного и по данным, качественного анализа сложного состава исследуют с применением [c.316]

    Для углубленного исследования состава товарных и отработанных (окисленных) пластичных смазок предложены схелш многоступенчатого препаративного разделения и анализа [541, 565—. 570 ], в основу которых входят препаративные методы — ионообменная и жидкостная адсорбционная хроматография, экстракция, а также аналитические методы, газо-жидкостной и тонкослойной хроматографии, ИК-спектроскопия. Сначала проводят качественный. анализ пластичных смазок неизвестного состава (см. разд. III.2.1). При обнаружении в пластичной смазке солей уксусной и других водорастворимых низших жирных кислот разделение и анализ осуществляют по схеме 4, предусматривающей выделение и количественное определение этих кислот. Методически проще проводить исследование пластичных смазок по схеме 5, которая в виде различных модификаций жидкостного хроматографирования на активном и неактивном силикагелях применяется также для определения [c.332]

    Схема анализа углеводородов 50-градусных фракций нефтей приведена на рис. 2.1. В принятой нами схеме одним из основных методов разделения нефти является ректификация по температуре кипения. Атмосферно-вакуумная разгонка нефтей проводилась на аппарате АРИ-2 (ГОСТ 11011 — 64). Из фракций двухступенчатой жидкостно-адсорбционной хроматографией на силикагеле марки A M (фракции 200—300°С) или АСК (фракции 300—490°С) и оксиде алюминия углеводороды разделены на группы насыщенных и ароматических углеводородов. При хроматографическом разделении пользовались комбинацией элюентного (для выделения углеводородной части) и вытеснительного (для вытеснения смолистой части) методов. Применялся следующий элюирующий ряд гексан, гексанбензол (1 1 по объему), бензол, этанолбензол (1 1). К парафинонафтеновым углеводородам относят фракции с показателем преломления nf до 1,49. Ароматические углеводороды составляют группы, объединяющие хроматографические фракции по этому показателю I группа — 1,49 < nf 1,51 И — 1,51< nf <1,53 m-l,53< f <1,59 IV -> 1,59. При разделении на силикагеле четкого перехода от одной группы к другой не наблюдается, часто условно разбитые группы углеводородов загрязнены примесями предыдущих и последующих фракций. Поэтому для более четкой дифференциации полученные на силикагеле фракции углеводородов и промежуточные фракции подвергаются повторному разделению на оксиде алюминия (нейтральная, активность И, по Брокману). [c.34]

    Адсорбционные методы за последние 20—30 лет превратились в мощное средство разделения и анализа нефти и нефтепродуктов. Однако не всегда изучение объекта необходимо и возможно доводить до стадии определения индивидуального состава. В большинстве современных работ различные способы ректификации и абсорбционные способы разделения предшествуют идентификации индивидуальных составляющих с помощью газо-жидкостной хроматографии. Часто определение группового состава является конечной целью исследования. Хроматографические методы в этом отношении широко используются как самостоятельные приемы разделения, так и.в качестве предварительных каскадов в многокаскадных схемах аналитической и препаративной дифференциации смесей сложного состава. [c.28]


Смотреть страницы где упоминается термин Хроматография адсорбционная схема разделения: [c.152]    [c.15]    [c.17]    [c.365]    [c.131]    [c.298]    [c.17]    [c.18]    [c.60]    [c.7]    [c.22]    [c.28]    [c.122]    [c.129]    [c.122]    [c.129]   
Методы химии белков (1965) -- [ c.16 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбционная хроматографи

Хроматография адсорбционная

Хроматография разделение



© 2024 chem21.info Реклама на сайте